Skip to main content

Motion Perception

  • Reference work entry
  • First Online:
  • 8 Accesses

Motion perception is a visual inference of motion based on the speed and direction of elements in the environment. The other sensory modalities that are involved in processing this directional information include vestibular and proprioceptive inputs. Complex computational and neural mechanisms appear to underlie the motion perception process, many of which require further investigation. In general, optic flow integrates the two-dimensional velocity vectors that indicate the direction and speed of motion of the elements in the surrounding environment (Harris and Jenkin 1993). With the addition of head movements, the processing of optic flow is limited and this is compensated for, in part, by motion signals from the vestibular otolith organs (Benson et al. 1986). The otoliths act as linear accelerometers and provide the basis for directional selectivity.

Visual and vestibular signals are integrated in motion processing sensitive brain regions (e.g., V5/MT) to achieve robust perception of...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albright, T. D., & Stoner, G. R. (1995). Visual motion perception. Proceedings of the National Academy of Sciences, 92(7), 2433–2440.

    Article  Google Scholar 

  • Atkinson, J., Braddick, O., Rose, F. E., Searcy, Y. M., Wattam-Bell, J., & Bellugi, U. (2006). Dorsal-stream motion processing deficits persist into adulthood in Williams syndrome. Neuropsychologia, 44(5), 828–833.

    Article  PubMed  Google Scholar 

  • Baker, C. L., Hess, R. F., & Zihl, J. (1991). Residual motion perception in a “motion-blind” patient, assessed with limited-lifetime random dot stimuli. Journal of Neuroscience, 11(2), 454–461.

    Article  PubMed  Google Scholar 

  • Benson, A. J., Spencer, M. B., & Stott, J. R. (1986). Thresholds for the detection of the direction of whole-body, linear movement in the horizontal plane. Aviation, Space, and Environmental Medicine, 57(11), 1088–1096.

    PubMed  Google Scholar 

  • DeAngelis, G. C., & Angelaki, D. E. (2012). Visual–Vestibular integration for self-motion perception. In M. M. Murray & M. T. Wallace (Eds.), The neural bases of multisensory processes. Boca Raton: CRC Press.

    Google Scholar 

  • Edwards, M., & Badcock, D. R. (1995). Global motion perception: No interaction between the first- and second-order motion pathways. Vision Research, 35(18), 2589–2602.

    Article  PubMed  Google Scholar 

  • Gibson, J. J. (1978). The ecological approach to the visual perception of pictures. Leonardo, 11(3), 227–235.

    Article  Google Scholar 

  • Hadad, B. S., Maurer, D., & Lewis, T. L. (2012). Sparing of sensitivity to biological motion but not of global motion after early visual deprivation. Developmental Science, 15(4), 474–481.

    Article  PubMed  Google Scholar 

  • Harris, L., & Jenkin, M. (1993). Spatial vision in humans and robots. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kogan, C. S., Boutet, I., Cornish, K., Zangenehpour, S., Mullen, K. T., Holden, J. J., & Chaudhuri, A. (2004). Differential impact of the FMR1 gene on visual processing in fragile X syndrome. Brain, 127(3), 591–601.

    Article  PubMed  Google Scholar 

  • Manning, C., Aagten-Murphy, D., & Pellicano, E. (2012). The development of speed discrimination abilities. Vision Research, 70, 27–33.

    Article  PubMed  Google Scholar 

  • Mather, G. (1991). First-order and second-order visual processes in the perception of motion and tilt. Vision Research, 31(1), 161–167.

    Article  PubMed  Google Scholar 

  • O’Brien, J., Spencer, J., Atkinson, J., Braddick, O., & Wattam-Bell, J. (2002). Form and motion coherence processing in dyspraxia: Evidence of a global spatial processing deficit. NeuroReport, 13(11), 1399–1402.

    Article  PubMed  Google Scholar 

  • Wattam-Bell, J. (1991). Development of motion-specific cortical responses in infancy. Vision Research, 31(2), 287–297.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena Nuthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG (outside the USA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nuthi, M., Suryadevara, U., Woods, A.J. (2018). Motion Perception. In: Kreutzer, J.S., DeLuca, J., Caplan, B. (eds) Encyclopedia of Clinical Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-319-57111-9_9109

Download citation

Publish with us

Policies and ethics