Skip to main content

Higher Order Thermo-mechanical Gradient Plasticity Model: Nonproportional Loading with Energetic and Dissipative Components

  • Reference work entry
  • First Online:
Handbook of Nonlocal Continuum Mechanics for Materials and Structures

Abstract

In this chapter, two cases of thermodynamic-based higher order gradient plasticity theories are presented and applied to the stretch-surface passivation problem for investigating the material behavior under the nonproportional loading condition. This chapter incorporates the thermal and mechanical responses of microsystems. It addresses phenomena such as size and boundary effects and in particular microscale heat transfer in fast-transient processes. The stored energy of cold work is considered in the development of the recoverable counterpart of the free energy. The main distinction between the two cases is the presence of the dissipative higher order microstress quantities \( {\mathcal{S}}_{ijk}^{\mathrm{dis}} \). Fleck et al. (Soc. A-Math. Phys. 470:2170, 2014, ASME 82:7, 2015) noted that \( {\mathcal{S}}_{ijk}^{\mathrm{dis}} \) always gives rise to the stress jump phenomenon, which causes a controversial dispute in the field of strain gradient plasticity theory with respect to whether it is physically acceptable or not, under the nonproportional loading condition. The finite element solution for the stretch-surface passivation problem is also presented by using the commercial finite element package ABAQUS/standard (User’s Manual (Version 6.12). Dassault Systemes Simulia Corp., Providence, 2012) via the user-subroutine UEL. The model is validated by comparing with three sets of small-scale experiments. The numerical simulation part, which is largely composed of four subparts, is followed. In the first part, the occurrence of the stress jump phenomenon under the stretch-surface passivation condition is introduced in conjunction with the aforementioned three experiments. The second part is carried out in order to clearly show the results to be contrary to each other from the two classes of strain gradient plasticity models. An extensive parametric study is presented in the third part in terms of the effects of the various material parameters on the stress-strain response for the two cases of strain gradient plasticity models, respectively. The evolution of the free energy and dissipation potentials are also investigated at elevated temperatures. In the last part, the two-dimensional simulation is given to examine the gradient and grain boundary effect, the mesh sensitivity of the two-dimensional model, and the stress jump phenomenon. Finally, some significant conclusions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Z. Voyiadjis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Voyiadjis, G.Z., Song, Y. (2019). Higher Order Thermo-mechanical Gradient Plasticity Model: Nonproportional Loading with Energetic and Dissipative Components. In: Voyiadjis, G. (eds) Handbook of Nonlocal Continuum Mechanics for Materials and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-58729-5_14

Download citation

Publish with us

Policies and ethics