Skip to main content

Basal Ganglia

  • Reference work entry
  • First Online:
Encyclopedia of Clinical Neuropsychology

Synonyms

Basal nuclei

Definition

The basal ganglia refer specifically to a group of subcortical structures considered as extrapyramidal motor components. These components include caudate and putamen, substantia nigra, subthalamic nucleus, and globus pallidus (GP). Figure 1 depicts major circuitry within the basal ganglia.

Basal Ganglia, Fig. 1
figure 22 figure 22

Basal ganglia circuitry. Diagram illustrates only major direct and indirect circuits. Significant cortical input is active at every level (not shown)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Readings

  • Arsalidou, M., Duerden, E. G., & Taylor, M. J. (2013). The centre of the brain: Topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Human Brain Mapping, 34(11), 3031–3054. https://doi.org/10.1002/hbm.22124.

    Article  PubMed  Google Scholar 

  • Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 208–215. https://doi.org/10.1016/j.tics.2010.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Averbeck, B. B., Lehman, J., Jacobson, M., & Haber, S. N. (2014). Estimates of projection overlap and zones of convergence within frontal-striatal circuits. Journal of Neuroscience, 34(29), 9497–9505. https://doi.org/10.1523/JNEUROSCI.5806-12.2014.

    Article  PubMed  Google Scholar 

  • Baier, B., Karnath, H. O., & Dieterich, M. (2010). Keeping memory clear and stable-the contribution of human basal ganglia and prefrontal cortex to working memory. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(29), 9788–9792.

    Article  Google Scholar 

  • Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., et al. (1998). Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends in Neurosciences, 21(1), 32–38.

    Article  PubMed  Google Scholar 

  • Bernacer, J., Prensa, L., & Gimenez-Amaya, J. M. (2007). Cholinergic interneurons are differentially distributed in the human striatum. PloS One, 2(11), e1174.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonelli, R. M., Wenning, G. K., & Kapfhammer, H. P. (2004). Huntington’s disease: Present treatments and future therapeutic modalities. International Clinical Psychopharmacology, 19(2), 51–62.

    Article  PubMed  Google Scholar 

  • Boyes, J., & Bolam, J. P. (2007). Localization of GABA receptors in the basal ganglia. Progress in Brain Research, 160, 229–243.

    Article  PubMed  Google Scholar 

  • Brown, R., & Marsden, C. (1991). Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain, 114, 215–231.

    PubMed  Google Scholar 

  • Brown, R., Soliveri, P., & Jahanshahi, M. (1998). Executive process in Parkinson’s disease – random number generation and response suppression. Neuropyschologia, 36, 1355–1362.

    Article  Google Scholar 

  • Centonze, D., Bernardi, G., & Koch, G. (2007). Mechanisms of disease: Basic-research-driven investigations in humans-the case of hyperkinetic disorders. Nature Clinical Practical Neurology, 3(10), 572–580.

    Article  Google Scholar 

  • Chang, H. T. (1988). Dopamine-acetylcholine interaction in the rat striatum: A dual-labeling immunocytochemical study. Brain Research Bulletin, 21, 295–304.

    Article  PubMed  Google Scholar 

  • DeLong, M. R., & Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Archives of Neurology, 64, 20–24.

    Article  PubMed  Google Scholar 

  • DiFiglia, M., Pasik, P., & Pasik, T. (1976). A Golgi study of neuronal types in the neostriatum of monkeys. Brain Research, 114, 245–256.

    Article  PubMed  Google Scholar 

  • Dobryakova, E., & Tricomi, E. (2013). Basal ganglia engagement during feedback processing after a substantial delay. Cognitive, Affective, & Behavioral Neuroscience, 13(4), 725–736. https://doi.org/10.3758/s13415-013-0182-6.

    Article  Google Scholar 

  • Grahn, J., & Brett, M. (2007). Rhythm and beat perception in motor areas of the brain. Journal of Cognitive Neuroscience, 19, 893–906.

    Article  PubMed  Google Scholar 

  • Grahn, J., & Brett, M. (2008). Impairment of beat-based rhythm discrimination in Parkinson’s disease. Cortex, 45, 54–61.

    Article  PubMed  Google Scholar 

  • Graybiel, A. M. (2000). The basal ganglia. Current Biology, 10(14), R509–R511. https://doi.org/10.1016/S0960-9822(00)00593-5.

    Article  PubMed  Google Scholar 

  • Haber, S. N., & Calzavara, R. (2009). The cortico-basal ganglia integrative network: The role of the thalamus. Brain Research Bulletin, 78(2–3), 69–74. https://doi.org/10.1016/j.brainresbull.2008.09.013.

    Article  PubMed  Google Scholar 

  • Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26. https://doi.org/10.1038/npp.2009.129.

    Article  PubMed  Google Scholar 

  • Haines, D. (2002). Fundamental neuroscience. New York: Churchill Livingstone.

    Google Scholar 

  • Hamani, C., Saint-Cyr, J., Fraser, J., Kaplitt, M., & Lozano, A. (2004). The subthalamic nucleus in the context of movement disorders. Brain, 127(Pt 1), 4–20.

    Article  PubMed  Google Scholar 

  • Huntington Study Group. (1996). Unified Huntington’s disease rating scale: Reliability and consistency. Movement Disorders, 11, 136–142.

    Article  Google Scholar 

  • Ino, T., Nakai, R., Azuma, T., Kimura, T., & Fukuyama, H. (2010). Differential activation of the striatum for decision making and outcomes in a monetary task with gain and loss. Cortex, 46(1), 2–14. https://doi.org/10.1016/j.cortex.2009.02.022.

    Article  PubMed  Google Scholar 

  • Johnson, T., Rosvold, H., & Mishkin, M. (1968). Projections from behaviorally-defined sectors of the prefrontal cortex to the basal ganglia, septum, and diencephalons of the monkey. Experimental Neurology, 21, 20–34.

    Article  PubMed  Google Scholar 

  • Kern, D., & Kumar, R. (2007). Deep brain stimulation. The Neurologist, 13(5), 237–252.

    Article  PubMed  Google Scholar 

  • Kim, H. F., & Hikosaka, O. (2013). Distinct basal ganglia circuits controlling behaviors guided by flexible and stable values. Neuron, 79(5), 1001–1010. https://doi.org/10.1016/j.neuron.2013.06.044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Korenyi, C., & Whittier, J. R. (1967). Drug treatment in 117 cases of Huntington’s disease with special reference to fluphenazine (Prolixin). Psychiatric Quarterly, 41, 203–210.

    Article  PubMed  Google Scholar 

  • Kotz, S., Schwartze, M., & Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45, 982–990.

    Article  PubMed  Google Scholar 

  • Kotz, S. A., Anwander, A., Axer, H., & Knösche, T. R. (2013). Beyond cytoarchitectonics: The internal and external connectivity structure of the caudate nucleus. PloS One, 8(7), e70141. https://doi.org/10.1371/journal.pone.0070141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koziol, L. F., & Budding, D. E. (2009). Subcortical structures and cognition. New York: Springer.

    Book  Google Scholar 

  • Kubota, Y., Inagaki, S., Shimada, S., Kito, S., Eckenstein, F., et al. (1987). Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons. Brain Research, 413, 179–184.

    Article  PubMed  Google Scholar 

  • Malapani, C., Rakitin, B., Levy, R., Meck, W., Deweer, B., Dubois, B., et al. (1998). Coupled temporal memories in Parkinson's disease: A dopamine-related dysfunction. Journal of Cognitive Neuroscience, 10, 316–331.

    Article  PubMed  Google Scholar 

  • Menguala, E., de las Herasb, S., Erroa, E., Lanciegoa, J. L., & Gimenez-Amaya, J. M. (1999). Thalamic interaction between the input and the output systems of the basal ganglia. Journal of Chemical Neuroanatomy, 16(3), 185–197.

    Google Scholar 

  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31(2–3), 236–250.

    Article  PubMed  Google Scholar 

  • Nagatsu, T., & Sawada, M. (2007). Biochemistry of postmortem brains in Parkinson’s disease: Historical overview and future prospects. Journal of Neural Transmission, Supplement, 72, 113–120.

    Article  Google Scholar 

  • Pahwa, R. (2006). Understanding Parkinson’s disease: An update on current diagnostic and treatment strategies. Journal of the American Medical Directors Association, 7(7 Suppl. 2), 4–10.

    PubMed  Google Scholar 

  • Petrides, M., & Milner, B. (1982). Deficits on subject-ordered tasks after frontal and temporal lobe lesions in man. Neuropsychologia, 20, 601–604.

    Article  Google Scholar 

  • Rosvold, H. (1972). The frontal lobe system: Cortical-subcortical interrelationships. Acta Neurobiologica Experimentalis (Warsaw), 32, 439–460.

    Google Scholar 

  • Sarter, M., Gehring, W. J., & Kozak, R. (2006). More attention must be paid: The neurobiology of attentional effort. Brain Research Reviews, 51(2), 145–160. https://doi.org/10.1016/j.brainresrev.2005.11.002.

    Article  PubMed  Google Scholar 

  • Seger, C. a. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32(2), 265–278. https://doi.org/10.1016/j.neubiorev.2007.07.010.

    Article  PubMed  Google Scholar 

  • Shao, J., & Diamond, M. I. (2007). Polyglutamine diseases: Emerging concepts in pathogenesis and therapy. Human Molecular Genetics, 15(16), R115–R123. Spec No 2.

    Article  Google Scholar 

  • Shohamy, D. (2011). Learning and motivation in the human striatum. Current Opinion in Neurobiology, 21(3), 408–414. https://doi.org/10.1016/j.conb.2011.05.009.

    Article  PubMed  Google Scholar 

  • Smits-Bandstra, S., & De Nil, L. (2007). Sequence skill learning in persons who stutter: Implications for cortico- striato-thalamo-cortical dysfunction. Journal of Fluency Disorders, 32(4), 251–278.

    Article  PubMed  Google Scholar 

  • Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30(5), 228–235.

    Article  PubMed  Google Scholar 

  • Taylor, A., Saint-Cyr, J., & Lang, A. (1986). Frontal lobe dysfunction in Parkinson’s disease: The cortical focus of neostriatal outflow. Brain, 109, 845–883.

    Article  PubMed  Google Scholar 

  • Tricomi, E., & Fiez, J. a. (2008). Feedback signals in the caudate reflect goal achievement on a declarative memory task. NeuroImage, 41(3), 1154–1167. https://doi.org/10.1016/j.neuroimage.2008.02.066.

    Article  PubMed  Google Scholar 

  • Tricomi, E., Balleine, B. W., & O’Doherty, J. P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. The European Journal of Neuroscience, 29(11), 2225–2232. https://doi.org/10.1111/j.1460-9568.2009.06796.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • West, R., Ergis, A., Winocur, G., & Saint-Cyr, J. (1998). The contribution of impaired working memory monitoring to performance of the self-ordered pointing task in normal aging and Parkinson’s disease. Neuropsychology, 12, 546–554.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina R. Marmarou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Marmarou, C.R., Parry, M.R., Dobryakova, E. (2018). Basal Ganglia. In: Kreutzer, J.S., DeLuca, J., Caplan, B. (eds) Encyclopedia of Clinical Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-319-57111-9_298

Download citation

Publish with us

Policies and ethics