Skip to main content

Computer-Aided Modeling of Thermochemical Conversion Processes for Environmental Waste Management

  • Living reference work entry
  • First Online:

Abstract

Over the years, researchers have utilized a variety of in silico platforms to model thermochemical conversion processes used in environmental waste management. Processes such as pyrolysis, air gasification, and steam gasification are commonly employed to recover energy from these wastes. This chapter discusses the methodology and findings of computer-aided models in this domain. The environmental wastes that have been considered are majorly plastics and agricultural residues. While plastics are nonbiodegradable, biomass residues can have issues of disposal due to their large volumes. In both cases, these high temperature processes are excellent for purpose. Studies have evaluated the process efficiency, product yield, product quality, economic evaluations, and parametric studies of the thermochemical conversion for these wastes. Computer-aided modelling is now gaining popularity among researchers in process systems engineering as it is a quick and accurate means of gaining proper understanding of these processes in conjunction with experimental studies and pilot scale-up studies.

This is a preview of subscription content, log in via an institution.

References

  • Abdelouahed L, Authier O, Mauviel G, Corriou J-P, Verdier G, Dufour A (2012) Detailed modeling of biomass gasification in dual fluidized bed reactors under Aspen Plus. Energy Fuel 26(6):3840–3855

    Article  CAS  Google Scholar 

  • Adeniyi AG, Ighalo JO (2019) A review of steam reforming of glycerol. Chem Pap. https://doi.org/10.1007/s11696-019-00840-8

  • Adeniyi AG, Eletta AAO, Ighalo JO (2018) Computer aided modelling of low density polyethylene pyrolysis to produce synthetic fuels. Niger J Technol 37(4):945–949. https://doi.org/10.4314/njt.v37i4.12

    Article  Google Scholar 

  • Adeniyi AG, Ighalo JO, Abdulsalam A (2019a) Modelling of integrated processes for the recovery of the energetic content of sugarcane bagasse. Biofuels Bioprod Biorefin. https://doi.org/10.1002/bbb.1998

  • Adeniyi AG, Ighalo JO, Aderibigbe FA (2019b) Modelling of integrated processes for the pyrolysis and steam reforming of rice husk (Oryza sativa). SN Appl Sci 1(8). https://doi.org/10.1007/s42452-019-0877-6

  • Adeniyi AG, Ighalo JO, Amosa KM (2019c) Modelling and simulation of banana (Musa spp.) waste pyrolysis for bio-oil production. Biofuels. https://doi.org/10.1080/17597269.2018.1554949

  • Adeniyi AG, Odetoye TE, Titiloye J, Ighalo JO (2019d) A thermodynamic study of rice husk (Oryza sativa) pyrolysis. Eur J Sustain Dev Res 3(4). https://doi.org/10.29333/ejosdr/5830

  • Adeniyi AG, Otoikhian KS, Ighalo JO (2019e) Steam reforming of biomass pyrolysis oil: a review. Int J Chem React Eng 17(4). https://doi.org/10.1515/ijcre-2018-0328

  • Alla MMG, Ali SOA (2014) Simulation and design for process to convert plastic waste to liquid fuel using Aspen Hysys Program, Integrated Journal of Engineering Research and Technology, 1(6):270–274

    Google Scholar 

  • Al-Lagtah NMA (2015) Process simulation of plastics pyrolysis for the production of fuels and chemical feedstock. J Mat Sci Eng 4(4):23–32

    Google Scholar 

  • Altafini CR, Wander PR, Barreto RM (2003) Prediction of the working parameters of a wood waste gasifier through an equilibrium model. Energy Convers Manag 44(17):2763–2777

    Article  CAS  Google Scholar 

  • Altayeb RK (2015) Liquid fuel production from pyrolysis of waste tires: process simulation, exergetic analysis, and life cycle assessment. Master of Science in Chemical Engineering Masters Thesis, American University of Sharjah, Sharjah

    Google Scholar 

  • Andersen M (2017) Process simulation of plastic waste to environmental friendly fuel. M.Sc, Høgskolen i Sørøst-Norge

    Google Scholar 

  • Arteaga-Pérez LE, Casas-Ledón Y, Pérez-Bermúdez R, Peralta LM, Dewulf J, Prins W (2013) Energy and exergy analysis of a sugar cane bagasse gasifier integrated to a solid oxide fuel cell based on a quasi-equilibrium approach. Chem Eng J 228:1121–1132

    Article  Google Scholar 

  • Atikah M, Harun R (2019) Simulation and optimization of Chlorella vulgaris gasification using Aspen Plus. Process Integr Optim Sustain 3:1–9

    Google Scholar 

  • Atnaw SM, Sulaiman SA, Yusup S (2011) A simulation study of downdraft gasification of oil-palm fronds using ASPEN PLUS. J Appl Sci 11(11):1913–1920

    Article  CAS  Google Scholar 

  • Begum S, Rasul M, Akbar D (2014) A numerical investigation of municipal solid waste gasification using Aspen Plus. Procedia Eng 90:710–717

    Article  Google Scholar 

  • Benanti E, Freda C, Lorefice V, Braccio G, Sharma VK (2011) Simulation of olive pits pyrolysis in a rotary kiln plant. Therm Sci 15(1)

    Google Scholar 

  • Cavalaglio G, Coccia V, Cotana F, Gelosia M, Nicolini A, Petrozzi A (2018) Energy from poultry waste: an Aspen Plus-based approach to the thermo-chemical processes. Waste Manag 73:496–503

    Article  CAS  Google Scholar 

  • Che D, Li S, Yang W, Jia J, Zheng N (2012) Application of numerical simulation on biomass gasification. Energy Procedia 17:49–54

    Article  Google Scholar 

  • Cozzani V, Petarca L, Tognotti L (1995) Devolatilization and pyrolysis of refuse derived fuels: characterization and kinetic modelling by a thermogravimetric and calorimetric approach. Fuel 74(6):903–912

    Article  CAS  Google Scholar 

  • Doherty W, Reynolds A, Kennedy D (2009) The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass Bioenergy 33(9):1158–1167

    Article  CAS  Google Scholar 

  • Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev 12(2):504–517

    Article  CAS  Google Scholar 

  • Hoornweg D, Bhada-Tata P (2012) What a waste: a global review of solid waste management, vol 15. World Bank, Washington, DC

    Google Scholar 

  • Ighalo JO, Adeniyi AG (2019) Thermodynamic modelling and temperature sensitivity analysis of banana (Musa spp.) waste pyrolysis. SN Appl Sci 1(9). https://doi.org/10.1007/s42452-019-1147-3

  • Kabir M, Chowdhury A, Rasul M (2015) Pyrolysis of municipal green waste: a modelling, simulation and experimental analysis. Energies 8(8):7522–7541

    Article  CAS  Google Scholar 

  • Kannan P, Shoaibi AA, Srinivasakannan C (2012) Optimization of waste plastics gasification process using Aspen-Plus. In: Gasification for practical applications. Intech, Open Science 279–296

    Google Scholar 

  • Lee DH, Yang H, Yan R, Liang DT (2007) Prediction of gaseous products from biomass pyrolysis through combined kinetic and thermodynamic simulations. Fuel 86(3):410–417

    Article  CAS  Google Scholar 

  • Mabrouki J, Abbassi MA, Guedri K, Omri A, Jeguirim M (2015) Simulation of biofuel production via fast pyrolysis of palm oil residues. Fuel 159:819–827

    Article  CAS  Google Scholar 

  • Mavukwana A, Jalama K, Ntuli F, Harding K (2013) Simulation of sugarcane bagasse gasification using Aspen Plus. Paper presented at the International conference on chemical and environmental engineering ICCEE

    Google Scholar 

  • Montero C, Oar-Arteta L, Remiro A, Arandia A, Bilbao J, Gayubo AG (2015) Thermodynamic comparison between bio-oil and ethanol steam reforming. Int J Hydrog Energy 40(46):15963–15971. https://doi.org/10.1016/j.ijhydene.2015.09.125

    Article  CAS  Google Scholar 

  • Naidoo S (2018) Feasibility study for maize as a feedstock for liquid fuels production based on a simulation developed in Aspen Plus®. M.Sc thesis, University of the Witwatersrand, Johannesburg

    Google Scholar 

  • Onarheim K, Solantausta Y, Lehto J (2014) Process simulation development of fast pyrolysis of wood using Aspen Plus. Energy Fuel 29(1):205–217. https://doi.org/10.1021/ef502023y

    Article  CAS  Google Scholar 

  • Ordouei MH (2009) Computer aided simulation and process design of a hydrogenation plant using ASPEN HYSYS 2006. University of Waterloo

    Google Scholar 

  • Pellegrini LF, de Oliveira S Jr (2007) Exergy analysis of sugarcane bagasse gasification. Energy 32(4):314–327

    Article  CAS  Google Scholar 

  • Peters JF, Iribarren D, Dufour J (2013) Predictive pyrolysis process modelling in Aspen Plus. Paper presented at the 21st European biomass conference and exhibition

    Google Scholar 

  • Peters JF, Iribarren D, Dufour J (2015) Simulation and life cycle assessment of biofuel production via fast pyrolysis and hydroupgrading. Fuel 139:441–456. https://doi.org/10.1016/j.fuel.2014.09.014

    Article  CAS  Google Scholar 

  • Peters JF, Banks SW, Bridgwater AV, Dufour J (2017) A kinetic reaction model for biomass pyrolysis processes in Aspen Plus. Appl Energy 188:595–603

    Article  CAS  Google Scholar 

  • Proll T, Rauch R, Aichernig C, Hofbauer H (2005) Fluidized bed steam gasification of solid biomass: analysis and optimization of plant operation using process simulation. Paper presented at the 18th International conference on fluidized bed combustion

    Google Scholar 

  • Ramzan N, Ashraf A, Naveed S, Malik A (2011) Simulation of hybrid biomass gasification using Aspen Plus: a comparative performance analysis for food, municipal solid and poultry waste. Biomass Bioenergy 35(9):3962–3969

    Article  CAS  Google Scholar 

  • Sahu JN, Mahalik KK, Ho Kim Nam, Tan Yee Ling, Teoh Swee Woon, Muhammad Shahimi bin Abdul Rahman, Mohanty YK, Jayakumar NS, Jamuar SS (2012) Feasibility study for catalytic cracking of waste plastic to produce fuel oil with reference to Malaysia and simulation using ASPEN Plus. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.11748

  • Shoaib M, Wukovits W, Gul S (2014) Review of process simulation and simulation software-open source software development. Paper presented at the 2nd Conference on sustainability in process industry (SPI)

    Google Scholar 

  • Sinha S, Chandel S (2014) Review of software tools for hybrid renewable energy systems. Renew Sust Energ Rev 32:192–205

    Article  Google Scholar 

  • Tan W, Zhong Q (2010) Simulation of hydrogen production in biomass gasifier by ASPEN PLUS. Paper presented at the Power and energy engineering conference (APPEEC), 2010 Asia-Pacific

    Google Scholar 

  • Vagia EC, Lemonidou AA (2007) Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. Int J Hydrog Energy 32(2):212–223. https://doi.org/10.1016/j.ijhydene.2006.08.021

    Article  CAS  Google Scholar 

  • Vagia EC, Lemonidou AA (2008) Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction. Int J Hydrog Energy 33(10):2489–2500. https://doi.org/10.1016/j.ijhydene.2008.02.057

    Article  CAS  Google Scholar 

  • Van den Enden PJ, Lora ES (2004) Design approach for a biomass fed fluidized bed gasifier using the simulation software CSFB. Biomass Bioenergy 26(3):281–287

    Article  Google Scholar 

  • Ward J, Rasul MG, Bhuiya MMK (2014) Energy recovery from biomass by fast pyrolysis. Procedia Eng 90(90):669–674. https://doi.org/10.1016/j.proeng.2014.11.791

    Article  CAS  Google Scholar 

  • Westerhout R, Kuipers J, Van Swaaij WPM (1996) Development, modelling and evaluation of a (laminar) entrained flow reactor for the determination of the pyrolysis kinetics of polymers. Chem Eng Sci 51(10):2221–2230

    Article  CAS  Google Scholar 

  • Xie H, Yu Q, Wang K, Shi X, Li X (2014) Thermodynamic analysis of hydrogen production from model compounds of bio-oil through steam reforming. Environ Prog Sustain Energy 33(3):1008–1016. https://doi.org/10.1002/ep.11846

    Article  CAS  Google Scholar 

  • Zhai M, Guo L, Wang Y, Zhang Y, Dong P, Jin H (2016) Process simulation of staging pyrolysis and steam gasification for pine sawdust. Int J Hydrog Energy 41(47):21926–21935

    Article  CAS  Google Scholar 

  • Zhang J, Toghiani H, Mohan D, Pittman CU, Toghiani RK (2007) Product analysis and thermodynamic simulations from the pyrolysis of several biomass feedstocks. Energy Fuel 21(4):2373–2385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adewale George Adeniyi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Adeniyi, A.G., Ighalo, J.O. (2020). Computer-Aided Modeling of Thermochemical Conversion Processes for Environmental Waste Management. In: Hussain, C.M. (eds) Handbook of Environmental Materials Management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_185-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58538-3_185-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58538-3

  • Online ISBN: 978-3-319-58538-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics