Skip to main content

Visual Modularity

  • Reference work entry
  • First Online:
Encyclopedia of Clinical Neuropsychology
  • 9 Accesses

Synonyms

Visual component processes; Visual processing stages

Definition

Visual modularity is a conceptualization of visual function that maintains that the various properties that comprise visual perception (form, color, texture, motion, etc.) are the by-product of separate processes that occur in distinct cortical or subcortical regions of the brain (Calabretta and Parisi 2005). These processes operate to a greater or lesser extent independent of each other but are integrated to yield a uniform percept under normal conditions. These separate visual processes are thought of as modules, each operating with different computational characteristics that enable them to analyze and reconstruct visual input.

Historical Background

Visual modularity is an extension of a broader theoretical framework upon which philosophers, psychologists, cognitive scientists, and neuroscientists have approached the study of “mind” over the past century. In general systems theory, modularity is defined by the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Readings

  • Chalupa, L., & Werner, J. S. (2004). The visual neurosciences. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cogan, D. G. (1979). Visuospatial dysgnosia. American Journal of Ophthalmology, 88(3 Pt 1), 361–368.

    Article  PubMed  Google Scholar 

  • Damasio, A. R., & Damasio, H. (1983). The anatomic basis of pure alexia. Neurology, 33(12), 1573–1583.

    Article  PubMed  Google Scholar 

  • De Renzi, E., Scotti, G., & Spinnler, H. (1969). Perceptual and associative disorders of visual recognition. Relationship to the side of the cerebral lesion. Neurology, 19(7), 634–642.

    Article  PubMed  Google Scholar 

  • Deubel, H., Gopher, D., & Koriat, A. (1999). Separate mechanisms for the adaptive control of reactive, volitional, and memory-guided saccadic eye movements. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 697–721). Cambridge: The MIT Press.

    Google Scholar 

  • Farah, M. (2000). The cognitive neuroscience of vision. New York: Wiley-Blackwell.

    Google Scholar 

  • Goodwin, J. (2002). Disorders of higher cortical visual function. Current Neurology and Neuroscience Reports, 2(5), 418–422.

    Article  PubMed  Google Scholar 

  • Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., et al. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences of the United States of America, 88, 1621–1625.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology, 28, 229–289.

    Article  PubMed  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology, 195(1), 215–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaas, J. H., & Collins, C. E. (Eds.). (2003). The primate visual system. Boca Raton: CRC Press.

    Google Scholar 

  • Landis, T., Regard, M., Bliestle, A., & Kleihues, P. (1988). Prosopagnosia and agnosia for noncanonical views. An autopsied case. Brain, 111(Pt. 6), 1287–1297.

    Article  PubMed  Google Scholar 

  • Mishkin, M., Ungerleider, L. G., Macko, K. A., & Yantis, S. (2000). Object vision and spatial vision: Two cortical pathways. In S. Yantis (Ed.), Visual perception: Essential readings (pp. 296–302). New York: Psychology Press.

    Google Scholar 

  • Poppelreuter, W. (1990). Disturbances of lower and higher visual capacities caused by occipital damage: With special reference to the psychopathological, pedagogical, industrial, and social implications. Oxford: Clarendon Press/Oxford University Press.

    Book  Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). ‘What’ and ‘where’ in the human brain. Current Opinion in Neurobiology, 4(2), 157–165.

    Article  PubMed  Google Scholar 

  • Whiteley, A. M., & Warrington, E. K. (1977). Prosopagnosia: A clinical, psychological, and anatomical study of three patients. Journal of Neurology, Neurosurgery, and Psychiatry, 40(4), 395–403.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cohen, R.A. (2018). Visual Modularity. In: Kreutzer, J.S., DeLuca, J., Caplan, B. (eds) Encyclopedia of Clinical Neuropsychology. Springer, Cham. https://doi.org/10.1007/978-3-319-57111-9_1416

Download citation

Publish with us

Policies and ethics