Skip to main content

Pharmacodynamic Evaluation: Pain Methodologies

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Methods in Clinical Pharmacology

Abstract

Despite many advances in the last decades in understanding pain, the development of new analgesic compounds has not followed at the same pace. The development of more targeted analgesic compounds with fewer side effects is therefore essential. With an increased demand to demonstrate pharmacodynamic effects of new analgesic compounds, the importance of human evoked pain models is now higher than ever.

Pharmacodynamic evaluation with human evoked pain models offers the possibility to determine the dose ranges at which new analgesics exert their pharmacological effect. Pain models may also aid in the choice of target population, determine which modality of pain a new drug is expected to be most suitable, help to differentiate between a central or more peripheral mode of action of new drugs, and help determine which other effects contribute to its mode of action, e.g., sedation.

Human evoked pain models are conducted in standardized laboratories where factors like stimulus intensity, frequency, duration, and location can be controlled. Using pain models in healthy volunteers has important advantages over assessing the effects of new drugs in patients with pain; the pain elicited in human pain models is predictable in its intensity while clinical pain will naturally fluctuate. Analgesic properties can be investigated with pain models without the influence of accompanying symptoms that are often seen in patients with pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Adam F, Alfonsi P, Kern D, Bouhassira D (2014) Relationships between the paradoxical painful and nonpainful sensations induced by a thermal grill. Pain 155:2612–2617

    Article  PubMed  Google Scholar 

  • Aguggia M (2003) Neurophysiology of pain. Neurol Sci 24:57–60

    Google Scholar 

  • Altis K, Schmidtko A, Angioni C, Kuczka K et al (2009) Analgesic efficacy of tramadol, pregabalin and ibuprofen in menthol-evoked cold hyperalgesia. Pain 147:116–121

    Article  CAS  PubMed  Google Scholar 

  • van Amerongen G, de Boer MW, Groeneveld GJ, Hay JL (2016) A literature review on the pharmacological sensitivity of human evoked hyperalgesia pain models. Br J Clin Pharmacol 82:903–922

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersen OK, Jensen LM, Brennum J, Arendt-Nielsen L (1994) Evidence for central summation of C and A delta nociceptive activity in man. Pain 59:273–280

    Article  CAS  PubMed  Google Scholar 

  • Andersen OK, Sonnenborg FA, Arendt-Nielsen L (2001) Reflex receptive fields for human withdrawal reflexes elicited by non-painful and painful electrical stimulation of the foot sole. Clin Neurophysiol 112:641–649

    Article  CAS  PubMed  Google Scholar 

  • Andersen H, Arendt-Nielsen L, Svensson P, Danneskiold-Samsøe B et al (2008) Spatial and temporal aspects of muscle hyperalgesia induced by nerve growth factor in humans. Exp Brain Res 191:371–382

    Article  PubMed  Google Scholar 

  • Andersen HH, Poulsen JN, Uchida Y, Nikbakht A et al (2015) Cold and L-menthol-induced sensitization in healthy volunteers––a cold hypersensitivity analogue to the heat/capsaicin model. Pain 156:880–889

    Article  CAS  PubMed  Google Scholar 

  • Arendt-Nielsen L, Yarnitsky D (2009) Experimental and clinical applications of quantitative sensory testing applied to skin, muscles and viscera. J Pain 10:556–572

    Article  PubMed  Google Scholar 

  • Arendt-Nielsen L, Drewes AM, Hansen JB, Tage-Jensen U (1997) Gut pain reactions in man: an experimental investigation using short and long duration transmucosal electrical stimulation. Pain 69:255–262

    Article  CAS  PubMed  Google Scholar 

  • Arendt-Nielsen L, Sonnenborg FA, Andersen OK (2000) Facilitation of the withdrawal reflex by repeated transcutaneous electrical stimulation: an experimental study on central integration in humans. Eur J Appl Physiol 81:165–173

    Article  CAS  PubMed  Google Scholar 

  • Arendt-Nielsen L, Curatolo M, Drewes A (2007a) Human experimental pain models in drug development: translational pain research. Curr Opin Investig Drugs 8:41–53

    CAS  PubMed  Google Scholar 

  • Arendt-Nielsen L, Frøkjaer JB, Staahl C, Graven-Nielsen T et al (2007b) Effects of gabapentin on experimental somatic pain and temporal summation. Reg Anesth Pain Med 32:382–388

    Article  CAS  PubMed  Google Scholar 

  • Arendt-Nielsen L, Olesen AE, Staahl C, Menzaghi F et al (2009) Analgesic efficacy of peripheral K-opioid receptor agonist CR665 compared to oxycodone in a multi-modal, multi-tissue experimental human pain model. Anesthesiology 111:616–624

    Article  CAS  PubMed  Google Scholar 

  • Baron R, Baron Y, Disbrow E, Roberts TP (1999) Brain processing of capsaicin induced secondary hyperalgesia: a functional MRI study. Neurology 53:548–557

    Article  CAS  PubMed  Google Scholar 

  • Baron R, Maier C, Attal N, Binder A et al (2017) Peripheral neuropathic pain: a mechanism-related organizing principle based on sensory profiles. Pain 158:261–272

    Article  PubMed  Google Scholar 

  • Bauer M, Schwameis R, Scherzer T, Lang-Zwosta I et al (2015) A double-blind, randomized clinical study to determine the efficacy of benzocaine 10% on histamine-induced pruritus and UVB-light induced slight sunburn pain. J Dermatolog Treat 26:367–372

    Article  PubMed  CAS  Google Scholar 

  • Bennett D (2007) Sensitization of nociceptors. In: Schmidt RF, Willis WD (eds) Encyclopedia of pain, 1st edn. Springer-Verlag, Berlin/Heidelberg, pp 1338–1342

    Chapter  Google Scholar 

  • Bernstein LM, Baker LA (1958) A clinical test for esophagitis. Gastroenterology 34:60–81

    Google Scholar 

  • Binder A, Stengel M, Klebe O, Wasner G et al (2011) Topical high-concentration (40%) menthol-somatosensory profile of a human surrogate pain model. J Pain 12:764–773

    Article  CAS  PubMed  Google Scholar 

  • Bishop T, Hewson DW, Yip PK, Fahey MS et al (2007) Characterisation of ultraviolet-B-induced inflammation as a model of hyperalgesia in the rat. Pain 131:70–82

    Article  CAS  PubMed  Google Scholar 

  • Bishop T, Ballard A, Holmes H, Young AR et al (2009) Ultraviolet-B induced inflammation of human skin: characterisation and comparison with traditional models of hyperalgesia. Eur J Pain 13:524–532

    Article  CAS  PubMed  Google Scholar 

  • Bonica JJ (1979) The need of a taxonomy. Pain 6:247–252

    Article  CAS  PubMed  Google Scholar 

  • Borsook D, Sava S, Becerra L (2010) The pain imaging revolution: advancing pain into the 21st century. Neuroscientist 16:171–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouhassira D, Sabaté JM, Coffin B, Le Bars D et al (1998) Effects of rectal distensions on nociceptive flexion reflexes in humans. Am J Phys 275:410–417

    Google Scholar 

  • Bouhassira D, Kern D, Rouaud J, Pelle-Lancien E et al (2005) Investigation of the paradoxical painful sensation (‘illusion of pain’) produced by a thermal grill. Pain 114:160–167

    Article  PubMed  Google Scholar 

  • Brenner M, Coelho SG, Beer JZ, Miller SA et al (2009) Long-lasting molecular changes in human skin after repetitive in situ UV irradiation. J Invest Dermatol 129:1002–1011

    Article  CAS  PubMed  Google Scholar 

  • Brennum J, Kjeldsen M, Jensen K, Jensen TS (1989) Measurements of human pressure-pain thresholds on fingers and toes. Pain 38:211–217

    Article  CAS  PubMed  Google Scholar 

  • van den Broeke EN, Geene N, van Rijn CM, Wilder-Smith OH et al (2014) Negative expectations facilitate mechanical hyperalgesia after high-frequency electrical stimulation of human skin. Eur J Pain 18:86–91

    Article  PubMed  Google Scholar 

  • Bromm B, Lorenz J (1984) Neurophysiological evaluation of pain. Electroencephalogr Clin Neurophysiol 107:227–253

    Article  Google Scholar 

  • Bromm B, Jahnke MT, Treede RD (1984) Responses of human cutaneous afferents to CO2 laser stimuli causing pain. Exp Brain Res 55:158–166

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Mackenzie RA, Skuse NF, Lethlean AK (1975) Cutaneous afferent activity in median and radial nerve fascicles: a microelectrode study. J Neurol Neurosurg Psychiatry 38:855–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casale R, Glynn C, Buonocore M (1992) The role of ischaemia in the analgesia which follows Bier’s block technique. Pain 50:169–175

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  • Craig AD, Bushnell MC (1994) The thermal grill illusion: unmasking the burn of cold pain. Science 265:252–255

    Article  CAS  PubMed  Google Scholar 

  • Curatolo M, Petersen-Felix S, Arendt-Nielsen L, Zbinden AM (1997) Epidural epinephrine and clonidine: segmental analgesia and effects on different pain modalities. Anesthesiology 87:785–794

    Article  CAS  PubMed  Google Scholar 

  • Curatolo M, Petersen-Felix S, Arendt-Nielsen L (2000) Sensory assessment of regional analgesia in humans: a review of methods and applications. Anesthesiology 93:1517–1530

    Article  CAS  PubMed  Google Scholar 

  • Daenen L, Nijs J, Cras P, Wouters K et al (2014) Changes in pain modulation occur soon after whiplash trauma but are not related to altered perception of distorted visual feedback. Pain Pract 14:588–598

    Article  PubMed  Google Scholar 

  • Demedts I, Tack J (1998) Chest pain of esophageal origin. Curr Opin Gastroenterol 14:340–344

    Article  Google Scholar 

  • Doll RJ, Buitenweg JR, Meijer HG, Veltink PH (2014) Tracking of nociceptive thresholds using adaptive psychophysical methods. Behav Res Methods 46:55–66

    Article  PubMed  Google Scholar 

  • Doll RJ, van Amerongen G, Hay JL, Groeneveld GJ et al (2016) Responsiveness of electrical nociceptive detection thresholds to capsaicin (8%)-induced changes in nociceptive processing. Exp Brain Res 234:2505–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dotson RM (1997) Clinical neurophysiology laboratory tests to assess the nociceptive system in humans. J Clin Neurophysiol 14:32–45

    Article  CAS  PubMed  Google Scholar 

  • Drewes AM, Schipper KP, Dimcevski G, Petersen P et al (2002) Multimodal assessment of pain in the esophagus: a new experimental model. Am J Physiol Gastrointest Liver Physiol 283:95–103

    Article  Google Scholar 

  • Drewes AM, Schipper KP, Dimcevski G, Petersen P et al (2003a) Gut pain and hyperalgesia induced by capsaicin: a human experimental model. Pain 104:333–341

    Article  CAS  PubMed  Google Scholar 

  • Drewes AM, Schipper KP, Dimcevski G, Petersen P et al (2003b) Multi-modal induction and assessment of allodynia and hyperalgesia in the human oesophagus. Eur J Pain 7:539–549

    Article  PubMed  Google Scholar 

  • Drewes AM, Reddy H, Staahl C, Pedersen J et al (2005) Sensory-motor responses to mechanical stimulation of the esophagus after sensitization with acid. World J Gastroenterol 11:4367–4374

    Article  PubMed  PubMed Central  Google Scholar 

  • Dworkin RH, O’Connor AB, Audette J, Baron R et al (2010) Recommendations for the pharmacological management of neuropathic pain: an overview and literature update. Mayo Clin Proc 85:3–14

    Article  CAS  Google Scholar 

  • Dyck PJ, Peroutka S, Rask C, Burton E et al (1997) Intradermal recombinant human nerve growth factor induces pressure allodynia and lowered heat-pain threshold in humans. Neurology 48:501–505

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt K, Li S, Ammon S, Schanzle G et al (1998) Same incidence of adverse drug events after codeine administration irrespective of the genetically determined differences in morphine formation. Pain 76:27–33

    Article  CAS  PubMed  Google Scholar 

  • Enggaard TP, Poulsen L, Arendt-Nielsen L, Hansen SH et al (2001) The analgesic effect of codeine as compared to imipramine in different human experimental pain models. Pain 92:277–282

    Google Scholar 

  • Finnerup NB, Sindrup SH, Jensen TS (2010) The evidence for pharmacological treatment of neuropathic pain. Pain 150:573–581

    Article  PubMed  Google Scholar 

  • Finnerup NB, Attal N, Haroutounian S, Kamerman P et al (2015) Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 14:162–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick TB (1988) The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 124:869–871

    Article  CAS  PubMed  Google Scholar 

  • Frølund F, Frølund C (1986) Pain in general practice: pain as a cause of patient-doctor contact. Scand J Prim Health Care 4:97–100

    Article  PubMed  Google Scholar 

  • Fruhstorfer H, Gross W, Selbmann O (2001) Von Frey hairs: new materials for a new design. Eur J Pain 5:341–342

    Article  CAS  PubMed  Google Scholar 

  • Fujii K, Motohashi K, Umino M (2006) Heterotopic ischemic pain attenuates somatosensory evoked potentials induced by electrical tooth stimulation: diffuse noxious inhibitory controls in the trigeminal nerve territory. Eur J Pain 10:495–504

    Article  PubMed  Google Scholar 

  • Ge HY, Madeleine P, Cairns BE, Arendt-Nielsen L (2006) Hypoalgesia in the referred pain areas after bilateral injections of hypertonic saline into the trapezius muscles of men and women: a potential experimental model of gender-specific differences. Clin J Pain 22:37–44

    Article  PubMed  Google Scholar 

  • Goubert D, Danneels L, Cagnie B, van Oosterwijck J et al (2015) Effect of pain induction or pain reduction on conditioned pain modulation in adults: a systematic review. Pain Pract 8:765–777

    Article  Google Scholar 

  • Gracely RH (1994) Studies of pain in normal man. In: Wall PD, Melzack R (eds) Textbook of pain, 3rd edn. Churchill Livingstone, Edinburgh, pp 315–336

    Google Scholar 

  • Gracely RH (2013) Studies of pain in human subjects. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (eds) Wall and Melzack’s textbook of pain, 6th edn. Elsevier, Philidelphia, pp 283–300

    Google Scholar 

  • Granot M, Granovsky Y, Sprecher E, Nir RR, Yarnitsky D (2006) Contact heat-evoked temporal summation: tonic versus repetitive-phasic stimulation. Pain 122:295–305

    Article  PubMed  Google Scholar 

  • Graven-Nielsen T, Mense S (2001) The peripheral apparatus of muscle pain: evidence from animal and human studies. Clin J Pain 17:2–10

    Article  CAS  PubMed  Google Scholar 

  • Graven-Nielsen T, Arendt-Nielsen L, Svensson P, Staehelln Jensen T (1997) Quantification of local and referred muscle pain in humans after sequential i.m. injections of hypertonic saline. Pain 69:111–117

    Article  CAS  PubMed  Google Scholar 

  • Graven-Nielsen T, Babenko V, Svensson P, Arendt-Nielsen L (1998) Experimentally induced muscle pain induces hypoalgesia in heterotopic deep tissues, but not in homotopic deep tissues. Brain Res 787:203–210

    Article  CAS  PubMed  Google Scholar 

  • Graven-Nielsen T, Arendt-Nielsen L, Mense S (2002) Thermosensitivity of muscle: high-intensity thermal stimulation of muscle tissue induces muscle pain in humans. J Physiol 540:647–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grech R, Cassar T, Muscat J, Camilleri KP et al (2008) Review on solving the inverse problem in EEG source analysis. J Neuroeng Rehabil 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Gustorff B, Anzenhofer S, Sycha T, Lehr S et al (2004) The sunburn pain model: the stability of primary and secondary hyperalgesia over 10 hours in a crossover setting. Anesth Analg 98:173–177

    Article  PubMed  Google Scholar 

  • Hagenouw RR, Bridenbaugh PO, van Egmond J, Stuebing R (1986) Tourniquet pain: a volunteer study. Anesth Analg 65:1175–1180

    Article  CAS  PubMed  Google Scholar 

  • Hampson JP, Reed BD, Clauw DJ, Bhavsar R et al (2013) Augmented central pain processing in vulvodynia. J Pain 14:579–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Handwerker HO, Kobal G (1993) Psychophysiology of experimentally induced pain. Physiol Rev 73:639–671

    CAS  PubMed  Google Scholar 

  • Hardy JD, Wolff HG, Goodell H (1940) Studies on pain. A new method for measuring pain threshold: observations on spatial summation of pain. J Clin Invest 19:649–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatem S, Attal N, Willer JC, Bouhassira D (2006) Psychophysical study of the effects of topical application of menthol in healthy volunteers. Pain 122:190–196

    Article  CAS  PubMed  Google Scholar 

  • Hauck M, Domnick C, Lorenz J, Gerloff C et al (2015) Top-down and bottom-up modulation of pain-induced oscillations. Front Hum Neurosci 9:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Hay JL, Okkerse P, van Amerongen G, Groeneveld GJ (2016) Determining pain detection and tolerance thresholds using an integrated, multi-modal pain task battery. J Vis Exp 14:110

    Google Scholar 

  • Heinricher MM, Fields L (2013) Central nervous system mechanisms of pain modulation. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (eds) Wall and Melzack’s textbook of pain, 6th edn. Elsevier, Philidelphia, pp 129–142

    Google Scholar 

  • Hernández N, Dmitrieva N, Vanegas H (1994) Medullary on-cell activity during tail-flick inhibition produced by heterotopic noxious stimulation. Pain 58:393–401

    Article  PubMed  Google Scholar 

  • Hertel HC, Howaldt B, Mense S (1976) Responses of group IV and group III muscle afferents to thermal stimuli. Brain Res 113:201–205

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Zhang ZG, Mouraux A, Iannetti GD (2015) Multiple linear regression to estimate time-frequency electrophysiological responses in single trials. NeuroImage 111:442–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huettel SA, Song AW, McCarthy G (eds) (2014) Functional magnetic resonance ingaging, 2nd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Hüllemann P, Watfeh R, Shao YQ, Nerdal A (2015) Peripheral sensitization reduces laser-evoked potential habituation. Neurophysiol Clin 45:457–467

    Article  PubMed  Google Scholar 

  • Ikeda H, Heinke B, Ruscheweyh R, Sandkühler J (2003) Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 299:1237–1240

    Article  CAS  PubMed  Google Scholar 

  • Ilkjaer S, Petersen KL, Brennum J, Wernberg M et al (1996) Effect of systemic N-methyl-D-aspartate receptor antagonist (ketamine) on primary and secondary hyperalgesia in humans. Br J Anaesth 76:829–834

    Article  CAS  PubMed  Google Scholar 

  • Ing Lorenzini K, Besson M, Daali Y, Salomon D et al (2012) Validation of the simplified UVB model to assess the pharmacodynamics of analgesics in healthy human volunteers. Chimia (Aarau) 66:296–299

    Article  CAS  Google Scholar 

  • Ingvar M (1999) Pain and functional imaging. Philos Trans R Soc Lond Ser B Biol Sci 354:1347–1358

    Article  CAS  Google Scholar 

  • Inui K, Kakigi R (2012) Pain perception in humans: use of intraepidermal electrical stimulation: figure 1. J Neurol Neurosurg Psychiatry 83:551–556

    Article  PubMed  Google Scholar 

  • Jobert M, Wilson FJ, Roth T, Ruigt GSF (2013) Guidelines for the recording and evaluation of pharmaco-sleep studies in man: the international pharmaco-EEG society (IPEG). Neuropsychobiology 67:127–167

    Article  PubMed  Google Scholar 

  • Johnson AC, Greenwood-Van Meerveld B (2016) The pharmacology of visceral pain. Adv Pharmacol 75:273–301

    Article  PubMed  Google Scholar 

  • Jones SF, McQuay HJ, Moore RA, Hand CW (1988) Morphine and ibuprofen compared using the cold pressor test. Pain 34:117–122

    Article  CAS  PubMed  Google Scholar 

  • Kakigi R (1994) Diffuse noxious inhibitory control. Reappraisal by pain-related somatosensory evoked potentials following CO2 laser stimulation. J Neurol Sci 125:198–205

    Article  CAS  PubMed  Google Scholar 

  • Kakigi R, Inui K, Tamura Y (2005) Electrophysiological studies on human pain perception. Clin Neurophysiol 116:743–763

    Article  PubMed  Google Scholar 

  • Kern D, Plantevin F, Bouhassira D (2008) Effects of morphine on the experimental illusion of pain produced by a thermal grill. Pain 139:653–659

    Article  CAS  PubMed  Google Scholar 

  • Kidd BL, Urban LA (2001) Mechanisms of inflammatory pain. Br J Anaesth 87:3–11

    Google Scholar 

  • Kilo S, Schmelz M, Koltzenburg M, Handwerker HO (1994) Different patterns of hyperalgesia induced by experimental inflammation in human skin. Brain 117:385–396

    Article  PubMed  Google Scholar 

  • Kissin I (2010) The development of new analgesics over the past 50 years: a lack of real breakthrough drugs. Anesth Analg 110:780–789

    Article  CAS  PubMed  Google Scholar 

  • Klein T, Magerl W, Hopf HC, Sandkühler J (2004) Perceptual correlates of nociceptive long-term potentiation and long-term depression in humans. J Neurosci 24:964–971

    Article  CAS  PubMed  Google Scholar 

  • Klein T, Stahn S, Magerl W, Treede RD (2008) The role of heterosynaptic facilitation in long-term potentiation (LTP) of human pain sensation. Pain 139:507–519

    Article  PubMed  Google Scholar 

  • Kocyigit F, Akalin E, Gezer NS, Orbay O et al (2012) Functional magnetic resonance imaging of the effects of low-frequency transcutaneous electrical nerve stimulation on central pain modulation. A double-blind, placebo-controlled trial. Clin J Pain 28:581–588

    Article  PubMed  Google Scholar 

  • Koltzenburg M, Lundberg LE, Torebjörk HE (1992) Dynamic and static components of mechanical hyperalgesia in human hairy skin. Pain 51:207–219

    Article  CAS  PubMed  Google Scholar 

  • Koppert W, Dern SK, Sittl R, Albrecht S et al (2001) A new model of electrically evoked pain and hyperalgesia in human skin: the effects of intravenous alfentanil, S(+)-ketamine, and lidocaine. Anesthesiology 95:395–402

    Article  CAS  PubMed  Google Scholar 

  • Korotkov A, Ljubisavljevic M, Thunberg J, Kataeva G et al (2002) Changes in human regional cerebral blood flow following hypertonic saline induced experimental muscle pain: a positron emission tomography study. Neurosci Lett 335:119–123

    Article  CAS  PubMed  Google Scholar 

  • Krarup AL, Gunnarsson J, Brun J, Poulakis A et al (2013) Exploration of the effects of gender and mild esophagitis on esophageal pain thresholds in the normal and sensitized state of asymptomatic young volunteers. Neurogastroenterol Motil 25:766–e580

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Railton C, Tawfic Q (2016) Tourniquet application during anesthesia: “what we need to know?”. J Anaesthesiol Clin Pharmacol 32:424–430

    Article  PubMed  PubMed Central  Google Scholar 

  • van Laarhoven AI, Kraaimaat FW, Wilder-Smith OH, van Riel PL, van de Kerkhof PC, Evers AW (2013) Sensitivity to itch and pain in patients with psoriasis and rheumatoid arthritis. Exp Dermatol 22:530–534

    Article  PubMed  Google Scholar 

  • Laird JM, Bennett GJ (1993) An electrophysiological study of dorsal horn neurons in the spinal cord of rats with an experimental peripheral neuropathy. J Neurophysiol 69:2072–2085

    CAS  PubMed  Google Scholar 

  • Lapotka M, Ruz M, Salamanca Ballesteros A, Ocon Hernandez O (2017) Cold pressor gel test: a safe alternative to the cold pressor test in fMRI. Magn Reson Med 78:1464–1468

    Article  PubMed  Google Scholar 

  • Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926

    Article  PubMed  PubMed Central  Google Scholar 

  • Laursen RJ, Graven-Nielsen T, Jensen TS, Arendt-Nielsen L (1997) Referred pain is dependent on sensory input from the periphery: a psychophysical study. Eur J Pain 1:261–269

    Article  CAS  PubMed  Google Scholar 

  • Lautenbacher S, Roscher S, Strian F (2002) Inhibitory effects do not depend on the subjective experience of pain during heterotopic noxious conditioning stimulation (HNCS): a contribution to the psychophysics of pain inhibition. Eur J Pain 6:365–374

    Article  PubMed  Google Scholar 

  • Le Bars D, Dickenson AH, Besson JM (1979) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 6:283–304

    Article  PubMed  Google Scholar 

  • Lee YS, Kho HS, Kim YK, Chung SC (2007) Influence of topical capsaicin on facial sensitivity in response to experimental pain. J Oral Rehabil 34:9–14

    Article  CAS  PubMed  Google Scholar 

  • Li H (2017) TRP channel classification. Adv Exp Med Biol 976:1–8

    Article  PubMed  Google Scholar 

  • Lötsch J, Angst MS (2003) The μ-opioid agonist remifentanil attenuates hyperalgesia evoked by blunt and punctuated stimuli with different potency: a pharmacological evaluation of the freeze lesion in humans. Pain 102:151–161

    Article  PubMed  Google Scholar 

  • Lötsch J, Oertel BG, Ultsch A (2014) Human models of pain for the prediction of clinical analgesia. Pain 155:2014–2021

    Article  PubMed  Google Scholar 

  • Louvel D, Delvaux M, Staumont G, Camman F et al (1996) Intracolonic injection of glycerol: a model for abdominal pain in irritable bowel syndrome? Gastroenterology 110:351–361

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane GJ, McBetch J, Jones GT (2013) Epidemiology of pain. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (eds) Wall and Melzack’s textbook of pain, 6th edn. Elsevier, Philidelphia, pp 232–247

    Google Scholar 

  • Maggi CA (1990) The dual function of capsaicin-sensitive sensory nerves in the bladder and urethra. Ciba Found Symp 151:77–90

    CAS  PubMed  Google Scholar 

  • Mauderli AP, Vierck CJ Jr, Cannon RL, Rodrigues A et al (2003) Relationships between skin temperature and temporal summation of heat and cold pain. J Neurophysiol 90:100–109

    Article  PubMed  Google Scholar 

  • McQuay HJ, Moore A (2013) Methods of therapeutic trials. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (eds) Wall and Melzack’s textbook of pain, 6th edn. Elsevier, Philidelphia, pp 402–412

    Google Scholar 

  • Melzack R (1975) The McGill pain questionnaire: major properties and scoring methods. Pain 1:277–299

    Article  CAS  PubMed  Google Scholar 

  • Melzack R (2005) The McGill pain questionnaire: from description to measurement. Anesthesiology 103:199–202

    Article  PubMed  Google Scholar 

  • Melzack R, Katz J (2013) Pain measurement in adult patients. In: McMahon SB, Koltzenburg M, Tracey I, Turk DC (eds) Wall and Melzack’s textbook of pain, 6th edn. Elsevier, Philidelphia, pp 301–314

    Google Scholar 

  • Messeguer A, Plannells-Cases P, Ferrer-Montiel A (2006) Physiology and pharmacology of the vanilloid receptor. Curr Neuropharmacol 4:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer RA, Treede RD (2004) Mechanisms of secondary hyperalgesia: a role for myelinated nociceptors in punctate hyperalgesia. In: Brune K, Handwerker HO (eds) Hyperalgesia: molecular mechanisms and clinical implications, 1st edn. IASP Press, Seatlle, pp 143–155

    Google Scholar 

  • Mikkelsen S, Ilkjaer S, Brennum J, Borgbjerg FM et al (1999) The effect of naloxone on ketamine-induced effects on hyperalgesia and ketamine-induced side effects in humans. Anesthesiology 90:1539–1545

    Article  CAS  PubMed  Google Scholar 

  • Mitchell LA, MacDonald RA, Brodie EE (2004) Temperature and the cold pressor test. J Pain 5:233–237

    Article  PubMed  Google Scholar 

  • Möller KA, Johansson B, Berge OG (1998) Assessing mechanical allodynia in the rat paw with a new electronic algometer. J Neurosci Methods 84:41–47

    Article  PubMed  Google Scholar 

  • Moore DJ, Keogh E, Crombez G, Eccleston C (2013) Methods for studying naturally occurring human pain and their analogues. Pain 154:190–199

    Article  PubMed  Google Scholar 

  • Moore RA, Wiffen PJ, Derry S, Maguire T (2015) Non-prescription (OTC) oral analgesics for acute pain – an overview of Cochrane reviews. Cochrane Database Syst Rev 11:CD010794

    Google Scholar 

  • Morton DL, Sandhu JS, Jones AK (2016) Brain imaging of pain: state of the art. J Pain Res 9:613–624

    Article  PubMed  PubMed Central  Google Scholar 

  • Mouraux A, Iannetti GD (2008) Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging 26:1041–1054

    Article  CAS  PubMed  Google Scholar 

  • Mouraux A, Guérit JM, Plaghki L (2003) Non-phase locked electroencephalogram (EEG) responses to CO2 laser skin stimulations may reflect central interactions between a partial differential- and C-fibre afferent volleys. Clin Neurophysiol 114:710–722

    Article  CAS  PubMed  Google Scholar 

  • Mouraux A, Iannetti GD, Plaghki L (2010) Low intensity intra-epidermal electrical stimulation can activate Aδ-nociceptors selectively. Pain 150:199–207

    Article  CAS  PubMed  Google Scholar 

  • Ness TJ, Gebhart GF (1990) Visceral pain: a review of experimental studies. Pain 41:167–234

    Article  CAS  PubMed  Google Scholar 

  • Nie H, Arendt-Nielsen L, Madeleine P, Graven-Nielsen T (2006) Enhanced temporal summation of pressure pain in the trapezius muscle after delayed onset muscle soreness. Exp Brain Res 170:182–190

    Article  PubMed  Google Scholar 

  • Niesters M, Dahan A, Swartjes M, Noppers I et al (2011) Effect of ketamine on endogenous pain modulation in healthy volunteers. Pain 152:656–663

    Article  CAS  PubMed  Google Scholar 

  • Nir RR, Yarnitsky D (2015) Conditioned pain modulation. Curr Opin Support Palliat Care 9:131–137

    Article  PubMed  Google Scholar 

  • Ochoa J, Mair WG (1969) The normal sural nerve in man. I. Ultrastructure and numbers of fibres and cells. Acta Neuropathol 13:197–216

    Article  CAS  PubMed  Google Scholar 

  • Oertel BG, Lötsch J (2013) Clinical pharmacology of analgesics assessed with human experimental pain models: bridging basic and clinical research. Br J Pharmacol 168:534–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okkerse P, van Amerongen G, de Kam ML, Stevens J et al (2017) The use of a battery of pain models to detect analgesic properties of compounds: a two-part four-way crossover study. Br J Clin Pharmacol 83:976–990

    Article  CAS  PubMed  Google Scholar 

  • Olesen AE, Staahl C, Arendt-Nielsen L, Drewes AM (2010) Different effects of morphine and oxycodone in experimentally evoked hyperalgesia: a human translational study. Br J Clin Pharmacol 70:189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olesen AE, Andresen T, Staahl C, Drewes AM (2012) Human experimental pain models for assessing the therapeutic efficacy of analgesic drugs. Pharmacol Rev 64:722–779

    Article  CAS  PubMed  Google Scholar 

  • Olesen AE, Brock C, Sverrisdóttir E, Larsen IM et al (2014) Sensitivity of quantitative sensory models to morphine analgesia in humans. J Pain Res 7:717–726

    Google Scholar 

  • Olofsen E, Romberg R, Bijl H, Mooren R et al (2005) Alfentanil and placebo analgesia: no sex differences detected in models of experimental pain. Anesthesiology 103:130–139

    Article  CAS  PubMed  Google Scholar 

  • Page GD, France CR (1997) Objective evidence of decreased pain perception in normotensives at risk for hypertension. Pain 73:173–180

    Article  CAS  PubMed  Google Scholar 

  • Pedersen JL, Kehlet H (1998) Hyperalgesia in a human model of acute inflammatory pain: a methodological study. Pain 74:139–151

    Article  CAS  PubMed  Google Scholar 

  • Petty BG, Cornblath DR, Adornato BT, Chaudhry V et al (1994) The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann Neurol 36:244–224

    Article  CAS  PubMed  Google Scholar 

  • Peyron R, Laurent B, García-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30:263–288

    Article  CAS  PubMed  Google Scholar 

  • Pfau DB, Klein T, Putzer D, Pogatzki-Zahn EM et al (2011) Analysis of hyperalgesia time courses in humans after painful electrical high-frequency stimulation identifies a possible transition from early to late LTP-like pain plasticity. Pain 152:1532–1539

    Article  PubMed  Google Scholar 

  • Plaghki L, Mouraux A (2003) How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Neurophysiol Clin 33:269–277

    Article  CAS  PubMed  Google Scholar 

  • Polianskis R, Graven-Nielsen T, Arendt-Nielsen L (2001) Computer-controlled pneumatic pressure algometry--a new technique for quantitative sensory testing. Eur J Pain 5:267–277

    Article  CAS  PubMed  Google Scholar 

  • Popescu A, LeResche L, Truelove EL, Drangsholt MT (2010) Gender differences in pain modulation by diffuse noxious inhibitory controls: a systematic review. Pain 150:309–318

    Article  PubMed  Google Scholar 

  • Porro CA (2003) Functional imaging and pain: behavior, perception, and modulation. Neuroscientist 9:354–369

    Article  PubMed  Google Scholar 

  • Price DD (1996) Selective activation of A-delta and C nociceptive afferents by different parameters of nociceptive heat stimulation: a tool for analysis of central mechanisms of pain. Pain 68:1–3

    Article  CAS  PubMed  Google Scholar 

  • Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288:1769–1772

    Article  CAS  PubMed  Google Scholar 

  • Pud D, Granovsky Y, Yarnitsky D (2009) The methodology of experimentally induced diffuse noxious inhibitory control (DNIC)-like effect in humans. Pain 144:16–19

    Article  PubMed  Google Scholar 

  • Rainville P (2002) Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 12:195–204

    Article  CAS  PubMed  Google Scholar 

  • Reddy H, Arendt-Nielsen L, Staahl C, Pedersen J et al (2005) Gender differences in pain and biomechanical responses after acid sensitization of the human esophagus. Dig Dis Sci 50:2050–2058

    Article  PubMed  Google Scholar 

  • Roberts K, Papadaki A, Goncalves C, Tighe M et al (2008) Contact heat evoked potentials using simultaneous Eeg and Fmri and their correlation with evoked pain. BMC Anesthesiol 8:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts K, Shenoy R, Anand P (2011) A novel human volunteer pain model using contact heat evoked potentials (CHEP) following topical skin application of transient receptor potential agonists capsaicin, menthol and cinnamaldehyde. J Clin Neurosci 18:926–932

    Article  CAS  PubMed  Google Scholar 

  • Rosendal L, Larsson B, Kristiansen J, Peolsson M (2004) Increase in muscle nociceptive substances and anaerobic metabolism in patients with trapezius myalgia: microdialysis in rest and during exercise. Pain 112:324–334

    Article  CAS  PubMed  Google Scholar 

  • Rukwied R, Mayer A, Kluschina O, Obreja O (2010) NGF induces non-inflammatory localized and lasting mechanical and thermal hypersensitivity in human skin. Pain 148:407–413

    Article  CAS  PubMed  Google Scholar 

  • Ruscheweyh R, Weinges F, Schiffer M, Bäumler M (2015) Control over spinal nociception as quantified by the nociceptive flexor reflex (RIII reflex) can be achieved under feedback of the RIII reflex. Eur J Pain 19:480–489

    Article  CAS  PubMed  Google Scholar 

  • Sandkühler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758

    Article  PubMed  CAS  Google Scholar 

  • Sandrini G, Alfonsi E, Ruiz L, Livieri C et al (1989) Age-related changes in excitability of nociceptive flexion reflex. An electrophysiological study in school-age children and young adults. Funct Neurol 4:53–58

    CAS  PubMed  Google Scholar 

  • Sayre RM, Desrochers DL, Wilson CJ, Marlowe E (1981) Skin type, minimal erythema dose (MED), and sunlight acclimatization. J Am Acad Dermatol 5:439–443

    Article  CAS  PubMed  Google Scholar 

  • Schaffler K, Nicolas LB, Borta A, Brand T et al (2017) Investigation of the predictive validity of laser-EPs in normal, UVB-inflamed and capsaicin-irritated skin with four analgesic compounds in healthy volunteers. Br J Clin Pharmacol 83:1424–1435

    Article  CAS  PubMed  Google Scholar 

  • Schouenborg J, Weng HR, Kalliomäki J, Holmberg H (1995) A survey of spinal dorsal horn neurones encoding the spatial organization of withdrawal reflexes in the rat. Exp Brain Res 106:19–27

    Article  CAS  PubMed  Google Scholar 

  • Schulte H, Segerdahl M, Graven-Nielsen T, Grass S (2006) Reduction of human experimental muscle pain by alfentanil and morphine. Eur J Pain 10:733–741

    Article  CAS  PubMed  Google Scholar 

  • Sengupta J, Gebhart G (1994) Gastrointestinal afferent fibers and sensation. In: Johnson LR (ed.) Physiology of the Gastrointestinal Tract, 3rd edn. Raven, New York, pp 483–519

    Google Scholar 

  • Serra J, Campero M, Ochoa J (1998) Flare and hyperalgesia after intradermal capsaicin injection in human skin. J Neurophysiol 80:2801–2810

    CAS  PubMed  Google Scholar 

  • Shukla S, Torossain A, Duann JR, Keung A (2011) The analgesic effect of electroacupunture on acute thermal pain perception – a central neural correlate study with fMRI. Mol Pain 7:45–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Simone DA, Ngeow JYF, Putterman GJ, LaMotte RH (1987) Hyperalgesia to heat after intradermal injection of capsaicin. Brain Res 418:201–203

    Article  CAS  PubMed  Google Scholar 

  • Skljarevski V, Ramadan NM (2002) The nociceptive flexion reflex in humans – review article. Pain 96:3–8

    Article  CAS  PubMed  Google Scholar 

  • Smith GM, Egbert LD, Markowitz RA, Mosteller F (1966) A VAS is used to assess the subject’s pain intensity. J Pharmacol Exp Ther 154:324–332

    CAS  PubMed  Google Scholar 

  • Song J, Davey C, Poulsen C, Luu P et al (2015) EEG source localization: sensor density and head surface coverage. J Neurosci Methods 256:9–12

    Article  PubMed  Google Scholar 

  • Staahl C, Drewes AM (2004) Experimental human pain models: a review of standardised methods for preclinical testing of analgesics. Basic Clin Pharmacol Toxico l95:97–111

    Article  Google Scholar 

  • Staahl C, Christrup LL, Andersen SD, Arendt-Nielsen L et al (2006) A comparative study of oxycodone and morphine in a multi-modal, tissue-differentiated experimental pain model. Pain 123:28–36

    Article  CAS  PubMed  Google Scholar 

  • Staahl C, Olesen AE, Andresen T, Arendt-Nielsen L et al (2009a) Assessing analgesic actions of opioids by experimental pain models in healthy volunteers – an updated review. Br J Clin Pharmacol 68:149–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staahl C, Olesen AE, Andresen T, Arendt-Nielsen L et al (2009b) Assessing efficacy of non-opioid analgesics in experimental pain models in healthy volunteers: an updated review. Br J Clin Pharmacol 68:322–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svendsen O, Edwards CN, Lauritzen B, Rasmussen AD (2005) Intramuscular injection of hypertonic saline: in vitro and in vivo muscle tissue toxicity and spinal neurone c-fos expression. Basic Clin Pharmacol Toxicol 97:52–57

    Article  CAS  PubMed  Google Scholar 

  • Svenson P, Arendt-Nielsen L (1995) Induction and assessment of experimental muscle pain. J Electromyogr Kinesiol 5:131–140

    Article  Google Scholar 

  • Svensson P, Cairns BE, Wang K, Arendt-Nielsen L (2003) Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia. Pain 104:241–247

    Article  CAS  PubMed  Google Scholar 

  • Svensson P, Wang K, Arendt-Nielsen L, Cairns BE (2008) Effects of NGF-induced muscle sensitization on proprioception and nociception. Exp Brain Res 189:1–10

    Article  CAS  PubMed  Google Scholar 

  • Thalhammer JG, LaMotte RH (1982) Spatial properties of nociceptor sensitization following heat injury of the skin. Brain Res 231:257–265

    Article  CAS  PubMed  Google Scholar 

  • Torebjörk HE, Lundberg LE, LaMotte RH (1992) Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J Physiol 448:765–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55:377–391

    Article  CAS  PubMed  Google Scholar 

  • Treede RD, Lorenz J, Baumgärtner U (2003) Clinical usefulness of laser-evoked potentials. Neurophysiol Clin 33:303–314

    Article  PubMed  Google Scholar 

  • Tuveson B, Leffler AS, Hansson P (2006) Time dependent differences in pain sensitivity during unilateral ischemic pain provocation in healthy volunteers. Eur J Pain 10:225–232

    Article  PubMed  Google Scholar 

  • Vo L, Hood S, Drummond PD (2016) Involvement of opioid receptors and α2-adrenoceptors in inhibitory pain modulation processes: a double-blind placebo-controlled crossover study. J Pain 17:1164–1173

    Article  CAS  PubMed  Google Scholar 

  • Wager TD, Atlas LY, Lindquist MA, Roy M et al (2013) An fMRI-based neurologic signature of physical pain. N Engl J Med 368:1388–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willer JC (1977) Comparative study of perceived pain and nociceptive flexion reflex in man. Pain 3:69–80

    Article  CAS  PubMed  Google Scholar 

  • Woolf CJ (1983) Evidence for a central component of post-injury pain hypersensitivity. Nature 306:686–688

    Article  CAS  PubMed  Google Scholar 

  • Woolf CJ (2011) Central sensitization: implications for the diagnosis and treatment of pain. Pain 152:S2–15

    Article  PubMed  Google Scholar 

  • Woolf CJ, Max MB (2001) Mechanism-based pain diagnosis: issues for analgesic drug development. Anesthesiology 95:241–249

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Meijer HGE, Doll RJ, Buitenweg JR (2015) Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation. Biol Cybern 109:479–491

    Article  PubMed  PubMed Central  Google Scholar 

  • Yarnitsky D, Arendt-Nielsen L, Bouhassira D, Edwards RR et al (2010) Recommendations on terminology and practice of psychophysical DNIC testing. Eur J Pain 14:339

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Jan Groeneveld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Siebenga, P. et al. (2018). Pharmacodynamic Evaluation: Pain Methodologies. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-56637-5_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56637-5_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56637-5

  • Online ISBN: 978-3-319-56637-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics