Advertisement

Actinide Speciation in Environment and Their Separation Using Functionalized Nanomaterials and Nanocomposites

  • N. Priyadarshini
  • K. Benadict Rakesh
  • P. Ilaiyaraja
Living reference work entry

Abstract

Actinides are the major and most important environmental contaminants associated with anthropogenic activities such as mining and milling of uranium ores, and generation of nuclear energy resulting in the production of nuclear reactor wastes. These actinides have greater migrating ability in aquifer systems. But actinides in aqueous environment exhibit an inordinately complex chemistry. As a result, the chemical interactions of actinides in the environment are difficult to understand unless a detailed knowledge on their chemical speciation, oxidation state, redox reactions, sorption characteristics, temperature and pressure profiles, pH, and redox potential (Eh) is available. The solubility and migration behavior are also related to these factors. To predict how an actinide might spread through the environment and how fast that transport might occur, we need to characterize all local conditions, including the nature of site-specific minerals, and ligand concentrations. A quantitative knowledge of the competing geochemical processes that affect the actinide’s behavior is also mandatory. Once actinides enter the environment; they pose major risk and hence safe management of radioactive waste with minimum impact to environment gains major importance in addition to speciation of actinides in environment. The major aim of radioactive waste management is to identify the chemical form of long-lived alpha-emitting radionuclide species spread in the environment and to separate them. Functional nonmaterial has gained wide attention and its increasing advancements in multidisciplinary research will make it a good candidate for separation of radionuclides. It is mainly because of their unique structure and exceptional properties. In this chapter, we discuss in detail the basic research progress in the speciation studies and separation of actinides in environment with the emphasis on application of functionalized nanomaterials and nanocomposites for the separation of radionuclides from the environment.

Keywords

Actinides Nanomaterials Speciation Separation and radionuclides 

References

  1. Abdeen Z, Akl ZF (2015) Uranium(VI) adsorption from aqueous solutions using poly(vinyl alcohol)/carbon nanotube composites. RSC Adv 5:74220–74229CrossRefGoogle Scholar
  2. Altmaier M, Gaona X, Fanghanel T (2013) Recent advances in aqueous actinide chemistry and thermodynamics. Chem Rev 113:901–943CrossRefGoogle Scholar
  3. Arkas M, Tsiourvas D, Paleos CM (2003) Functional dendrimeric “Nanosponges” for the removal of polycyclic aromatic hydrocarbons from water. Chem Mater 15:2844–2847CrossRefGoogle Scholar
  4. Bacon WE, Brown GH (1969) X-ray diffraction studies of mono- and polynuclear Th(IV) ions in aqueous perchlorate solutions. J Phys Chem 73:4163–4166CrossRefGoogle Scholar
  5. Baes CF, Mesmer RE (1976) The hydrolysis of cations. Wiley, New YorkGoogle Scholar
  6. Baes CF Jr, Mesmer RE (1981) The thermodynamics of cation hydrolysis. Am J Sci 281:935–962CrossRefGoogle Scholar
  7. Bai ZJ, Li C, Wang ZL et al (2014) Interactions Z. Q. between Th(IV) and graphene oxide: experimental and density functional theoretical investigations. RSC Adv 4:3340–3347CrossRefGoogle Scholar
  8. Bell JT, Friedman HF (1976) Photochemical reactions of aqueous plutonium systems. J Inorg Nucl Chem 38:831–835CrossRefGoogle Scholar
  9. Bell JT, Coleman CF, Costanzo DA, Biggers RE (1973) Plutonium polymerization – II kinetics of the plutonium polymerization. J Inorg Nucl Chem 35:623–628CrossRefGoogle Scholar
  10. Belloni F, Kuetahyali C, Rondinella VV et al (2009) Can carbon nanotubes play a role in the field of nuclear waste management? Environ Sci Technol 43:1250CrossRefGoogle Scholar
  11. Bhalara PD, Punetha D, Balasubramanian K (2014) A review of potential remediation techniques for uranium(VI) ion retrieval from contaminated aqueous environment. J Environ Chem Eng 2:1621–1634CrossRefGoogle Scholar
  12. Bitea C, Muller R, Neck V, Walther C, Kim JI (2003a) Study of the generation and stability of thorium(IV) colloids by LIBD combined with ultrafiltration. Colloids Surf A Physicochem Eng Asp 217:63–70CrossRefGoogle Scholar
  13. Bitea C, Walther C, Yun JI, Marquardt C, Seibert A, Neck V, Fanghanel T, Kim JI (2003b) A study of colloid generation and disproportionation of Pu(IV) in aquatic solutions by LIBD and LPAS. AIP Conf Proc 673:26CrossRefGoogle Scholar
  14. Branger C, Meouche W, Margaillan A (2013) Recent advances on ion-imprinted polymers. React Funct Polym 73:859–875CrossRefGoogle Scholar
  15. Brooker MH, Huang CH, Sylwestriwicz J (1979) Raman spectroscopic studies of aqueous uranyl nitrate and perchlorate systems. J Inorg Nucl Chem 42:1431–1440CrossRefGoogle Scholar
  16. Brunstad A (1959) Polymerization and precipitation of plutonium(IV) in nitric acid. Ind Eng Chem 51:38–40CrossRefGoogle Scholar
  17. Bundschuh T, Knopp R, Muller R, Kim JI, Neck V, Fanghanel T (2000) Application of LIBD to the determination of the solubility product of thorium(IV)-colloids. Radiochim Acta 88:625–629CrossRefGoogle Scholar
  18. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12(1):1–39CrossRefGoogle Scholar
  19. Carboni M, Abney CW, Kathryn ML et al (2013) Uranium sorption with functionalized mesoporous carbon materials. Ind Eng Chem Res 52(43):15187–15197CrossRefGoogle Scholar
  20. Chaiko DJ (1992) Partitioning of polymeric Pu(IV) in winsor II microemulsion systems. Sep Sci Technol 27:1389–1405CrossRefGoogle Scholar
  21. Chen CL, Li XL, Wang XK (2007a) Application of oxidized multiwall carbon nanotubes for Th(IV) adsorption. Radiochim Acta 95:261–266CrossRefGoogle Scholar
  22. Chen CL, Li XL, Zhao DL et al (2007b) Adsorption kinetic, thermodynamic and desorption studies of Th(IV) on oxidized multi-wall carbon nanotubes. Colloids Surf A Physicochem Eng Asp 302:449–454CrossRefGoogle Scholar
  23. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053CrossRefGoogle Scholar
  24. Chen L, Xu J, Hu J (2013a) Removal of U(VI) from aqueous solutions by using attapulgite/iron oxide magnetic nanocomposites. J Radioanal Nucl Chem 297:97–105CrossRefGoogle Scholar
  25. Chen SP, Hong X, Yang HX (2013b) Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J Environ Radioact 126:253–258CrossRefGoogle Scholar
  26. Chen H, Sha D, Li J et al (2014) The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide. Chem Eng J 254:623–634CrossRefGoogle Scholar
  27. Cheng HX, Zeng KF, Yu JT (2013) Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite. J Radioanal Nucl Chem 298:599–603CrossRefGoogle Scholar
  28. Choppin GR (1983) Solution chemistry of the actinides. Radiochim Acta 32:43–53CrossRefGoogle Scholar
  29. Choppin GR (1999) Utility of oxidation state analogs in the study of plutonium behavior. Radiochim Acta 85:89–96Google Scholar
  30. Clark DL (2000) The chemical complexities of plutonium. Los Alamos Sci 26:364–381Google Scholar
  31. Clark DL, Conradson SD, Donohoe RJ, Webster Keogh D, Morris DE, Palmer PD, Rogers RD, Drew Tait C (1999) Chemical speciation of the uranyl ion under highly alkaline conditions. Synthesis, structures and oxo ligand exchange dynamics. Inorg Chem 38:1456–1466CrossRefGoogle Scholar
  32. Clark DL, Hecker SS, Jarvinen GD, Neu MP (2006) Plutonium. The chemistry of actinide and transactinide elements. Springer, HeidelbergGoogle Scholar
  33. Cleveland JM (1967) Solution chemistry of plutonium in plutonium handbook. Gordon and Breach, New YorkGoogle Scholar
  34. Cleveland JM (1970) The chemistry of actinide and transactinide elements. Gordon and Breach, New YorkGoogle Scholar
  35. Cornelis R, Caruso J et al (eds) (2005) Handbook of elemental speciation II – species in the environment, food, medicine and occupational health. Wiley, SussexGoogle Scholar
  36. Costanzo DA, Biggers RE (1963) A study of the Polymerization, depolymerization and precipitation of tetravalent Plutonium as functions of temperature and acidity by spectrophotometric methods. USAEC report ORNL-TM-585Google Scholar
  37. Costanzo DA, Biggers RE, Bell JT (1973) Plutonium polymerization-I. A spectrophotometric study of the polymerization of plutonium(IV). J Inorg Nucl Chem 35:609–622CrossRefGoogle Scholar
  38. Darmstadt H, Roy C, Kaliaguine S et al (2003) Surface and pore structures of CMK-5 ordered mesoporous carbons by adsorption and surface spectroscopy. Chem Mater 15(17):3300–3307CrossRefGoogle Scholar
  39. Dash A, Chakravarty R (2017) Nanomaterial-based adsorbent: promises, opportunities, and challenges to develop column chromatography radionuclide generators for nuclear medicine. Sep Purif Rev 46:91–107CrossRefGoogle Scholar
  40. Deb AKS, Ilaiyaraja P, Ponraju D et al (2012) Diglycolamide functionalized multi-walled carbon nanotubes for removal of uranium from aqueous solution by adsorption. J Radioanal Nucl Chem 291:877–883CrossRefGoogle Scholar
  41. Deb AKS, Mohanty BN, Ilaiyaraja P et al (2013) Adsorptive removal of thorium from aqueous solution using diglycolamide functionalized multi-walled carbon nanotubes. J Radioanal Nucl Chem 295:1161–1169CrossRefGoogle Scholar
  42. Diallo MS (2006) Water treatment by dendrimer enhanced filtration Patent:US20060021938 A1Google Scholar
  43. Diallo MS, Arasho W, Johnson JH et al (2008) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ Sci Technol 42:1572–1579CrossRefGoogle Scholar
  44. Diallo MS, Frechet J, Boz E (2009) Extraction of actinides from mixtures and ores using dendritic macromolecules. Patent: US20090001802 A1Google Scholar
  45. Dreyer DR, Park S, Bielawski CW et al (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRefGoogle Scholar
  46. Du Y, Qiu W, Lv Y et al (2016) Nanofiltration membranes with narrow pore size distribution via contra-diffusion-induced mussel-inspired chemistry. ACS Appl Mater Interfaces 8:29696–29704CrossRefGoogle Scholar
  47. Ekberg C, Albinsson Y, Comarmand MJ, Brown PL (2000) Studies on the complexation behaviour of thorium(IV). 1. Hydrolysis equilibria. J Solut Chem 29:63–86CrossRefGoogle Scholar
  48. Ekberg C, Larsson K, Skarnemark G, Odegaard-Jensen A, Persson I (2013) The structure of plutonium(IV) oxide as hydrolysed clusters in aqueous suspensions. Dalton Trans 42:2035–2040CrossRefGoogle Scholar
  49. Eliet V, Bidoglio G (1998) Kinetics of the laser-induced photoreduction of U(VI) in aqueous suspensions of TiO2 particles. Environ Sci Technol 32:3155–3161CrossRefGoogle Scholar
  50. Eliet V, Grenthe I, Bidoglio G (2000) Time-resolved laser-induced fluorescence of uranium(VI) hydroxo-complexes at different temperatures. Appl Spectrosc 54:99–105CrossRefGoogle Scholar
  51. El-Maghrabi HH, Abdelmaged SM, Nada AA et al (2017) Magnetic grapheme based nanocomposite for uranium scavenging. J Hazard Mater 322:370–379CrossRefGoogle Scholar
  52. Ermolaev VM, Zakharova EV, Shilov VP (2001) Depolymerization of Pu(IV) polymer in 0.5–3 M HNO3 in the presence of reductants and oxidants. Radiochemistry 43:424–428CrossRefGoogle Scholar
  53. Fanghanel T, Neck V (2002) Aquatic chemistry and solubility phenomena of actinide oxides/hydroxides. Pure Appl Chem 74:1895–1907CrossRefGoogle Scholar
  54. Fournel B, Barre Y, Lepeytre C et al (2012) Decontamination of nuclear liquid wastes – status of CEA and AREVA &D: application to Fukushima Waste Waters. In: Waste Mana, PhoenixGoogle Scholar
  55. Friedman HA, Toth LM, Bell JT (1977) Photochemical reactions of aqueous plutonium systems-II. J Inorg Nucl Chem 39:123–126CrossRefGoogle Scholar
  56. Fryxell G, Liu J, Mattigod S (1999) Self-assembled monolayers on mesoporous supports (SAMMS) – an innovative environmental sorbent. Mater Technol Adv Perform Mater 14(4):183–193Google Scholar
  57. Fryxell GE, Lin Y, Fiskum S et al (2005) Actinide sequestration using self-assembled monolayers on mesoporous supports. Environ Sci Technol 39:1324–1331CrossRefGoogle Scholar
  58. Fu J, Chen L, Li J et al (2015) Current status and challenges of ion imprinting. J Mater Chem A 3:13598–13627CrossRefGoogle Scholar
  59. Gadly T, Mohapatra PK, Patre DK et al (2017) Superparamagnetic graphene oxide-magnetite nanoparticle composites for uptake of actinide ions from mildly acidic feeds. J Chromatogr A 1513:18–26CrossRefGoogle Scholar
  60. Gao Y, Zhao J, Zhang G et al (2004) Treatment of the wastewater containing low-level 241Am using flocculation-microfiltration process. Sep Purif Technol 40:183–189CrossRefGoogle Scholar
  61. Gao B, Gao Y, Li Y (2010) Preparation and chelation adsorption property of composite chelating material poly(amidoxime)/SiO2 towards heavy metal ions. Chem Eng J 158:542–549CrossRefGoogle Scholar
  62. Garrett L (1990) Reverse osmosis applications to low level radioactive wastes. WHC-SA- 0993; CONF-9010202-1Google Scholar
  63. Ghasemi M, Keshtkar AR, Dabbagh R et al (2011) Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: breakthrough curves studies and modeling. J Hazard Mater 189:141–149CrossRefGoogle Scholar
  64. Grenthe I, Puigdomenech I (1997) Modelling in aquatic chemistry. OECD/NEA, ParisGoogle Scholar
  65. Guillaumont R, Fanghanel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium, chemical thermodynamics. Elsevier/North-Holland, AmsterdamGoogle Scholar
  66. Gupta NK, Sengupta A, Biswas S (2017a) Quaternary ammonium based task specific ionic liquid for the efficient and selective extraction of neptunium. Radiochim Acta 105(9):689–697CrossRefGoogle Scholar
  67. Gupta NK, Sengupta A, Rane VG et al (2017b) Amide-mediated enhancement of sorption efficiency of trivalent f-elements on functionalized carbon nanotube: evidence of physisorption. Sep Sci Technol 52(13):2049–2061CrossRefGoogle Scholar
  68. Haire RG, Lloyd MH, Beasley ML, Milligan WO (1971) Aging of hydrous plutonium dioxide. J Electron Microsc 20:8–16Google Scholar
  69. Han H, Johnson A, Kaczor J et al (2010) Silica coated magnetic nanoparticles for separation of nuclear acidic waste. J Appl Phys 107:09B520CrossRefGoogle Scholar
  70. Henry M, Jolivet JP, Jacques L (1992) Aqueous chemistry of metal cations: hydrolysis, condensation and complexation. In: Chemistry, spectroscopy and applications of sol-gel glasses. Springer, Berlin/HeidelbergGoogle Scholar
  71. Hsiue GH, Pung LS, Chu ML et al (1989) Treatment of uranium effluent by reverse osmosis membrane. Desalination 71:35–44CrossRefGoogle Scholar
  72. Hu R, Shao D, Wang X (2014) Graphene oxide/polypyrrole composites for highly selective enrichment of U(VI) from aqueous solutions. Polym Chem 5:6207–6215CrossRefGoogle Scholar
  73. Hunter D, Ross DS (1991) Evidence for a phytotoxic hydroxyl-aluminum polymer in organic soil horizons. Science 251:1056–1058CrossRefGoogle Scholar
  74. Ilaiyaraja P, Deb AKS, Ponraju D (2014) Removal of uranium and thorium from aqueous solution by ultrafiltration (UF) and PAMAM dendrimer assisted ultrafiltration (DAUF). J Radioanal Nucl Chem 303:441–450CrossRefGoogle Scholar
  75. Kaur M, Zhang H, Martin L et al (2013a) Conjugates of magnetic nanoparticle actinide specific chelator for radioactive waste separation. Environ Sci Technol 47:11942–11959CrossRefGoogle Scholar
  76. Kaur M, Johnson A, Tian G et al (2013b) Separation nanotechnology of diethylenetriaminepentaacetic acid bonded magnetic nanoparticles for spent nuclear fuel. Nano Energy 2:124–132CrossRefGoogle Scholar
  77. Kedari CS, Pandit SS, Tripathi SC (2009) Extraction of Am(III) from aqueous nitrate solutions into micellar pseudo phase of anionic or non-ionic surfactant and separation by ultrafiltration. J Membr Sci 341:122–130CrossRefGoogle Scholar
  78. Khazaei Y, Faghihian H, Kamali M (2011) Removal of thorium from aqueous solutions by sodium clinoptilolite. J Radioanal Nucl Chem 289:529–536CrossRefGoogle Scholar
  79. Khedr MG (2013) Radioactive contamination of groundwater, special aspects and advantages of removal by reverse osmosis and nanofiltration. Desalination 321:47–54CrossRefGoogle Scholar
  80. Kim JI, Kanellakopulos B (1989) Solubility products of plutonium(IV) oxide and hydroxide. Radiochim Acta 48:145–150Google Scholar
  81. Kirishima A, Kimura T, Tochiyama O, Yoshida Z (2004) Speciation study on uranium(VI) hydrolysis at high temperatures and pressures. J Alloys Compd 374:277–282CrossRefGoogle Scholar
  82. Knope KE, Soderholm L (2013a) Plutonium (IV) cluster with a hexanuclear [Pu6(OH)4O4]12+ core. Inorg Chem 52:6770–6772CrossRefGoogle Scholar
  83. Knope KE, Soderholm L (2013b) Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. Chem Rev 113:944–994CrossRefGoogle Scholar
  84. Knope KE, Wilson RE, Vasiliu M, Dixon DA, Soderholm L (2011) Thorium(IV) molecular clusters with hexanuclear Th core. Inorg Chem 50:9696–9704CrossRefGoogle Scholar
  85. Knope KE, Vasiliu M, Dixon DA, Soderholm L (2012) Thorium(IV)-Selenate clusters containing an octanuclear Th(IV) hydroxide/oxide core. Inorg Chem 51:4239–4249CrossRefGoogle Scholar
  86. Kukowska-Latallo JF, Bielinska AU, Johnson J et al (1996) Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers. Proc Natl Acad Sci U S A 93:4897–4902CrossRefGoogle Scholar
  87. Kumar S, Koganti SB (1997) A numerical model for prediction of boundary acid concentration for prevention of polymerization at macro Pu concentrations. J Nucl Sci Technol 34:1027–1028CrossRefGoogle Scholar
  88. Kumar P, Sengupta A, Deb AKS et al (2017) Poly(amidoamine) dendrimer functionalized carbon nanotube for efficient sorption of trivalent f-elements: a comparison between 1st and 2nd generation. Chem Select 2:975–985Google Scholar
  89. Lee JF, Thirumavalavan M, Wang YT et al (2011) Monitoring of the structure of mesoporous silica materials tailored using different organic templates and their effect on the adsorption of heavy metal ions. J Phys Chem C 115:8165CrossRefGoogle Scholar
  90. Lemire RJ, Fuger J, Nitsche H, Potter P, Rand MH, Rydberg J, Spahiu K, Sullivan JC, Ullman WJ, Vitorge P, Wanner H (2001) Chemical thermodynamics of neptunium and plutonium, Vol. 4 of chemical thermodynamics. Elsevier/North-Holland, AmsterdamGoogle Scholar
  91. Li SJ, Tian G, Geng JX et al (2011) Sorption of uranium(VI) using oxime-grafted ordered mesoporous carbon CMK-5. J Hazard Mater 190:442–450CrossRefGoogle Scholar
  92. Li S, Bai H, Wang J et al (2012) In situ grown of nano-hydroxyapatite on magnetic CaAl-layered double hydroxides and its application in uranium removal. Chem Eng J 193–194:372–380CrossRefGoogle Scholar
  93. Lin Y, Fiskum SK, Yantasee W et al (2005) Incorporation of hydroxypyridinone ligands into self-assembled monolayers on mesoporous supports for selective actinide sequestration. Environ Sci Technol 39:1332–1337CrossRefGoogle Scholar
  94. Lindenbaum A, Westfall W (1965) Colloidal properties of plutonium in dilute aqueous solution. Int J Appl Radiat Isot 16:545–553CrossRefGoogle Scholar
  95. Liu YL, Yuan LY, Yuan YL et al (2012) A high efficient sorption of U(VI) from aqueous solution using amino-functionalized SBA-15. J Radioanal Nucl Chem 292:803–810CrossRefGoogle Scholar
  96. Liu P, Qi W, Du YF et al (2014) Adsorption of thorium(IV) on magnetic multi-walled carbon nanotubes. Sci China Chem 57:1483–1490CrossRefGoogle Scholar
  97. Lloyd MH, Haire RG (1973) Studies on the chemical and colloidal nature of Pu(IV) polymer. In: Congress of the IUPAC, Hamburg, p 24Google Scholar
  98. Lloyd MH, Haire RG (1978) The chemistry of plutonium in sol-gel processes. Radiochim Acta 25:139–148CrossRefGoogle Scholar
  99. Magini M, Cabrini A, Scibona G, Johansson G, Sandstrom M (1976) On the structure of highly hydrolyzed thorium salt solutions. Acta Chem Scand Ser A 30:437–447CrossRefGoogle Scholar
  100. Maher K, Barger JR et al (2013) Environmental speciation of actinides. Inorg Chem 52:3510–3532CrossRefGoogle Scholar
  101. Manfredi C, Caruso V, Vasca E, Vero S, Ventimiglia E, Palladino G, Ferri D (2006) On the hydrolysis of the tetravalent Uarnium ion U4+. J Solut Chem 35:927–937CrossRefGoogle Scholar
  102. Metivier H, Guillaumont R (1972) Hydrolysis of tetravalent plutonium. Radiochem Radioanal Lett 10:27–35Google Scholar
  103. Min X, Yang W, Hui Y et al (2017) Fe3O4@ZIF-8: a magnetic nanocomposite for highly efficient UO2 2+ adsorption and selective UO2 2+/Ln3+ separation. Chem Commun 53:4199–4202CrossRefGoogle Scholar
  104. Muller K, Brendler V, Foerstendorf H (2008) Aqueous uranium(VI) hydrolysis species characterized by attenuated total reflection Fourier-transform infrared spectroscopy. Inorg Chem 21:10127–10134CrossRefGoogle Scholar
  105. Murali MS, Mathur JN (2001) Use of a mixture of TRPO and TBP for the partitioning of actinides from high-level waste solutions of PUREX origin and its comparison with CMPO and other phosphorus-based extractants. Solv Extr Ion Exch 19:61–77CrossRefGoogle Scholar
  106. Muscatello AC, Navratil JD, Killion ME (1983) Solvent extraction of plutonium(IV) polymer by dihexyl-N, N-diethyl-carbamoylmethylphosphonate (DHDECMP). Sep Sci Technol 18:1731–1746CrossRefGoogle Scholar
  107. Myasoedova OB, Molochnikova GV, Tkachev NP et al (2009) Solid-phase extractants for radionuclide preconcentration and separation. New possibilities. Radiokhimiya 51:138–140Google Scholar
  108. Nagasaki S, Nakayama S (eds) (2015) Radioactive waste engineering and management. Springer, TokyoGoogle Scholar
  109. Neck V, Kim JI (2001) Solubility and hydrolysis of tetravalent actinides. Radiochim Acta 89:1–16CrossRefGoogle Scholar
  110. Neck V, Kim JI, Seidel BS, Marquardt CM, Dardenne K, Jensen MP, Hauser W (2001) A spectroscopic study of the hydrolysis, colloid formation and solubility of Np(IV). Radiochim Acta 89:439–446Google Scholar
  111. Neck V, Muller R, Bouby M, Altmaier M, Rothe J, Denecke M, Kim JI (2002) Solubility of amorphous Th(IV) hydroxide – application of LIBD to determine the solubility product and EXAFS for aqueous speciation. Radiochim Acta 90:485–494CrossRefGoogle Scholar
  112. Neck V, Altmaier M, Seibert A, Yun JI, Marquardt CM, Fanghanel T (2007) Solubility and redox reactions of Pu(IV) hydrous oxide: evidence for the formation of PuO2+x(s,hyd). Radiochim Acta 95:193–207CrossRefGoogle Scholar
  113. Neu MP, Schulze RK, Conradson SD, Farr JD, Haire RG (1997) Polymeric Pu(IV) hydroxide: formation, prevalence and structural and physical characteristics. In: Pu futures: topical conference on plutonium and actinides. Santa Fe, p 89Google Scholar
  114. Newton TW, Hobart DE, Palmer PD (1985) The formation of plutonium(IV) colloid by the alpha-reduction of Pu(V) and Pu(VI) in aqueous solutions. Radiochim Acta 39:139–147Google Scholar
  115. Nupearachchia CN, Mahatantilab K, Vithanage M (2017) Application of graphene for decontamination of water; implications for sorptive removal. Groundwater Sustain Dev 5:206–215CrossRefGoogle Scholar
  116. Oak MS, Ghadse DR, Sagar VB, Bhargava VK, Patil SK (1983) Some observations on the oxidation of plutonium(IV) with hydrogen peroxide in the presence of iron. Radiochem Radioanal Lett 59:139–145Google Scholar
  117. Ojha S, Chappa S, Mhatre AM et al (2017) Actinides selective extractants coated magnetite nanoparticles for analytical applications. J Radioanal Nucl Chem 312:675–683CrossRefGoogle Scholar
  118. Okpala CC (2013) Nanocomposites: an overview. Int J Eng Res Dev 8(11):17–23Google Scholar
  119. Okpala CC (2014) The benefits and applications of nanocomposites. Int J Adv Eng Tech V(IV):12–18Google Scholar
  120. Opel K, Weiss S, Hubener S, Zanker H, Bernhard G (2007) Study of the solubility of amorphous and crystalline uranium dioxide by combined spectroscopic methods. Radiochim Acta 95:143–149CrossRefGoogle Scholar
  121. Palmer DA, Nguyen-Trung C (1995) Aqueous uranyl complexes. 3. Potentiometric measurements of the hydrolysis of uranyl(VI) ion at 25°C. J Solut Chem 24:1281–1291CrossRefGoogle Scholar
  122. Parsons-Moss T, Wang J, Jones S et al (2014) Sorption interactions of plutonium and europium with ordered mesoporous carbon. J Mater Chem A 2:11209–11221CrossRefGoogle Scholar
  123. Perevalov SA, Molochnikova NP (2009) Sorption of Pu in various oxidation states onto multiwalled carbon nanotubes. J Radioanal Nucl Chem 281:603–608CrossRefGoogle Scholar
  124. Powell BA, Dai Z, Zavarin M, Zhao P, Kersting AB (2011) Stabilization of plutonium nano colloids by epitaxial distortion on mineral surfaces. Environ Sci Technol 45:2698–2703CrossRefGoogle Scholar
  125. Prabhakar S, Panicker ST, Misra BM et al (1992) Studies on the reverse osmosis treatment of uranyl nitrate solution. Sep Sci Technol 27:349–359CrossRefGoogle Scholar
  126. Priyadarshini N, Sampath M, Kumar S, Mudali UK, Natarajan R (2014) Probing uranium(IV) hydrolyzed colloids and polymers by light scattering. J Nucl Chem 2014:1–10CrossRefGoogle Scholar
  127. Priyadarshini N, Sampath M, Kumar S, Mudali UK (2016) Light scattering studies on formation and determination of molecular weight of thorium(IV) aquatic colloids. J Radioanal Nucl Chem 307:25–30CrossRefGoogle Scholar
  128. Pyrzynska K (2010) Carbon nanostructures for separation, preconcentration and speciation of metal ions. Trends Anal Chem 29(7):718–727CrossRefGoogle Scholar
  129. Qiu J, Burns PC (2013) Clusters of actinides with oxide, peroxide or hydroxide bridges. Chem Rev 113:1097–1120CrossRefGoogle Scholar
  130. Quiles F, Burneau A (1998) Infrared and Raman spectroscopic study of uranyl complexes: hydroxide and acetate derivatives in aqueous solution. Vib Spectrosc 18:61–75CrossRefGoogle Scholar
  131. Quiles F, Burneau A (2000) Infrared and Raman spectra of uranyl(VI) oxo-hydroxo complexes in acid aqueous solutions: a chemometric study. Vib Spectrosc 23:231–241CrossRefGoogle Scholar
  132. Quinn JE, Ogden MD, Soldenhoff K (2013) Solvent extraction of uranium (VI) from chloride solutions using cyphos IL-101. Solv Extr Ion Exch 31:538–549CrossRefGoogle Scholar
  133. Rabideau SW, Kline RJ (1960) A spectrophotometric study of the hydrolysis of plutonium(IV). J Phys Chem 64:680–682CrossRefGoogle Scholar
  134. Raff O, Wilken RD (1999) Removal of dissolved uranium by nanofiltration. Desalination 122:147–150CrossRefGoogle Scholar
  135. Rai D, Ryan JL (1982) Crystallinity and solubility of Pu(IV) oxide and hydrous oxide in aged aqueous suspensions. Radiochim Acta 30:213–216CrossRefGoogle Scholar
  136. Rai D, Swanson JL (1981) Properties of plutonium(IV) polymer of environment importance. Nucl Technol 54:107–111CrossRefGoogle Scholar
  137. Rai D, Moore DA, Oakes CS, Yui M (2000) Thermodynamic model for the solubility of thorium dioxide in the Na+-clOH- H2O system at 23°C and 90°C. Radiochim Acta 88:297–306CrossRefGoogle Scholar
  138. Rand MH, Fuger J, Grenthe I, Neck V, Rai D (2007) Chemical thermodynamics of thorium, vol. 11 of chemical thermodynamics. Elsevier/North-Holland, AmsterdamGoogle Scholar
  139. Reed DT, Lucchini JF, Aase SB, Kropf AJ (2006) Reduction of plutonium(VI) in brine under subsurface conditions. J Radiochim Acta 94:591–597Google Scholar
  140. Reguillon AF, Lebuzit G, Murat D et al (2008) Selective removal of dissolved uranium in drinking water by nanofiltration. Water Res 42:1160–1166CrossRefGoogle Scholar
  141. Rether A, Schuster M (2003) Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React Funct Polym 57:13–21CrossRefGoogle Scholar
  142. Romanchuk AY, Slesarev AS, Kalmykov SN et al (2013) Graphene oxide for effective radionuclide removal. Phys Chem Chem Phys 15(7):2321–2327CrossRefGoogle Scholar
  143. Rothe J, Denecke MA, Neck V, Muller R, Kim JI (2002) XAFS investigation of the structure of aqueous Th(IV) species, colloids and solid thorium(IV) oxide/hydroxide. Inorg Chem 41:249–258CrossRefGoogle Scholar
  144. Rothe J, Walther C, Denecke MA, Fanghanel T (2004) XAFS and LIBD investigation of the formation and structure of colloidal Pu(IV) hydrolysis products. Inorg Chem 43:4708–4718CrossRefGoogle Scholar
  145. Rundberg RS, Mitchell AJ, Triay IR, Torstenfelt NB (1987) Size and density of a 242Pu colloid. MRS Proc 112:243CrossRefGoogle Scholar
  146. Runde W (2000) The chemical interactions of actinides in the environment. Los Alamos Sci 26:392–410Google Scholar
  147. Savage DJ, Kyffin TW (1986) Oxidative breakdown of polymeric plutonium(IV) hydroxide by cerium(IV). Polyhedron 5:743–752CrossRefGoogle Scholar
  148. Schuelein VL (1975) Parameters for plutonium polymer formation in nitric acid. ARH-SA-233, p 30Google Scholar
  149. Scierz A, Zanker H (2009) Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption. Environ Pollut 157:1088–1094CrossRefGoogle Scholar
  150. Seaborg GT, Loveland WD (1990) The elements beyond uranium. Wiley, New YorkGoogle Scholar
  151. Sellers PA, Fried S, Elson RE, Zachariasen WH (1954) The preparation of some protactinium compounds and the metal. J Am Chem Soc 76:5935–5938CrossRefGoogle Scholar
  152. Sengupta A, Deb AKS, Dasgupta K et al (2017a) Diglycolamic acid-functionalized multiwalled carbon nanotubes as a highly efficient sorbent for f-block elements: experimental and theoretical investigations. New J Chem 41:4531–4545CrossRefGoogle Scholar
  153. Sengupta A, Deb AKS, Kumar P et al (2017b) Amidoamine functionalized task specific carbon nanotube for efficient sorption of penta and hexavalent neptunium: experimental and theoretical investigations. J Environ Chem Eng 5(3):3058–3064CrossRefGoogle Scholar
  154. Serrano-Purroy D, Baron P, Christiansen B et al (2005) Recovery of minor actinides from HLLW using the DIAMEX process. Radiochim Acta 93:351–355Google Scholar
  155. Shao D, Hu J, Wang X (2010) Plasma induced grafting multiwalled carbon nanotube with chitosan and its application for removal of UO2 2+, Cu2+, and Pb2+ from aqueous solutions. Plasma Process Polym 7:977–985CrossRefGoogle Scholar
  156. Shi WQ, Yuan LY, Li ZJ et al (2012) Nanomaterials and nanotechnologies in nuclear energy chemistry. Radiochim Acta 100:727–736CrossRefGoogle Scholar
  157. Silver GL (1983) Free energy of plutonium polymer formation. J Less Common Met 91:317–320CrossRefGoogle Scholar
  158. Singh S, Barick KC, Bahadur D (2013) Functional oxide nanomaterials and nanocomposites for the removal of heavy metals and dyes. Nanomater Nanotechonol 3(20):1–19Google Scholar
  159. Singhal RK, Karpe R, Muthe KP et al (2009) Plutonium-239+240 selectivity for pseudo-colloids of iron in subsurface aquatic environment having elevated level of dissolved organic carbon. J Radioanal Nucl Chem 280:141–148CrossRefGoogle Scholar
  160. Soderholm L, Almond PM, Skanthakumar S, Wilson RE, Burns PC (2008) The structure of the plutonium oxide nanocluster [Pu38O56Cl54(H2O)8]14−. Angew Chem 120:304–308CrossRefGoogle Scholar
  161. Song WC, Shao DD, Lu SS et al (2014) Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci China Chem 57:1291–1299CrossRefGoogle Scholar
  162. Starvin AM, Rao TP (2004) Solid phase extractive preconcentration of uranium(VI) onto diarylazobisphenol modified activated carbon. Talanta 63:225–232CrossRefGoogle Scholar
  163. Steppert M, Walther C, Fuss M, Buchner S (2012) On the polymerization of hexavalent uranium. An electrospray mass spectrometry study. Rapid Commun Mass Spectrom 26:583–591CrossRefGoogle Scholar
  164. Strickert RG, Rai D, Fulton RW (1984) Effect of ageing on the solubility and crystallinity of Np(IV) hydrous oxide. ACS Symp Ser 246:135–145CrossRefGoogle Scholar
  165. Sun Y, Shao D, Chen C et al (2013) Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline. Environ Sci Technol 47(17):9904–9910CrossRefGoogle Scholar
  166. Sun Y, Ding C, Cheng W et al (2014) Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron. J Hazard Mater 280:399–408CrossRefGoogle Scholar
  167. Sureshkumar MK, Das D, Mallia MB et al (2010) Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater 184:65–72CrossRefGoogle Scholar
  168. Takao S, Takao K, Kraus W, Emmerling F, Scheinost AC, Bernhard G, Hennig C (2009) First hexanuclear U(IV) and Th(IV) formate complexes – structure and stability range in solution. Eur J Inorg Chem 2009:4771–4775CrossRefGoogle Scholar
  169. Tallent OK, Mailen JC, Bell JT, Arwood PC (1982) Method of removing Pu(IV) polymer from nuclear fuel reclaiming liquid. US 4316776 AGoogle Scholar
  170. Tan XL, Xu D, Chen CL (2008) Adsorption and kinetic desorption study of 152+154Eu(III) on multiwall carbon nanotubes from aqueous solution by using chelating resin and XPS methods. Radiochim Acta 96:23–29Google Scholar
  171. Tan L, Liu Q, Jing X et al (2015a) Removal of uranium (VI) ions from aqueous solution by magnetic cobalt ferrite/multiwalled carbon nanotubes composites. Chem Eng J 273:307–315CrossRefGoogle Scholar
  172. Tan L, Liu Q, Song D et al (2015b) Uranium extraction using a magnetic CoFe2O4-graphene nanocomposite: kinetics and thermodynamics studies. New J Chem 39:2832–2838CrossRefGoogle Scholar
  173. Tan L, Wang YL, Liu Q et al (2015c) Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem Eng J 259:752–760CrossRefGoogle Scholar
  174. Tan LC, Wang J, Liu Q et al (2015d) The synthesis of a manganese dioxide–iron oxide–graphene magnetic nanocomposite for enhanced uranium(VI) removal. New J Chem 39:868–876CrossRefGoogle Scholar
  175. Tananaev IG, Nikonov MV, Myasoedov BF et al (2007) Plutonium in higher oxidation states in alkaline media. J Alloys Compd 444–445:668–672CrossRefGoogle Scholar
  176. Teja AS, Koh P (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55:22–45CrossRefGoogle Scholar
  177. Thiyagarajan P, Diamond H, Soderholm L, Horwitz EP, Toth LM, Felker LK (1990) Plutonium(IV) polymers in aqueous and organic media. Inorg Chem 29:1903–1907CrossRefGoogle Scholar
  178. Tomalia DA, Baker H, Dewald J et al (1985) A new class of polymer: Starburst dendritic macromolecules. Polym J 17:117–132CrossRefGoogle Scholar
  179. Torapava N, Persson I et al (2009) Hydration and hydrolysis of thorium(IV) in aqueous solution and the structures of two crystalline thorium(IV) species. Inorg Chem 48:11712–11723CrossRefGoogle Scholar
  180. Toth LM, Friedman HA (1978) The IR spectrum of Pu(IV) polymer. J Inorg Nucl Chem 40:807–810CrossRefGoogle Scholar
  181. Toth LM, Friedman HA, Osborne MM (1981) Polymerization of Pu(IV) in aqueous nitric acid solutions. J Inorg Nucl Chem 43:2929–2934CrossRefGoogle Scholar
  182. Toth LM, Friedman HA, Begun GM, Dorris SE (1984) Raman study of uranyl ion attachment to Th(IV) hydrous polymer. J Phys Chem 88:5574–5577CrossRefGoogle Scholar
  183. Triay IR, Hobart DE, Mitchell AJ, Newton TW, Ott MA, Palmer PD, Rundberg RS, Thompson JL (1991) Size determinations of plutonium colloids using autocorrelation photon spectroscopy. Radiochim Acta 52:127–131Google Scholar
  184. Vidya K, Dapurkar SE, Selvam P et al (2001) The entrapment of UO2 2+ in mesoporous MCM-41 and MCM-48 molecular sieves. Micropor Mesopor Mater 50:173–179CrossRefGoogle Scholar
  185. Vidya K, Gupta NM, Selvam P (2004) Influence of pH on the sorption behaviour of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves. Mater Res Bull 39:2035–2048CrossRefGoogle Scholar
  186. Vivero-Escoto JL, Carboni M, Abney CW et al (2013) Organo-functionalized mesoporous silicas for efficient uranium extraction. Micropor Mesopor Mater 180:22–31CrossRefGoogle Scholar
  187. Walther C (2008) From hydrolysis to the formation of colloids-polymerization of tetravalent actinide ions. PhD thesis, Universitat MainzGoogle Scholar
  188. Walther C, Denecke MA (2013) Actinide colloids and particles of environmental concern. Chem Rev 113:995–1015CrossRefGoogle Scholar
  189. Walther C, Cho HR, Marquardt CM, Neck V, Seibert A, Yun JI, Fanghanel T (2007) Hydrolysis of plutonium(IV) in acidic solutions: no effect of hydrolysis on absorption-spectra of mononuclear hydroxide complexes. Radiochim Acta 95:7–16CrossRefGoogle Scholar
  190. Walther C, Fuss M, Buchner S (2008) Formation and hydrolysis of polynuclear Th(IV) complexes – a nano-electrospray mass-spectrometry study. Radiochim Acta 96:411–425CrossRefGoogle Scholar
  191. Walther C, Rothe J, Brendebach B, Fuss M, Altmaier M, Marquardt CM, Buchner S, Cho HR, Yun JI, Seibert A (2009) New insights in the formation processes of Pu(IV) colloids. Radiochim Acta 97:199–207CrossRefGoogle Scholar
  192. Walther C, Rothe J, Schimmelpfennig B, Fuss M (2012) Thorium nanochemistry: the solution structure of the Th(IV)-hydroxo pentamer. Dalton Trans 41:10941–10947CrossRefGoogle Scholar
  193. Wang R, Carducci MD, Zheng Z (2000) Direct hydrolytic route to molecular oxo-hydroxo lanthanide clusters. Inorg Chem 39:1836–1837CrossRefGoogle Scholar
  194. Wang XK, Chen CL, Hu WP et al (2005) Sorption of 243Am(III) to multiwall carbon nanotubes. Environ Sci Technol 39(8):2856–2860CrossRefGoogle Scholar
  195. Wang L, Yang Z, Gao J et al (2006) A biocompatible method of decorporation: bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J Am Chem Soc 128(41):13358–13359CrossRefGoogle Scholar
  196. Wang XK, Shao DD, Jiang ZQ et al (2009) Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO2 2+ from aqueous solution. J Phys Chem B 113:860–864CrossRefGoogle Scholar
  197. Wang J, Liu P, Li Z et al (2013) Th(IV) adsorption onto oxidized multiwalled carbon nanotubes in the presence of hydroxylated fullerene and carboxylated fullerene. Materials 6:4168–4185CrossRefGoogle Scholar
  198. Wang X, Yu S, Jin J et al (2016) Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions. Sci Bull 61(20):1583–1593CrossRefGoogle Scholar
  199. Weigel F, Katz J, Seaborg GT (1997) The chemistry of the actinide elements. Chapman and Hall, LondonGoogle Scholar
  200. Wester DW (1982) Synthesis and characterization of bis(μ-hydroxo)tetraaquadiplutonium(IV) sulfate, Pu2(OH)2(SO4)3.4H2O, a novel compound containing hydrolyzed plutonium(IV). Inorg Chem 21:3382–3385CrossRefGoogle Scholar
  201. Wilson RE, Skanthakumar S, Soderholm L (2011) Separation of plutonium oxide nanoparticles and colloids. Angew Chem Int Ed 50:11234–11237CrossRefGoogle Scholar
  202. Yaftian MR, Hassanzadeh L, Eshraghi ME et al (2003) Solvent extraction of thorium (IV) and europium (III) ions by diphenyl-N,N-dimethylcarbamoylmethylphosphine oxide from aqueous nitrate media. Sep Purif Technol 31:261–268CrossRefGoogle Scholar
  203. Yang D, Song S, Zou Y et al (2017a) Rational design and synthesis of monodispersed hierarchical SiO2@layered double hydroxide nanocomposites for efficient removal of pollutants from aqueous solution. Chem Eng J 323:143–152CrossRefGoogle Scholar
  204. Yang S, Qian J, Kuang L et al (2017b) Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent. ACS Appl Mater Interfaces 9:29337–29344CrossRefGoogle Scholar
  205. Yao W, Wang X, Liang Y et al (2018) Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: batch and EXAFS studies. Chem Eng J 332:775–786CrossRefGoogle Scholar
  206. Yousefi SR, Ahmadi SJ, Shemirani F et al (2009) Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination. Talanta 80:212–217CrossRefGoogle Scholar
  207. Yuan LY, Liu YL, Shi WQ et al (2011) High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution. Dalton Trans 40:7446–7453CrossRefGoogle Scholar
  208. Zakharchenko A, Malikov DA, Myasoedova GV et al (2012) Solid-phase extractants based on taunit carbon nanotubes for actinide and REE preconcentration from nitric acid solutions. Radiokhimiya 54:148–151Google Scholar
  209. Zanker H, Ulrich K-U, Opel K, Brendler V (2007) The role of colloids in uranium transport: a comparison of nuclear waste repositories and abandoned uranium mines. In: IMWA symposium: water in mining environments, CagliariGoogle Scholar
  210. Zhao P, Steward SA (1997) Literature review of intrinsic actinide colloids related to spent fuel waste package release rates. UCRL-ID-126039Google Scholar
  211. Zhao GX, Wen T, Yang X et al (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188CrossRefGoogle Scholar
  212. Zhao YG, Li JX, Zhang SW et al (2013) Efficient enrichment of uranium(VI) on amidoximated magnetite/graphene oxidecomposites. RSC Adv 3:18952–18959CrossRefGoogle Scholar
  213. Zong PF, Wang SF, Zhao YL et al (2013) Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions. Chem Eng J 220:45–52CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • N. Priyadarshini
    • 1
  • K. Benadict Rakesh
    • 2
  • P. Ilaiyaraja
    • 2
  1. 1.Department of ChemistrySSN College of EngineeringKalavakkamIndia
  2. 2.Department of PhysicsIndian Institute of Technology MadrasChennaiIndia

Section editors and affiliations

  • Chaudhery Mustansar Hussain
    • 1
  1. 1.Department of Chemistry and Environmental SciencesNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations