Skip to main content

Micromorphic Crystal Plasticity

  • Reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

The micromorphic approach to crystal plasticity represents an extension of the micropolar (Cosserat) framework, which is presented in a separate chapter. Cosserat crystal plasticity is contained as a special constrained case in the same way as the Cosserat theory is a special restricted case of Eringen's micromorphic model, as explained also in a separate chapter. The micromorphic theory is presented along the lines of Aslan et al. (Int J Eng Sci 49:1311–1325, 2011) and Forest et al. (Micromorphic approach to crystal plasticity and phase transformation. In: Schroeder J, Hackl K (eds) Plasticity and beyond. CISM international centre for mechanical sciences, courses and lectures, vol 550, Springer, pp 131–198, 2014) and compared to the micropolar model in some applications. These extensions of conventional crystal plasticity aim at incorporating the dislocation density tensor introduced by Kröner (Initial studies of a plasticity theory based upon statistical mechanics. In: Kanninen M, Adler W, Rosenfield A, Jaffee R (eds) Inelastic behaviour of solids. McGraw-Hill, pp 137–147, 1969). and Cermelli and Gurtin (J Mech Phys Solids 49:1539–1568, 2001) into the constitutive framework. The concept of dislocation density tensor is equivalent to that of the so-called geometrically necessary dislocations (GND) introduced by Ashby (The deformation of plastically non-homogeneous alloys. In: Kelly A, Nicholson R (eds) Strengthening methods in crystals. Applied Science Publishers, London, pp 137–192, 1971). The applications presented in this chapter deal with pile-up formation in laminate microstructures and strain localization phenomena in polycrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • E. Aifantis, The physics of plastic deformation. Int. J. Plast. 3, 211–248 (1987)

    Article  Google Scholar 

  • R.J. Asaro, Elastic–plastic memory and kinematic hardening. Acta Metall. 23, 1255–1265 (1975)

    Article  Google Scholar 

  • R. Asaro, Crystal plasticity. J. Appl. Mech. 50, 921–934 (1983)

    Article  Google Scholar 

  • Ashby, M., 1971. The deformation of plastically non-homogeneous alloys, in Strengthening Methods in Crystals, ed. by A. Kelly, R. Nicholson (Applied Science Publishers, London), pp. 137–192

    Google Scholar 

  • O. Aslan, N.M. Cordero, A. Gaubert, S. Forest, Micromorphic approach to single crystal plasticity and damage. Int. J. Eng. Sci. 49, 1311–1325 (2011)

    Article  MathSciNet  Google Scholar 

  • V. Bennett, D. McDowell, Crack tip displacements of microstructurally small surface cracks in single phase ductile polycrystals. Eng. Fract. Mech. 70(2), 185–207 (2003)

    Article  Google Scholar 

  • V. Berdichevsky, On thermodynamics of crystal plasticity. Scripta Mat. 54, 711–716 (2006a)

    Article  Google Scholar 

  • V. Berdichevsky, On thermodynamics of crystal plasticity. Scr. Mater. 54, 711–716 (2006b)

    Article  Google Scholar 

  • P. Cermelli, M. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49, 1539–1568 (2001)

    Article  Google Scholar 

  • H.J. Chang, N.M. Cordero, C. Déprés, M. Fivel, S. Forest, Micromorphic crystal plasticity versus discrete dislocation dynamics analysis of multilayer pile-up hardening in a narrow channel. Arch. Appl. Mech. 86, 21–38 (2016)

    Article  Google Scholar 

  • W. Claus, A. Eringen, Three dislocation concepts and micromorphic mechanics, in Developments in Mechanics. Proceedings of the 12th Midwestern Mechanics Conference, vol. 6, (1969), pp. 349–358

    Google Scholar 

  • S. Conti, M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176, 103–147 (2005)

    Article  MathSciNet  Google Scholar 

  • N. Cordero, A. Gaubert, S. Forest, E. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two–phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010a)

    Article  MathSciNet  Google Scholar 

  • N.M. Cordero, A. Gaubert, S. Forest, E. Busso, F. Gallerneau, S. Kruch, Size effects in generalised continuum crystal plasticity for two-phase laminates. J. Mech. Phys. Solids 58, 1963–1994 (2010b)

    Article  MathSciNet  Google Scholar 

  • N.M. Cordero, S. Forest, E. Busso, S. Berbenni, M. Cherkaoui, Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals. Comput. Mater. Sci. 52, 7–13 (2012)

    Article  Google Scholar 

  • L. De Luca, A. Garroni, M. Ponsiglione, Gamma-convergence analysis of Systems of Edge Dislocations: the self energy regime. Arch. Ration. Mech. Anal. 206, 885–910 (2012)

    Article  MathSciNet  Google Scholar 

  • C. Déprés, C.F. Robertson, M.C. Fivel, Low-strain fatigue in aisi 316l steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles i. Dislocation microstructures and mechanical behaviour. Philos. Mag. 84(22), 2257–2275 (2004)

    Article  Google Scholar 

  • Eringen, A., Claus, W., 1970. A micromorphic approach to dislocation theory and its relation to several existing theories, in Fundamental Aspects of Dislocation Theory, ed. by J. Simmons, R. de Wit, R. Bullough. National Bureau of Standards (US) Special Publication 317, vol. II (U.S. Government Printing Office, Washington, DC), pp. 1023–1062

    Google Scholar 

  • B. Fedelich, A microstructural model for the monotonic and the cyclic mechanical behavior of single crystals of superalloys at high temperatures. Int. J. Mech. Sci. 18, 1–49 (2002)

    MATH  Google Scholar 

  • S. Forest, Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations. Philos. Mag. 88, 3549–3563 (2008)

    Article  Google Scholar 

  • S. Forest, The micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J. Eng. Mech. 135, 117–131 (2009)

    Article  Google Scholar 

  • S. Forest, Nonlinear regularisation operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage. Proc. R. Soc. A 472, 20150755 (2016)

    Article  Google Scholar 

  • S. Forest, N. Guéninchault, Inspection of free energy functions in gradient crystal plasticity. Acta. Mech. Sinica. 29, 763–772 (2013) https://doi.org/10.1007/s10409-013-0088-0

    Article  MathSciNet  Google Scholar 

  • S. Forest, R. Sedláček, Plastic slip distribution in two–phase laminate microstructures: Dislocation–based vs. generalized–continuum approaches. Philos. Mag. A 83, 245–276 (2003a)

    Article  Google Scholar 

  • S. Forest, R. Sedláček, Plastic slip distribution in two–phase laminate microstructures: Dislocation–based vs. generalized–continuum approaches. Philos. Mag. A 83, 245–276 (2003b)

    Article  Google Scholar 

  • S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    Article  Google Scholar 

  • S. Forest, R. Sievert, Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MathSciNet  Google Scholar 

  • S. Forest, F. Pradel, K. Sab, Asymptotic analysis of heterogeneous Cosserat media. Int. J. Solids Struct. 38, 4585–4608 (2001)

    Article  MathSciNet  Google Scholar 

  • Forest, S., Ammar, K., Appolaire, B., Cordero, N., Gaubert, A., 2014. Micromorphic approach to crystal plasticity and phase transformation, in Plasticity and Beyond, ed. by J. Schroeder, K. Hackl. CISM International Centre for Mechanical Sciences, Courses and Lectures, no. 550 (Springer, Vienna), pp. 131–198

    Chapter  Google Scholar 

  • M. Geers, R. Peerlings, M. Peletier, L. Scardia, Asymptotic behaviour of a pile–up of infinite walls of edge dislocations. Arch. Ration. Mech. Anal. 209, 495–539 (2013)

    Article  MathSciNet  Google Scholar 

  • P. Germain, The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  Google Scholar 

  • P. Grammenoudis, C. Tsakmakis, Micromorphic continuum part I: strain and stress tensors and their associated rates. Int. J. Non–Linear Mech. 44, 943–956 (2009)

    Article  Google Scholar 

  • I. Groma, F. Csikor, M. Zaiser, Spatial correlations and higher–order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 51, 1271–1281 (2003)

    Article  Google Scholar 

  • I. Groma, G. Györgyi, B. Kocsis, Dynamics of coarse grain grained dislocation densities from an effective free energy. Philos. Mag. 87, 1185–1199 (2007)

    Article  Google Scholar 

  • M. Gurtin, A gradient theory of single–crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5–32 (2002)

    Article  MathSciNet  Google Scholar 

  • M. Gurtin, L. Anand, Nanocrystalline grain boundaries that slip and separate: a gradient theory that accounts for grain-boundary stress and conditions at a triple-junction. J. Mech. Phys. Solids 56, 184–199 (2008)

    Article  MathSciNet  Google Scholar 

  • M. Gurtin, L. Anand, Thermodynamics applied to gradient theories involving the accumulated plastic strain: the theories of Aifantis and Fleck and Hutchinson and their generalization. J. Mech. Phys. Solids 57, 405–421 (2009)

    Article  MathSciNet  Google Scholar 

  • W. Han, B. Reddy, Plasticity: Mathematical Theory and Numerical Analysis (Springer, New York, 2013)

    Book  Google Scholar 

  • C. Hirschberger, P. Steinmann, Classification of concepts in thermodynamically consistent generalized plasticity. ASCE J. Eng.Mech. 135, 156–170 (2009)

    Article  Google Scholar 

  • D.E. Hurtado, M. Ortiz, Surface effects and the size-dependent hardening and strengthening of nickel micropillars. J. Mech. Phys. Solids 60(8), 1432–1446 (2012)

    Article  MathSciNet  Google Scholar 

  • D.E. Hurtado, M. Ortiz, Finite element analysis of geometrically necessary dislocations in crystal plasticity. Int. J. Numer. Methods Eng. 93(1), 66–79 (2013)

    Article  MathSciNet  Google Scholar 

  • R. Kametani, K. Kodera, D. Okumura, N. Ohno, Implicit iterative finite element scheme for a strain gradient crystal plasticity model based on self-energy of geometrically necessary dislocations. Comput. Mater. Sci. 53(1), 53–59 (2012)

    Article  Google Scholar 

  • Kröner, E., 1969. Initial studies of a plasticity theory based upon statistical mechanics, in Inelastic Behaviour of Solids, ed. by M. Kanninen, W. Adler, A. Rosenfield, R. Jaffee (McGraw-Hill, New York/London), pp. 137–147

    Google Scholar 

  • J. Lee, Y. Chen, Constitutive relations of micromorphic thermoplasticity. Int. J. Eng. Sci. 41, 387–399 (2003)

    Article  MathSciNet  Google Scholar 

  • J. Mandel, Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques. Int. J. Solids Struct. 9, 725–740 (1973)

    Article  Google Scholar 

  • L. Méric, P. Poubanne, G. Cailletaud, Single crystal modeling for structural calculations. Part 1: Model presentation. J. Eng. Mat. Technol. 113, 162–170 (1991)

    Article  Google Scholar 

  • S.D. Mesarovic, R. Baskaran, A. Panchenko, Thermodynamic coarsening of dislocation mechanics and the size-dependent continuum crystal plasticity. J. Mech. Phys. Solids 58(3), 311–329 (2010)

    Article  MathSciNet  Google Scholar 

  • S. Mesarovic, S. Forest, J. Jaric, Size-dependent energy in crystal plasticity and continuum dislocation models. Proc. R. Soc. A 471, 20140868 (2015)

    Article  MathSciNet  Google Scholar 

  • C. Miehe, S. Mauthe, F.E. Hildebrand, Variational gradient plasticity at finite strains. Part III: local-global updates and regularization techniques in multiplicative plasticity for single crystals. Comput. Methods Appl. Mech. Eng. 268, 735–762 (2014)

    Article  MathSciNet  Google Scholar 

  • J. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1, 153–162 (1953)

    Article  Google Scholar 

  • N. Ohno, D. Okumura, Higher-order stress and grain size effects due to self-energy of geometrically necessary dislocations. J. Mech. Phys. Solids 55, 1879–1898 (2007)

    Article  MathSciNet  Google Scholar 

  • N. Ohno, D. Okumura, Grain–size dependent yield behavior under loading, unloading and reverse loading. Int. J. Mod. Phys. B 22, 5937–5942 (2008)

    Article  Google Scholar 

  • M. Ortiz, E. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2), 397–462 (1999)

    Article  MathSciNet  Google Scholar 

  • H. Proudhon, W. Poole, X. Wang, Y. Bréchet, The role of internal stresses on the plastic deformation of the Al–Mg–Si–Cu alloy AA611. Philos. Mag. 88, 621–640 (2008)

    Article  Google Scholar 

  • B.D. Reddy, C. Wieners, B. Wohlmuth, Finite element analysis and algorithms for single-crystal strain-gradient plasticity. Int. J. Numer. Methods Eng. 90(6), 784–804 (2012)

    Article  MathSciNet  Google Scholar 

  • R. Regueiro, On finite strain micromorphic elastoplasticity. Int. J. Solids Struct. 47, 786–800 (2010)

    Article  Google Scholar 

  • C. Sansour, S. Skatulla, H. Zbib, A formulation for the micromorphic continuum at finite inelastic strains. Int. J. Solids Struct. 47, 1546–1554 (2010)

    Article  Google Scholar 

  • P. Steinmann, Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int. J. Eng. Sci. 34, 1717–1735 (1996)

    Article  Google Scholar 

  • R. Stoltz, R. Pelloux, Cyclic deformation and Bauschinger effect in Al–Cu–Mg alloys. Scr. Metall. 8, 269–276 (1974)

    Article  Google Scholar 

  • R. Stoltz, R. Pelloux, The Bauschinger effect in precipitation strengthened aluminum alloys. Metallurgical. Transactions 7A, 1295–1306 (1976)

    Google Scholar 

  • B. Svendsen, S. Bargmann, On the continuum thermodynamic rate variational formulation of models for extended crystal plasticity at large deformation. J. Mech. Phys. Solids 58(9), 1253–1271 (2010)

    Article  MathSciNet  Google Scholar 

  • R. Taillard, A. Pineau, Room temperature tensile properties of Fe-19wt.% Cr alloys precipitation hardened by the intermetallic compound NiAl. Mater. Sci. Eng. 56, 219–231 (1982)

    Article  Google Scholar 

  • S. Wulfinghoff, T. Böhlke, Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc. R. Soc. A: Math. Phys. Eng. Sci. 468(2145), 2682–2703 (2012)

    Article  MathSciNet  Google Scholar 

  • S. Wulfinghoff, E. Bayerschen, T. Böhlke, A gradient plasticity grain boundary yield theory. Int. J. Plast. 51, 33–46 (2013a)

    Article  Google Scholar 

  • S. Wulfinghoff, E. Bayerschen, T. Böhlke, Micromechanical simulation of the hall-petch effect with a crystal gradient theory including a grain boundary yield criterion. PAMM 13, 15–18 (2013b)

    Article  Google Scholar 

  • S. Wulfinghoff, S. Forest, T. Böhlke, Strain gradient plasticity modeling of the cyclic behavior of laminate microstructures. J. Mech. Phys. Solids 79, 1–20 (2015)

    Article  MathSciNet  Google Scholar 

  • A. Zeghadi, S. Forest, A.-F. Gourgues, O. Bouaziz, Ensemble averaging stress–strain fields in polycrystalline aggregates with a constrained surface microstructure–part 2: crystal plasticity. Philos. Mag. 87, 1425–1446 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The first author is indebted to Dr. N.M. Cordero, Dr. S. Wulfinghoff, and Prof. E.B. Busso for their contribution to the presented micromorphic crystal plasticity theory. These contributions are duly cited in the references quoted in the text and listed below.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Forest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Forest, S., Mayeur, J.R., McDowell, D.L. (2019). Micromorphic Crystal Plasticity. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-58729-5_49

Download citation

Publish with us

Policies and ethics