Advertisement

Monitoring and Risk Analysis of PAHs in the Environment

  • Karishma Hussain
  • Raza R. Hoque
  • Srinivasan Balachandran
  • Subhash Medhi
  • Mohammad Ghaznavi Idris
  • Mirzanur Rahman
  • Farhaz Liaquat Hussain
Living reference work entry

Latest version View entry history

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are a unique class of organic pollutants containing two or more fused aromatic rings, which are toxic and potential carcinogens. They are extensively studied compounds, and their occurrence has been reported from various places over the world which indicates their ubiquitous nature in our environment. Anthropogenic sources of PAHs are more dominant than their natural source which include sources like combustion engines, residential heating, industrial activities, and biomass burning. USEPA has already listed 16 PAHs [naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene, and indeno(1,2,3-c,d)pyrene] as most priority ones to be analyzed in various environmental matrices. More so, benzo(a)pyrene is termed as index or gold standard of the whole group of PAHs due to its high carcinogenic potency. Once in the atmosphere, depending on their physical and chemical properties, PAHs get distributed between gas, particle, and droplet phase. Aerial movement is one of the major pathways for environmental distribution and transboundary deposition of PAHs. Eventually, PAHs settle down in soils and street dust and enter into aquatic environment. Soil and street dust act as direct sink of atmospheric PAHs near to traffic and other combustion sources. From these environmental compartments, rainwater and storm water easily wash away PAHs to nearby aquatic bodies. Due to hydrophobic nature, PAHs in aquatic environment are preferably partitioned and accumulate into the particulate phase of sediment. PAHs, thus, occur in multicompartmental system of the environment and paved the way for multiple routes of exposure to this class of carcinogen. Therefore, extensive studies have been carried out for PAHs in different environmental matrices over the world, and many places are revealed with very high exposure levels of PAHs.

Environmental PAHs have harmful effects on different types of organisms of the ecosystem. PAHs attract considerable attention among researchers due to continuous rise in death toll of human cancer worldwide. Toxic equivalency factors (TEFs) were often employed to assess carcinogenic potential of individual PAHs. Here, the maximum TEF of one is assigned to BaP, and other individual PAHs are relative to BaP as BaP equivalents (BaPq). To characterize risk of PAHs to surrounding organisms and ecosystems in aquatic environment, ecosystem risk was often employed by researchers by using risk quotient (RQ) of individual PAHs. Risk quotients (RQ) value indicated the levels of risk posed by certain PAHs. Studies are revealed with high exposure risk in different environmental matrices in several places around the world. However, only a few recommendations or guidelines exist worldwide for concentration of PAHs.

References

  1. Aceves M, Grimalt JO (1993) Seasonally dependent size distributions of aliphatic and polycyclic aromatic hydrocarbons in urban aerosols from densely populated areas. Environ Sci Technol 27(13):2896–2908CrossRefGoogle Scholar
  2. Agarwal T (2009) Concentration level, pattern and toxic potential of PAHs in traffic soil of Delhi, India. J Hazard Mater 171(1–3):894–900CrossRefGoogle Scholar
  3. Agarwal T, Bucheli TD (2011) Is black carbon a better predictor of polycyclic aromatic hydrocarbon distribution in soils than total organic carbon. Environ Pollut 159(1):64–70CrossRefGoogle Scholar
  4. Alam MS et al (2013) Using atmospheric measurements of PAH and Quinone compounds at roadside and urban background sites to assess sources and reactivity. Atmos Environ 77:24–35CrossRefGoogle Scholar
  5. Alberty RA, Reif AK (1988) Standard chemical thermodynamic properties of polycyclic aromatic hydrocarbons and their isomer groups I benzene series. J Phys Chem Ref Data 17(1):241–253CrossRefGoogle Scholar
  6. Allen JO et al (1996) Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts. Environ Sci Technol 30(3):1023–1031CrossRefGoogle Scholar
  7. American Conference of Governmental Industrial Hygienists (1995)Google Scholar
  8. Aryal RK et al (2005) Dynamic behaviour of fractional suspended solids and particle bound polycyclic aromatic hydrocarbons in highway runoff. Water Res 39(20):5126–5134CrossRefGoogle Scholar
  9. ATSDR (Agency for Toxic Substances and Disease Registry) (1995) Toxicological profile for polycyclic aromatic hydrocarbons. U.S. Department of Health and Human Services, Public Health Service, Atlanta. Available at: http://www.atsdr.cdc.gov/toxprofiles/tp69pdf Google Scholar
  10. Auqusto S et al (2012) Assessing human exposure to polycyclic aromatic hydrocarbon (PAHs) in a petrochemical region utilizing data from environmental biomonitors. J Toxic Environ Health A 75(13–15):819–830CrossRefGoogle Scholar
  11. Ausma S et al (2001) A micrometerological technique to monitor total hydrocarbon emissions from landfarms to the atmosphere. J Environ Qual 30(3):776–785CrossRefGoogle Scholar
  12. Baek SO et al (1991a) A review of atmospheric polycyclic aromatic hydrocarbons: sources, fates and behaviour. Water Air Soil Pollut 60(3–4):279–300CrossRefGoogle Scholar
  13. Baek SO et al (1991b) Concentrations of particulate and gaseous polycyclic aromatic hydrocarbons in London air following a reduction in the lead content of petrol in the United Kingdom. Sci Total Environ 11:169–199Google Scholar
  14. Balcioglu EB et al (2014) T-PAH contamination in Mediterranean mussels (Mytilus Galloprovincialis, Lamarck, 1819) at various stations of the Turkish straits system. Mar Pollut Bull 88:344–346CrossRefGoogle Scholar
  15. Barran-Berdon AL et al (2012) Polycyclic aromatic hydrocarbons in soils from a brick manufacturing location in Central Mexico. Rev Int Contaminacion Ambient 28(4):277–288Google Scholar
  16. Bartoszek A (2002) Chemical and functional properties of food components, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  17. Baumard P et al (1998) Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment. Estuar Coast Shelf Sci 47(1):77–90CrossRefGoogle Scholar
  18. Beyer J et al (2010) Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environ Toxicol Pharmacol 30(3):224–244CrossRefGoogle Scholar
  19. Bidleman TF (1988) Atmospheric processes: wet and dry deposition of organic compounds are controlled by their vapour-particle partitioning. Environ Sci Technol 22(4):361–367CrossRefGoogle Scholar
  20. Birgül A et al (2011) Atmospheric wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) determined using a modified sampler. Atmos Res 101(1–2):341–353CrossRefGoogle Scholar
  21. Bojakowska I, Sokołowska G (2001) Polycyclic aromatic hydrocarbons (PAHs) in recent lake and river sediments in Poland. In: Weber J, Jamroz E, Drozd J, Karczewska A (eds) Biogeochemical processes and cycling of elements in the environment, 1st edn. Polish Society of Humic Substances (PTSH), Wroclaw, pp 187–188Google Scholar
  22. Bosetti C et al (2007) Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005. Ann Oncol 18(3):431–446CrossRefGoogle Scholar
  23. Boström CE et al (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110(3):451–488CrossRefGoogle Scholar
  24. Brun GL et al (2004) Atmospheric deposition of polycyclic aromatic hydrocarbons to Atlantic Canada: geographic and temporal distributions and trends 1980–2001. Environ Sci Technol 38(7):1941–1948CrossRefGoogle Scholar
  25. Buehler S et al (1998) Atmospheric deposition of toxic substances to the great lakes. IADN, Published by: environment Canada and the United States Environmental Protection Agency, ISBN: 0-662-31219-8, US EPA Report Number: 905-R-01-007, 1998Google Scholar
  26. Cachada A et al (2012) Levels, sources and potential human health risks of organic pollutants in urban soils. Sci Total Environ 430:184–192CrossRefGoogle Scholar
  27. Cao ZG et al (2010) Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology 19(5):827–837CrossRefGoogle Scholar
  28. Caricchia AM et al (1999) Polycyclic aromatic hydrocarbons in the urban atmospheric particulate matter in the City of Naples (Italy). Atmos Environ 33:3731–3738CrossRefGoogle Scholar
  29. CCME (2008) Carcinogenic and other polycyclic aromatic hydrocarbons (PAHs). Canadian Council of Ministers of the Environment. Scientific Supporting Document ISBN 978-1-896997-79-7Google Scholar
  30. Cherng SH (1996) Modulatory effects of polycyclic aromatic hydrocarbons on the mutagenicity of 1-nitropyrene: a structure-activity relationship study. Mutat Res 367(4):177–185CrossRefGoogle Scholar
  31. Chetwittayachan T et al (2002) A comparison of temporal variation of particle-bound polycyclic aromatic hydrocarbons (pPAHs) concentration in different urban environments: Tokyo, Japan, and Bangkok, Thailand. Atmos Environ 36(12):2027–2037CrossRefGoogle Scholar
  32. Christensen ER, Arora S (2007) Source apportionment of PAHs in sediments using factor analysis by time records: application to Lake Michigan, USA. Water Res 41(1):168–176CrossRefGoogle Scholar
  33. Chuang JC et al (1995) Monitoring methods for polycyclic aromatic hydrocarbons and their distribution in house dust and track in soil. Environ Sci Technol 29(2):494–500CrossRefGoogle Scholar
  34. Clement Associates (1990) Development of relative potency estimates for PAHs and hydrocarbon combustion product fractions compared to benzo[a]pyrene and their use in carcinogenic risk assessments. ICF Clement Associates, FairfaxGoogle Scholar
  35. Commission E (2013) Directive 2013/39/eu of the european parliament and of the council amending directives 2000/60/ec and 2008/105/ec as regards priority substances in the field of water policy, Off. J Eur Union 226:1–17Google Scholar
  36. Connel DW et al (1997) Polycyclic aromatic hydrocarbons (PAHs). In: McCombs K, Starkweather AW (eds) Introduction into environmental chemistry. CRC Press LLC, Boca Raton, pp 205–217Google Scholar
  37. Cornelissen G et al (2006) Strong sorption of native PAHs to pyrogenic and unburned carbonaceous Geosorbents in sediments. Environ Sci Technol 40(4):1197–1203CrossRefGoogle Scholar
  38. Corpus of Polish Law (Dziennik Ustaw) (2001)Google Scholar
  39. Dai J et al (2008) Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji’nan city. China Environ Monit Assess 147(1–3):317–326CrossRefGoogle Scholar
  40. Delgado-Saborit JM et al (2013) Analysis of atmospheric concentrations of Quinones and polycyclic aromatic hydrocarbons in vapour and particulate phases. Atmos Environ 77:974–982CrossRefGoogle Scholar
  41. Delhomme O et al (2007) Solid-phase extraction and LC with fluorescence detection for analysis of PAHs in rainwater. Chromatographia 65(3–4):163–171CrossRefGoogle Scholar
  42. Department of Health and Human Services, Public Health Service, National Toxicology Program (2011) Report on carcinogens, 12th ed. Available at: http://ntp.niehs.nih.gov/ntp/roc/twelfth/roc12.pdf
  43. Dias JR (1987) Handbook of polycyclic hydrocarbons. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  44. Dickhut RM, Gustafson KE (1995) Atmospheric inputs of selected polycyclic aromatic hydrocarbons and polychlorinated biphenyls to southern Chesapeake Bay. Mar Pollut Bull 30(6): 385–396CrossRefGoogle Scholar
  45. Disposition of German Federal Department for worker safety (1989)Google Scholar
  46. Disposition of Swedish National Board of Occupational Safety and Health (1994)Google Scholar
  47. Dong C et al (2012) Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS. Int J Environ Res Public Health 9(6):2175–2188CrossRefGoogle Scholar
  48. Douglas GS, Uhler AD (1993) Optimizing EPA methods for petroleumcontaminated site assessments. Environmental testing and analysis, May/June, 46–53Google Scholar
  49. Durant JL (1996) Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat Res 371:123–157CrossRefGoogle Scholar
  50. Edwards NT (1983) PAHs in terrestrial environment- a review. J Environ Q 12(4):427–441CrossRefGoogle Scholar
  51. EPRI (Electric Power Research Institute) (2000) Literature review of background polycyclic aromatic hydrocarbons. Final reportGoogle Scholar
  52. Esen F et al (2008) Bulk deposition of polycyclic aromatic hydrocarbons (PAHs) in an industrial site of Turkey. Environ Pollut 152(2):461–467CrossRefGoogle Scholar
  53. Essumang DK et al (2006) Analysis of polycyclic aromatic hydrocarbons in street soil dust in Kumasi metropolis of Ghana. Environ Monit Assess 121(1–3):401–408CrossRefGoogle Scholar
  54. European Communities (Drinking Water) Regulations (2007) Handbook on implementation for Water Services Authorities for public water supplies, (S.I. 278 of 2007), section 2, pp 1–12Google Scholar
  55. European economic community (1980) Guidelines for drinking water quality, (80/778/EEC)Google Scholar
  56. Feng X et al (2009) Large polycyclic aromatic hydrocarbons: synthesis and discotic organization. Pure Appl Chem 81(12):2203–2224CrossRefGoogle Scholar
  57. Finalyson-Pitts BJ, Pitts JN (1986) Atmospheric chemistry: fundamentals and experimental techniques. Wiley, New YorkGoogle Scholar
  58. Finlayson-Pitts BJ, Pitts JN (2000) Chemistry of the upper and lower atmosphere: theory experiments and applications. Academic, New YorkGoogle Scholar
  59. Fisher GF (2001) Source apportionment of polycyclic aromatic hydrocarbon wet and dry deposition at Massachusetts Bay. PhD. Department of Chemistry, University of Massachusetts LowellGoogle Scholar
  60. Gaga EO (2004) Investigation of polycyclic aromatic hydrocarbon (PAH) Deposition in Ankara. PhD. The Middle East of Technical UniversityGoogle Scholar
  61. Garban B et al (2002) Atmospheric bulk deposition of PAHs onto France: trends from urban to remote sites. Atmos Environ 36(34):5395–5403CrossRefGoogle Scholar
  62. Gaspari L et al (2003) Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as marker of DNA damage and infertility. Mutat Res 535(2):155–160CrossRefGoogle Scholar
  63. Ghose MK et al (2004) Assessment of the impacts of vehicular emissions on urban air quality and its management in Indian context: the case of Kolkata (Calcutta). Environ Sci Pol 7(4):345–351CrossRefGoogle Scholar
  64. Gocht T et al (2007) Long-term atmospheric bulk deposition of polycyclic aromatic hydrocarbons (Pahs) in rural areas of southern Germany. Atmos Environ 41(6):1315–1327CrossRefGoogle Scholar
  65. Golomb D et al (1997) Atmospheric deposition of toxics onto Massachusetts Bay-II. Polycyclic aromatic hydrocarbons. Atmos Environ 31(9):1361–1368CrossRefGoogle Scholar
  66. Golomb D et al (2001) Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters. Atmos Environ 35:6245–6258CrossRefGoogle Scholar
  67. Grimmer G (1983) Environmental carcinogens: polycyclic aromatic hydrocarbons: chemistry, occurrence, biochemistry, carcinogenity. CRC Press, Boca RatonGoogle Scholar
  68. Grynkiewicz M et al (2002) Determination of polycyclic aromatic hydrocarbons in bulk precipitation and runoff waters in an urban region (Poland). Atmos Environ 36(2):361–369CrossRefGoogle Scholar
  69. Gustafson KE, Dickhut RM (1997) Gaseous exchange of polycyclic aromatic hydrocarbons across the air-water interface of southern Chesapeake Bay. Environ Sci Technol 31(6):1623–1629CrossRefGoogle Scholar
  70. Guzzella L, Depaolis A (1994) Polycyclic aromatic hydrocarbons in sediments of the Adriatic Sea. Mar Pollut Bull 28(3):159–165CrossRefGoogle Scholar
  71. Harvey GR (1998) In: Neilson AH (ed) The handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  72. Hassanien MA, Abdel-Latif NM (2008) Polycyclic aromatic hydrocarbons in road dust over greater Cairo, Egypt. J Hazard Mater 151(1):247–254CrossRefGoogle Scholar
  73. Hidlemann LM et al (1991) Chemical composition of emission from urban sources of fine organic aerosol. Environ Sci Technol 25(4):744–759CrossRefGoogle Scholar
  74. Hofmann EJ et al (1984) Urban runoff as a source of polycyclic aromatic hydrocarbon to coastal waters. Environ Sci Technol 18(8):580–587CrossRefGoogle Scholar
  75. Holoubek I et al (2000) The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ Res 109(2):283–292Google Scholar
  76. Howsam M, Jones KC (1998) In: Neilson AH (ed) The handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  77. Hussain K (2014) Atmospheric deposition of polycyclic aromatic hydrocarbon: study from Guwahati, Assam. Ph D. Tezpur UniversityGoogle Scholar
  78. Hussain K, Hoque RR (2015) Seasonal attributes of urban soil PAHs of the Brahmaputra Valley. Chemosphere 119:794–802CrossRefGoogle Scholar
  79. Hussain K et al (2014) Understanding levels and sources of PAHs in water of Bharalu tributary of the Brahmaputra River. Asian J Water Environ Pollut 11(2):89–98Google Scholar
  80. Hussain K et al (2016a) Atmospheric bulk deposition of PAHs over Brahmaputra Valley: characteristics and influence of meteorology. Aerosol Air Qual Res 16:1675–1689CrossRefGoogle Scholar
  81. Hussain K et al (2016b) Street dust bound PAHs, carbon and heavy metals in Guwahati City – seasonality, toxicity and sources. Sustain Cities Soc 19:17–25CrossRefGoogle Scholar
  82. Hussain K et al (2016c) Sources of polycyclic aromatic hydrocarbons in sediments of the Bharalu River, a tributary of the river Brahmaputra in Guwahati, India. Ecotoxicol Environ Saf 122:61–67CrossRefGoogle Scholar
  83. Hussein I et al (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123CrossRefGoogle Scholar
  84. IARC (1983) Approaches to classifying chemical carcinogens according to mechanism of action. IARC intern. tech.: Rep. No. 83/001Google Scholar
  85. IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42, IARC monographs on the evaluation of carcinogenic risks to humans, supplement 7. International Agency for Research on Cancer, LyonGoogle Scholar
  86. IARC (International Agency for Research on Cancer) (1996) Printing processes and printing inks, carbon black and some nitro compounds, in IARC monographs on the evaluation of carcinogenic risks to humans, vol 65, World Health Organization International Agency for Research on Cancer, LyonGoogle Scholar
  87. IPCS/WHO (International Programme on Chemical Safety/World Health Organization) (1998) Selected non-heterocyclic polycyclic aromatic hydrocarbons. Environmental Health Criteria 202Google Scholar
  88. Irene VK et al (2003) Urban environmental quality and human wellbeing- towards a conceptual framework and demarcation of concepts; a literature study. Landsc Urban Plan 65:5–18CrossRefGoogle Scholar
  89. Jacob J, Seidel A (2002) Biomonitoring of polycyclic aromatic hydrocarbons in human urine. J Chromatogr 778:31–48Google Scholar
  90. Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(1):69–90CrossRefGoogle Scholar
  91. Jiang YF et al (2009) Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in urban soil of shanghai, China. Chemosphere 75(8):1112–1118CrossRefGoogle Scholar
  92. Jones KC et al (1989) Organic contamination in welsh soil: polynuclear aromatic hydrocarbons. Environ Sci Technol 23(5):540–550CrossRefGoogle Scholar
  93. Junge CE (1977) In: Suffet IH (ed) Fate of pollutants in the air and water environments, part 1. Willey, New YorkGoogle Scholar
  94. Kalf DF et al (1997) Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol Environ Saf 36(1):89–97. 1997CrossRefGoogle Scholar
  95. Kamens RM et al (1989) The behaviour of oxygenated polycyclic aromatic hydrocarbons on atmospheric soot particles. Environ Sci Technol 23(7):801–806CrossRefGoogle Scholar
  96. Kennaway E (1995) The identification of a carcinogenic compound in coal-tar. Br Med J 2(4942): 749–752CrossRefGoogle Scholar
  97. Khesina AY (1994) Urban air-pollution by carcinogenic and genotoxicpolyaromatic hydrocarbons in the former USSR. Environ Health Perspect 102:49–53CrossRefGoogle Scholar
  98. Kislov VV et al (2013) Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring. J Phys Chem A 117(23):4794–4816CrossRefGoogle Scholar
  99. Kjaerheim K (1999) Occupational cancer research in the Nordic countries. Environ Health Perspect 107(2):233–238CrossRefGoogle Scholar
  100. Kuo CY et al (2013) Comparison of polycyclic aromatic hydrocarbon emissions on gasoline- and diesel-dominated routes. Environ Monit Assess 185:5749–5761CrossRefGoogle Scholar
  101. Lai IC et al (2011) Seasonal variation of atmospheric polycyclic aromatic hydrocarbons along the Kaohsiung coast. J Environ Manag 92(8):2029–2037CrossRefGoogle Scholar
  102. Lang KF et al (1962) 2-Phenyl-phenanthren und binaphthyl-(2,2′) aus Steinkohlenteer. Chem Ber 95(4):1052–1053. 1962CrossRefGoogle Scholar
  103. Lang KF et al (1964) Fulminen (1,2-benzo-picen) im Steinkohlenteer. Chem Ber 97(2):494–497CrossRefGoogle Scholar
  104. Larsen RK III, Baker JE (2003) Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 37(9):1873–1881CrossRefGoogle Scholar
  105. Larsen JC, Larsen PB (1998) Chemical carcinogen. In: Hester RE, Harrison RM (eds) Air pollution and health, issues in environmental sciences and technology, 10. The Royal Society of Chemistry, Cambridge, pp 33–56Google Scholar
  106. Lee ML et al (1976) Gas chromatography/mass spectrometric and nuclear magnetic resonance spectrometric studies of carcinogenic polynuclear aromatic hydrocarbons in tobacco and marijuana smoke condensates. Anal Chem 48(2):405–416CrossRefGoogle Scholar
  107. Lee ML, Novotny MV, Bartle KD (1981) Analytical chemistry of polycyclic aromatic hydrocarbons. Academic, New YorkGoogle Scholar
  108. Leister DL, Baker JE (1994) Atmospheric deposition of organic contaminants to the Chesapeake Bay. Atmos Environ 28(8):1499–1520CrossRefGoogle Scholar
  109. Leuenberger C et al (1985) Trace organic compounds in rain. 4. Identities, concentrations and scavenging mechanisms for phenols in urban air and rain. Environ Sci Technol 19(11): 1053–1058CrossRefGoogle Scholar
  110. Lewitas J et al (1997) Air pollution exposure-DNA adduct dosimetry in humans and rodents: evidence for non-linearity at high doses. Mutat Res 378:51–63CrossRefGoogle Scholar
  111. Liang J et al (2011) Polycyclic aromatic hydrocarbon concentration representing different land use categories in shanghai. Environ Earth Sci 62(1):33–42CrossRefGoogle Scholar
  112. Ligocki MP et al (1985a) Trace organic compounds in rain. II. Gas scavenging of neutral organic compounds. Atmos Environ 19(10):1609–1617CrossRefGoogle Scholar
  113. Ligocki MP et al (1985b) Trace organic compounds in rain. III. Particle scavenging of neutral organic compounds. Atmos Environ 19(10):1619–1626CrossRefGoogle Scholar
  114. Liu S et al (2011) Black carbon in urban and surrounding rural soils of Beijing, China: spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs). Chemosphere 82(2):223–228CrossRefGoogle Scholar
  115. Liu Z et al (2017) Removal efficiency and risk assessment of polycyclic aromatic hydrocarbons in a typical municipal wastewater treatment facility in Guangzhou, China. Int J Environ Res Public Health 14(8):861CrossRefGoogle Scholar
  116. Liu F et al (2013) Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) to a coastal site of Hong Kong, South China. Atmos Environ 69:265–272CrossRefGoogle Scholar
  117. Loganathan P et al (2013) Road-deposited sediment pollutants: a critical review of their characteristics, source apportionment, and management. Crit Rev Environ Sci Technol 43(13): 1315–1348CrossRefGoogle Scholar
  118. Loghin V, Murtoreanu G. The determination of the urban environment quality in Romania’s capital by satellite image analysis. valahia university, târgovite, romania, vloghin@valahia.ro, Commission WG III/7. Available at: http://www.isprs.org/proceedings/XXXV/congress/comm7/papers/161.pdf. Accessed 26 Sept 2017
  119. Lundstedt S (2003) Analysis of PAHs and their transformation products in contaminated soil and remedial processes. PhD. Department of Chemistry, Environmental Chemistry, Umeå UniversityGoogle Scholar
  120. Mackay D, Shiu WY, Ma KC (1992) Illustrated handbook of physical–chemical properties and environmental fate of organic chemicals. Lewis Publishers, Boca RatonGoogle Scholar
  121. Mai B et al (2003) Distribution of polycyclic aromatic hydrocarbons in the coastal region of Macao, China: assessment of input sources and transport pathways using compositional analysis. Environ Sci Technol 37(21):4855–4863CrossRefGoogle Scholar
  122. Maliszewaska-Kordybach B (1999) Sources, concentration, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air. Pol J Environ Stud 8(3):131–136Google Scholar
  123. Man YB et al (2013) Cancer risk assessment of Hong Kong soils contaminated by polycyclic aromatic hydrocarbons. J Hazard Mater 261:770–776CrossRefGoogle Scholar
  124. Manoli E, Samara C (1999) Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. Trends Anal Chem 18(6):717–428CrossRefGoogle Scholar
  125. Manoli E et al (2000) Polycyclic aromatic hydrocarbons in the bulk precipitation and surface waters of northern Greece. Chemosphere 41(12):1845–1855CrossRefGoogle Scholar
  126. Manoli E et al (2002) Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmos Environ 36:949–961CrossRefGoogle Scholar
  127. Marsalek J et al (1999) An explanatory study of urban runoff toxicity. Water Sci Technol 39(12): 33–39Google Scholar
  128. Masih A, Taneja A (2006) Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 65(3):449–456CrossRefGoogle Scholar
  129. Masih J et al (2010) Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the north central part of India. J Hazard Mater 177:190–198CrossRefGoogle Scholar
  130. Masih J et al (2012) Seasonal variation and sources of polycyclic aromatic hydrocarbons (Pahs) in indoor and outdoor air in a semi arid tract of northern India. Aerosol Air Qual Res 12:515–525Google Scholar
  131. McLachlan MS (1999) Framework for the interpretation of measurements of SoCs in plants. Environ Sci Technol 33(11):1799–1804CrossRefGoogle Scholar
  132. McVeety BD (1986) Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: a mass balance approach. PhD. Indiana UniversityGoogle Scholar
  133. Means JC et al (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ Sci Technol 14(12):1524–1528CrossRefGoogle Scholar
  134. Menzie CA et al (1992) Exposure to carcinogenic PAHs in environment. Environ Sci Technol 26(7):1278–1284CrossRefGoogle Scholar
  135. Ministry of Housing and Urban-Rural Development (2009) Disposal of sludge from municipal wastewater treatment plant-control standards for agricultural use (cj/t 309–2009). Standards Press of China, BeijingGoogle Scholar
  136. Ministry of Housing Spatial Planning and Environment (1994) Environmental quality objectives in the Netherlands: a review of environmental quality objectives and their policy framework in the Netherlands. Ministry of Housing, Spatial Planning and Environment, HagueGoogle Scholar
  137. Mohanraj R et al (2012) Polycyclic aromatic hydrocarbons bound to PM2.5 in urban coimbatore, India with emphasis on source apportionment. Sci World J.  https://doi.org/10.1100/2012/980843
  138. Montelay-Massei A et al (2003) Polycyclic aromatic hydrocarbons in bulk deposition at a suburban site: assessment by principal component analysis of the influence of meteorological parameters. Atmos Environ 37(22):3135–3146CrossRefGoogle Scholar
  139. Montelay-Massei A et al (2007a) Fluxes of polycyclic aromatic hydrocarbons in the seine estuary, France: mass balance and role of atmospheric deposition. Hydrobiologia 588(1):145–157CrossRefGoogle Scholar
  140. Montelay-Massei A et al (2007b) PAHs in bulk atmospheric deposition of the Seine River basin: source identification and apportionment by ratios, multivariate statistical technique and scanning electron microscopy. Chemosphere 67(2):312–321CrossRefGoogle Scholar
  141. Morillo E et al (2008) Characteization and sources of PAHs and potentially toxic metals in urban environments of Sevilla (Southern Spain). Water Air Soil Pollut 187(1–4):41–51Google Scholar
  142. Murakami M et al (2005) Size- and density-distributions and sources of polycyclic aromatic hydrocarbons in urban road dust. Chemosphere 61(6):783–791CrossRefGoogle Scholar
  143. Nikolaou A et al (2009) Determination of PAHs in marine sediments: analytical methods and environmental concerns. Global NEST J 11(4):391–405Google Scholar
  144. Nisbet ICT, LaGoy PKI (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16(3):290–300CrossRefGoogle Scholar
  145. Nollet LML (2007) Handbook of water analysis, 2nd edn. Taylore and Francis, Boca RatonGoogle Scholar
  146. Novotny V, Olem H (1993) Urban and highway diffuse pollution. In: Reinhold VN (ed) Water quality prevention, identification and management of diffuse pollution. Wiley, New York, pp 439–505Google Scholar
  147. NRC (National Research Council) (1983) Polycyclic aromatic hydrocarbons: evaluation of sources and effects, committee on pyrene and selected analogues. National Academy Press, Board on Toxicology and Environmental Health Hazard, Commission on Life Sciences, Washington, DCGoogle Scholar
  148. O’Reilly K et al (2010) PAHs review, polycyclic aromatic hydrocarbons in stormwater and urban sediments, Stormwater. Available at: http://www.stormh20.com
  149. Okay OS et al (2000) The role of algae (Isochrysis) enrichment on the bioaccumulation of benzo[a]pyrene and its effects on the blue mussel Mytilus Edulis. Environ Pollut 110(1):103–113CrossRefGoogle Scholar
  150. Ollivon D et al (2002) Atmospheric deposition of PAHs to an urban site, Paris (France). Atmos Environ 36(17):2891–2900CrossRefGoogle Scholar
  151. O’Neill P (1997) Environmental chemistry, Warsaw-Wrocław, PWN, cz. III, ch. 9Google Scholar
  152. Pampanin DM, Sydnes MO (2013) In: Kutcherov, Kolesnikov A (eds) Polycyclic aromatic hydrocarbons a constituent of petroleum: presence and influence in the aquatic environment, hydrocarbon, Vladimir. ISBN 978-953-51-0927-3, InTech.  https://doi.org/10.5772/48176
  153. Pandey PK et al (1999) Polycyclic aromatic hydrocarbons: need for assessment of health risks in India? Study of an urban-industrial location in India. Environ Monit Assess 59(3):287–319CrossRefGoogle Scholar
  154. Pankow JF et al (1984) Trace organic compounds in rain. 1. Sampler design and analysis by adsorption/thermal desorption (ATD). Environ Sci Technol 18(5):310–318CrossRefGoogle Scholar
  155. Pankow JF et al (1993) Effects of relative humidity on gas/particle partitioning of Semivolatile organic compounds to urban particulate matter. Environ Sci Technol 27(10):2220–2226CrossRefGoogle Scholar
  156. Park SS et al (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36:2917–2924CrossRefGoogle Scholar
  157. Petry T et al (1994) Uptake of PAH from air, food, and at the workplace-a comparative risk evaluation. Mitteilungen aus dem Gebiete der Lebensmittel-untersunchung un Hygiene 85:100–110Google Scholar
  158. Petry T et al (1996) The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs). Chemosphere 32(4):639–648CrossRefGoogle Scholar
  159. Phillips DH (1996) DNA adducts in human tissues: biomarkers of exposure to carcinogens in tobacco smoke. Environ Health Perspect 104:453–458CrossRefGoogle Scholar
  160. Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat Res 443(1–2):139–147CrossRefGoogle Scholar
  161. Pikes S (1992) Polycyclic aromatic hydrocarbons. In: Sullivan JB, Krieger GR (eds) Hazardous materials toxicology: clinical priciples of environmental medicine. Williams and Wilkins, Baltimore. 1992, pp 1151–1154Google Scholar
  162. Polkowska Z et al (2000) Organic pollutants in precipitation: determination of pesticides and polycyclic aromatic hydrocarbons in Gdańsk, Poland. Atmos Environ 34(8):1233–1245CrossRefGoogle Scholar
  163. Pott F, Heinrich U (1990) Relative significance of different hydrocarbons for the carcinogenic potency of emissions from various incomplete combustion processes. In: Vainio H et al (eds) Complex mixtures and cancer risk. International Agency for Research on Cancer, LyonGoogle Scholar
  164. Ramdahl T, Bjorseth J (1985) Handbook of polycyclic aromatic hydrocarbons, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  165. Reilley KA et al (1996) Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25(2):212–219CrossRefGoogle Scholar
  166. Riccardi C (2013) Identification of hydrocarbon sources in contaminated soils of three industrial areas. Sci Total Environ 450:13–21CrossRefGoogle Scholar
  167. Riding MJ et al (2013) Chemical measures of bioavailability/bioaccessibility of PAHs in soil: fundamentals to application. J Hazard Mater 261:687–700CrossRefGoogle Scholar
  168. Rockens E, Dumolin J, Matheeussen C (2000) PM10 dust and chemical characterisation of aerosols in Flanders, Belgium. In: Longhurst JWS, Brebbia CA, Power H (eds) Air pollution VIII. WIT Press, UK, pp 699–707Google Scholar
  169. Rogge WF et al (1993) Sources of fine organic aerosol. 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27(9):1892–1904CrossRefGoogle Scholar
  170. Samburova V et al (2017) Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics 5(17):1–16Google Scholar
  171. Samimi SV et al (2009) Polycyclic aromatic hydrocarbon contamination levels in collected samples from vicinity of a highway. J Environ Health Sci Eng 6(1):47–52Google Scholar
  172. Sánchez NE et al (2013) Quantification of polycyclic aromatic hydrocarbons (Pahs) found in gas and particle phases from pyrolytic processes using gas chromatography–mass spectrometry (GC–MS). Fuel 107:246–253CrossRefGoogle Scholar
  173. Schlesinger RB (1979) Natural removal mechanisms for chemical pollutants in the environment. Biol Sci 29(2):95–101Google Scholar
  174. Schwarzenbach RP, Gschwend PM, Imboden DM (1993) Environmental organic chemistry. Wiley, New YorkGoogle Scholar
  175. Sehmel GA (1973) Particle resuspension from an asphalt road caused by car and truck traffic. Atmos Environ 7(3):291–309CrossRefGoogle Scholar
  176. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New YorkGoogle Scholar
  177. Semple KT et al (2013) Impact of black carbon on the bioaccessibility of organic contaminants in soil. J Hazard Mater 261:808–816CrossRefGoogle Scholar
  178. Seo JS et al (2007) Isolation and characterization of bacteria capable of degrading polycyclic aromatic hydrocarbons (PAHs) and organophosphorus pesticides from PAHs-contaminated soil in Hilo, Hawaii. J Agric Food Chem 55:5383–5389CrossRefGoogle Scholar
  179. Shang D et al (2014) Rapid and sensitive method for the determination of polycyclic aromatic hydrocarbons in soils using pseudo multiple reaction monitoring gas chromatography/tandem mass spectrometry. J Chromatogr A 1334:118–125CrossRefGoogle Scholar
  180. Sharma VK, Patil RS (1994) Chemical mass-balance model for source apportionment of aerosols in Bombay. Environ Monit Assess 29(1):75–88CrossRefGoogle Scholar
  181. Shen HZ et al (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47:6415–6424CrossRefGoogle Scholar
  182. Shuang L et al (2011) Analysis of pollutant exposure of pedestrian in urban street. J Trans Syst Eng Inf Technol 11(4):180–185Google Scholar
  183. Singare PU (2015) Studies on polycyclic aromatic hydrocarbons in surface sediments of Mithi River near Mumbai, India: assessment of sources, toxicity risk and biological impact. Mar Pollut Bull 10(1):232–242CrossRefGoogle Scholar
  184. Skupinska K et al (2004) Polycyclic aromatic hydrocarbons: physicochemical properties, environmental appearance and impact on living organisms. Acta Pol Pharm 61(3):233–240Google Scholar
  185. Slooff W, Janus JA, Matthijsen AJCM, Montizaan GK, Ros JPM (eds) (1989) Integrated Criteria Document PAHs. National Institute of Public Health and Environmental Protection (RIVM), Bilthoven. Report No. 758474011, p 199Google Scholar
  186. Smith DJT et al (1995) Polynuclear aromatic hydrocarbon concentrations in road dust and soil samples collected in the United Kingdom and Pakistan. Environ Technol 16(1):45–53CrossRefGoogle Scholar
  187. Sofuoglu A et al (2001) Temperature dependence of gas-phase polycyclic aromatic hydrocarbon and organochlorine pesticide concentrations in Chicago air. Atmos Environ 35(36):6503–6510CrossRefGoogle Scholar
  188. Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195CrossRefGoogle Scholar
  189. Subramanyam V et al (1994) Gas-to-particle partitioning of polycyclic aromatic hydrocarbons in an urban atmosphere. Atmos Environ 28(19):3083–3091CrossRefGoogle Scholar
  190. Sweetman AJ et al (2005) The role of soil organic carbon in the global cycling of persistent organic pollutants: interpreting and modelling field data. Chemosphere 60(7):959–972CrossRefGoogle Scholar
  191. Takada H et al (1990) Determination of polycyclic aromatic hydrocarbons in urban street dusts and their source materials by capillary gas chromatography. Environ Sci Technol 24(8):1179–1186CrossRefGoogle Scholar
  192. Tao S et al (2003) Fate modeling of Phenanthrene with regional variation in Tianjin, China. Environ Sci Technol 37(11):2453–2459CrossRefGoogle Scholar
  193. Tehrani GM et al (2012) Distribution of Total petroleum hydrocarbons and polycyclic aromatic hydrocarbons in Musa bay sediments (Northwest of the Persian Gulf). Environ Prot Eng 15:115–128Google Scholar
  194. Teixeira EC et al (2013) Polycyclic aromatic hydrocarbons study in atmospheric fine and coarse particles using diagnostic ratios and receptor model in urban/industrial region. Environ Monit Assess 185(11):9587–9602CrossRefGoogle Scholar
  195. Thibodeaux LJ et al (1991) The effect of moisture on volatile organic chemical gas-to-particle partitioning with atmospheric aerosols – competitive adsorption theory predictions. Atmos Environ 25(8):1649–1656CrossRefGoogle Scholar
  196. Thornton L et al (2001) Pollutants in urban waste water and sewage sludge. Chapter 3: organic pollutants: sources, pathways, and fate through urban wastewater treatment systems. ICON, London, pp 64–93. Available at: http://europa.eu.int/comm/environment/waste/sludge/sludge_pollutants.htm Google Scholar
  197. Thorpe A, Harrison RM (2008) Sources and properties of non-exhaust particulate matter form road traffic: a review. Sci Total Environ 400(1–3):270–282CrossRefGoogle Scholar
  198. Thyssen J et al (1981) Inhalation studies with benzo[a]pyrene in Syrian golden hamsters. J Natl Cancer Inst 66(3):575–577Google Scholar
  199. Tolosa JM, Bayona J (1996) Albaiges, aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in northwestern Mediterranean sediments: spatial and temporal variability. Fluxes Budg: Environ Sci Technol 30(8):2495–2503Google Scholar
  200. Tolosa I et al (2004) Aliphatic and aromatic hydrocarbons in coastal caspian sea sediments. Mar Pollut Bull 48(1–2):44–60CrossRefGoogle Scholar
  201. Tsai W et al (1991) Dynamic partitioning of Semivolatile organics in gas/particle/rain phases during rain scavenging. Environ Sci Technol 25(12):2012–2023CrossRefGoogle Scholar
  202. Tudoran MA, Putz MV (2012) Polycyclic aromatic hydrocarbons: from in cerebro to in silico eco-toxicity fate. Chem Bull Politehnica Univ (Timisoara) 57(71):50–53Google Scholar
  203. Tuhackova J et al (2001) Hydrocarbon deposition and soil microflora as affected by highway traffic. Environ Pollut 113(3):255–262CrossRefGoogle Scholar
  204. U.S. Environmental Protection Agency (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. Office of Research and Development, Washington, DCGoogle Scholar
  205. U.S. Environmental Protection Agency. Integrated risk information system. Available at: http://www.epa.gov/NCEA/iris/
  206. U.S. EPA (Environmental Protection Agency) (1993) Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons, environmental criteria and assessment office. Office of Health and Environmental Assessment, CincinnatiGoogle Scholar
  207. UK Department for Environment, Food & Rural Affairs (1999)Google Scholar
  208. US Environmental Protection Agency Regional Screening Levels. (Formerly Hhmssl-Human Health Medium-Specific Screening Levels). Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016. Accessed on 20 Mar 2017
  209. US EPA (1977) Sampling and analysis procedures for screening of industrial effluents for priority pollutants. U.S. Environmental Protection Agency, Environment Monitoring and Support Laboratory, CincinnatiGoogle Scholar
  210. US EPA (2018) Polycyclic organic matter. US Environmental Protection Agency. Available from: https://www.epa.gov/sites/production/files/2016-09/documents/polycyclic-organic-matter.pdf
  211. Vagi MC et al (2005) Toxicity of Organophoshorous pesticides to the marine alga Tetraselmis suecica. Global NEST J 7(2):222–227Google Scholar
  212. Valerio F et al (1984) Chemical and photochemical degradation of polycyclic aromatic hydrocarbons in the atmosphere. Sci Total Environ 40(1):169–188CrossRefGoogle Scholar
  213. Van Jaarsveld JA et al (1997) Modelling transport and deposition of persistent organic pollutants in the European region. Atmos Environ 31(7):1011–1024CrossRefGoogle Scholar
  214. Van Metre PC et al (2000) Urban sprawl leaves its PAH signature. Environ Sci Technol 34(19): 4064–4070CrossRefGoogle Scholar
  215. Velasco E et al (2004) Exploratory study of particle-bound polycyclic aromatic hydrocarbons in different environments of Mexico City. Atmos Environ 38(29):4957–4968CrossRefGoogle Scholar
  216. Veltman K et al (2012) Erratum: including impacts of particulate emissions on marine ecosystems in life cycle assessment: the case of offshore oil and gas production. Integr Environ Assess Manag 7(4):678–686CrossRefGoogle Scholar
  217. Venkataraman C et al (1999) Size distributions of polycyclic aromatic hydrocarbons-gas/particle partitioning to urban aerosols. J Aerosol Sci 30(6):759–770CrossRefGoogle Scholar
  218. Vogt NB et al (1987) Polycyclic aromatic hydrocarbons in soils and air: statistical analysis and classification by the SIMCA method. Environ Sci Technol 21(1):35–44CrossRefGoogle Scholar
  219. Wang XL et al (2002) Modeling the fate of benzo[a]pyrene in the wastewater-irrigated areas of Tianjin with a fugacity model. J Environ Qual 31(3):896–903Google Scholar
  220. Wang Z et al (2011a) Forensic fingerprinting and source identification of the 2009 Sarnia (Ontario) oil spill. J Environ Monit 13(11):3004–3017CrossRefGoogle Scholar
  221. Wang W et al (2011b) Spatial distribution and seasonal variation of atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Beijing-Tianjin region. N China Environ Pollut 159(1): 287–293CrossRefGoogle Scholar
  222. Wania F, Mackay D (1996) Tracking the distribution of persistent organic pollutants. Environ Sci Technol 30(9):390–396CrossRefGoogle Scholar
  223. Wei FS, Chapman RS (2001) The impact of air pollution on respiratory health. Environmental Science Press, Beijing, pp 448–454Google Scholar
  224. WHO (1998a) Guidelines for drinking water quality. World Health Organization, Geneva, p 123Google Scholar
  225. WHO (1998b) Guidelines for drinking water quality. World Health Organization, Geneva, p 495Google Scholar
  226. WHO (2000) Polynuclear aromatic hydrocarbons (PAH). In: Who air quality guidelines for Europe, 2nd edn. World Health Organisation Regional Office for Europe, CopenhagenGoogle Scholar
  227. WHO (World Health Organization) (2003) Polynuclear aromatic hydrocarbons in drinking-water. Background document for development of who guidelines for drinking-water quality, WHO/SDE/WSH/03.04/59Google Scholar
  228. Wilcke W et al (2000) Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian rain Forest. J Plant Nutr Soil Sci 163(1):27–30CrossRefGoogle Scholar
  229. Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the United Kingdom environment: a preliminary source inventory and budget. Environ Pollut 88:91–108CrossRefGoogle Scholar
  230. World Health Organization (2002) Health risks of persistent organic pollutants from long-range transboundary air pollution. European Centre for Environment and Health, Bonn, p 200Google Scholar
  231. Wu Y et al (2008) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia Sp.: degradation and microbial community analysis. Biodegradation 19:247–257CrossRefGoogle Scholar
  232. Wu B et al (2011) Risk assessment of polycyclic aromatic hydrocarbons in aquatic ecosystems. Ecotoxicology 20(5):1124–1130CrossRefGoogle Scholar
  233. Yang HH, Chiang CF (1999) Size distribution and dry deposition of road dust PAHs. Environ Int 25(5):585–597CrossRefGoogle Scholar
  234. Yang SYN et al (1991) Polycyclic aromatic hydrocarbons in air, soil, and vegetation in the vicinity of an urban roadway. Sci Total Environ 102:229–240CrossRefGoogle Scholar
  235. Yang ZF et al (2010) Limiting factor analysis and regulation for urban ecosystems-a case study of Ningbo, China. Commun Nonlinear Sci Numer Simul 15(9):2701–2709CrossRefGoogle Scholar
  236. Zakrzewski SF (1995) Principles of environmental toxicology. PWN, WarsawGoogle Scholar
  237. Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (Pahs) for 2004. Atmos Environ 43(4):812–819CrossRefGoogle Scholar
  238. Zhang SC et al (2009) Concentration, distribution and source apportionment of atmospheric polycyclic aromatic hydrocarbons in the southeast suburb of Beijing, China. Environ Monit Assess 151(1–4):197–207CrossRefGoogle Scholar
  239. Zielinska B et al (2004) Phase and size distribution of polycyclic aromatic hydrocarbons in diesel and gasoline vehicle emissions. Environ Sci Technol 38(9):2557–2567CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Karishma Hussain
    • 1
  • Raza R. Hoque
    • 2
  • Srinivasan Balachandran
    • 3
  • Subhash Medhi
    • 4
  • Mohammad Ghaznavi Idris
    • 4
  • Mirzanur Rahman
    • 5
  • Farhaz Liaquat Hussain
    • 6
  1. 1.Department of Bioengineering and TechnologyGauhati UniversityGuwahatiIndia
  2. 2.Department of Environmental ScienceTezpur UniversityTezpurIndia
  3. 3.Department of Environmental StudiesVisva-BharatiSantiniketanSantiniketanIndia
  4. 4.Department of Bioengineering and Technology (GUIST)Gauhati UniversityGuwahatiIndia
  5. 5.Department of Information Technology (GUIST)Gauhati UniversityGuwahatiIndia
  6. 6.Research Scholar, Department of ChemistryDibrugarh UniversityDibrugarhIndia

Section editors and affiliations

  • Chaudhery Mustansar Hussain
    • 1
  1. 1.Department of Chemistry and Environmental SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations