Skip to main content

Continuum Homogenization of Fractal Media

  • Reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

This chapter reviews the modeling of fractal materials by homogenized continuum mechanics using calculus in non-integer dimensional spaces. The approach relies on expressing the global balance laws in terms of fractional integrals and, then, converting them to integer-order integrals in conventional (Euclidean) space. Via localization, this allows development of local balance laws of fractal media (continuity, linear and angular momenta, energy, and second law) and, in case of elastic responses, formulation of wave equations in several settings (1D and 3D wave motions, fractal Timoshenko beam, and elastodynamics under finite strains). Next, follows an account of extremum and variational principles, and fracture mechanics. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers.

Sandia National Laboratories is a multimission laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A.S. Balankin, O. Susarrey, C.A. Mora Santos, J. Patíno, A. Yogues, E.I. García, Stress concentration and size effect in fracture of notched heterogeneous material. Phys. Rev. E 83, 015101(R) (2011)

    Google Scholar 

  • M.F. Barnsley, Fractals Everywhere (Morgan Kaufmann, San Francisco, 1993)

    MATH  Google Scholar 

  • A. Carpinteri, B. Chiaia, P.A. Cornetti, A disordered microstructure material model based on fractal geometry and fractional calculus. ZAMP 84, 128–135 (2004)

    MathSciNet  MATH  Google Scholar 

  • A. Carpinteri, N. Pugno, Are scaling laws on strength of solids related to mechanics or to geometry? Nat. Mater. 4, 421–23 (2005)

    Article  Google Scholar 

  • P.N. Demmie, Ostoja-Starzewski, Waves in fractal media. J. Elast. 104, 187–204 (2011)

    MathSciNet  Google Scholar 

  • A.C. Eringen, Microcontinuum Field Theories I (Springer, New York, 1999)

    Book  Google Scholar 

  • K. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, Chichester, 2003).

    Book  Google Scholar 

  • E.E. Gdoutos, Fracture Mechanics: An Introduction (Kluwer Academic Publishers, Dordrecht, 1993)

    Book  Google Scholar 

  • H.M. Hastings, G. Sugihara, Fractals: A User’s Guide for the Natural Sciences (Oxford Science Publications, Oxford, 1993)

    MATH  Google Scholar 

  • H. Joumaa, M. Ostoja-Starzewski, On the wave propagation in isotropic fractal media. ZAMP 62, 1117–1129 (2011)

    MathSciNet  MATH  Google Scholar 

  • H. Joumaa, M. Ostoja-Starzewski, Acoustic-elastodynamic interaction in isotropic fractal media. Eur. Phys. J. Spec. Top. 222, 1949–1958 (2013)

    Article  Google Scholar 

  • H. Joumaa, M. Ostoja-Starzewski, P.N. Demmie, Elastodynamics in micropolar fractal solids. Math. Mech. Solids 19(2), 117–134 (2014)

    Article  MathSciNet  Google Scholar 

  • H. Joumaa, M. Ostoja-Starzewski, On the dilatational wave motion in anisotropic fractal solids. Math. Comput. Simul. 127, 114–130 (2016)

    Article  MathSciNet  Google Scholar 

  • G. Jumarie, On the representation of fractional Brownian motion as an integral with respect to (dt)a. Appl. Math. Lett. 18, 739–748 (2005)

    Article  MathSciNet  Google Scholar 

  • G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)

    Article  MathSciNet  Google Scholar 

  • A. Le Méhauté, Fractal Geometry: Theory and Applications (CRC Press, Boca Raton, 1991)

    MATH  Google Scholar 

  • J. Li, M. Ostoja-Starzewski, Fractal materials, beams and fracture mechanics. ZAMP 60, 1–12 (2009a)

    MathSciNet  MATH  Google Scholar 

  • J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 2521–2536 (2009b); Errata (2010)

    Google Scholar 

  • J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and continuum mechanics, chapter 33, in Mechanics of Generalized Continua: One Hundred Years After the Cosserats, ed. by G.A. Maugin, A.V. Metrikine (Springer, New York, 2010), pp. 315–323

    Chapter  Google Scholar 

  • J. Li, M. Ostoja-Starzewski, Micropolar continuum mechanics of fractal media. Int. J. Eng. Sci. (A.C. Eringen Spec. Issue) 49, 1302–1310 (2011)

    Article  MathSciNet  Google Scholar 

  • J. Li, M. Ostoja-Starzewski, Edges of Saturn’s rings are fractal. SpringerPlus 4, 158 (2015). arXiv:1207.0155 (2012)

    Google Scholar 

  • B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman & Co, NewYork, 1982)

    MATH  Google Scholar 

  • G.A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviours (World Scientific Pub. Co., Singapore, 1999)

    Book  Google Scholar 

  • G.A. Maugin, Non-classical Continuum Mechanics: A Dictionary (Springer, Singapore, 2016)

    MATH  Google Scholar 

  • W. Nowacki, Theory of Asymmetric Elasticity (Pergamon Press/PWN − Polish Sci. Publ., Oxford/Warszawa, 1986)

    Google Scholar 

  • K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, San Diego, 1974)

    MATH  Google Scholar 

  • M. Ostoja-Starzewski, Fracture of brittle micro-beams. ASME J. Appl. Mech. 71, 424–427 (2004)

    Article  Google Scholar 

  • M. Ostoja-Starzewski, Towards thermomechanics of fractal media. ZAMP 58(6), 1085–1096 (2007)

    MathSciNet  MATH  Google Scholar 

  • M. Ostoja-Starzewski, On turbulence in fractal porous media. ZAMP 59(6), 1111–1117 (2008a)

    MathSciNet  MATH  Google Scholar 

  • M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials (CRC Press, Boca Raton, 2008b)

    MATH  Google Scholar 

  • M. Ostoja-Starzewski, Extremum and variational principles for elastic and inelastic media with fractal geometries. Acta Mech. 205, 161–170 (2009)

    Article  Google Scholar 

  • M. Ostoja-Starzewski, Electromagnetism on anisotropic fractal media. ZAMP 64(2), 381–390 (2013)

    MathSciNet  MATH  Google Scholar 

  • M. Ostoja-Starzewski, J. Li, H. Joumaa, P.N. Demmie, From fractal media to continuum mechanics. ZAMM 94(5), 373–401 (2014)

    Article  MathSciNet  Google Scholar 

  • M. Ostoja-Starzewski, S. Kale, P. Karimi, A. Malyarenko, B. Raghavan, S.I. Ranganathan, J. Zhang, Scaling to RVE in random media. Adv. Appl. Mech. 49, 111–211 (2016)

    Article  Google Scholar 

  • D. Stoyan, H. Stoyan, Fractals, Random Shapes and Point Fields (Wiley, Chichester, 1994)

    MATH  Google Scholar 

  • V.E. Tarasov, Fractional hydrodynamic equations for fractal media. Ann. Phys. 318(2), 286–307 (2005a)

    Article  MathSciNet  Google Scholar 

  • V.E. Tarasov, Wave equation for fractal solid string. Mod. Phys. Lett. B 19(15), 721–728 (2005b)

    Article  Google Scholar 

  • V.E. Tarasov, Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005c)

    Article  Google Scholar 

  • V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Berlin, 2010)

    Book  Google Scholar 

  • V.E. Tarasov, Anisotropic fractal media by vector calculus in non-integer dimensional space. J. Math. Phys. 55, 083510-1-20 (2014)

    Article  MathSciNet  Google Scholar 

  • V.E. Tarasov, Electromagnetic waves in non-integer dimensional spaces and fractals. Chaos, Solitons Fractals 81, 38–42 (2015a)

    Article  MathSciNet  Google Scholar 

  • V.E. Tarasov, Vector calculus in non-integer dimensional space and its applications to fractal media. Commun. Nonlinear Sci. Numer. Simul. 20, 360–374 (2015b)

    Article  MathSciNet  Google Scholar 

  • H. Ziegler, An Introduction to Thermomechanics (North-Holland, Amsterdam, 1983)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was made possible by the support from NSF (grant CMMI-1462749).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ostoja-Starzewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ostoja-Starzewski, M., Li, J., Demmie, P.N. (2019). Continuum Homogenization of Fractal Media. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-58729-5_18

Download citation

Publish with us

Policies and ethics