Skip to main content

Pharmacodynamic Evaluation: CNS Methodologies

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Methods in Clinical Pharmacology
  • 448 Accesses

Abstract

Drug discovery in neurology is confronted with a high attrition of compounds in both early and mid-stages of the development cycle. The causes of these failures are multiple and mainly based on the uncertainty around the precise pathological processes, lack of reliable biomarkers, and variability of drug penetration through the blood-brain barrier (BBB) into the brain. The first section of this chapter focuses on pharmacokinetic/pharmacodynamic (PK/PD) aspects when developing a medication targeting brain disorders. The biomarker section discusses those markers employed in the most common neurological disorders. It addresses their advantages and limitations, and how they serve in confirming efficacy and, in some instances, the safety of therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Alavijeh MS, Chishty M, Qaiser MZ et al (2005) Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx 2:554–571

    Article  PubMed  PubMed Central  Google Scholar 

  • Bateman RJ, Benzinger TL, Berry S, DIAN-TU Pharma Consortium for the Dominantly Inherited Alzheimer Network et al (2017) The DIAN-TU next generation Alzheimer’s prevention trial: adaptive design and disease progression model. Alzheimers Dement 13:8–19

    Article  PubMed  Google Scholar 

  • Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  • Bowser R, Cudkowicz M, Kaddurah-Daouk R (2006) Biomarkers for amyotrophic lateral sclerosis. Expert Rev Mol Diagn 6:387–398

    Article  CAS  PubMed  Google Scholar 

  • Bowser R, Turner M, Shefner J (2011) Biomarkers in amyotrophic lateral sclerosis: opportunities and limitations. Nat Rev Neurol 7:631–638

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shang F (2015) New developments and future opportunities in biomarkers for amyotrophic lateral sclerosis. Transl Neurodegener 4:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calcagno A, Di Perri G, Bonora S (2014) Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system. Clin Pharmacokinet 53:891–906

    Article  CAS  PubMed  Google Scholar 

  • ClinicalTrials.gov. https://clinicaltrials.gov/. Accessed 19 Sept 2017

  • Danhof M, de Jongh J, De Lange EC et al (2007) Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 47:357–400

    Article  CAS  PubMed  Google Scholar 

  • de Lange E (2013) The mastermind approach to CNS drug therapy: translational prediction of human brain distribution, target site kinetics, and therapeutic effects. Fluids Barriers CNS 10:12

    Article  PubMed  PubMed Central  Google Scholar 

  • de Leon MJ, Convit A, Wolf OT et al (2001) Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/positron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A 98:10966–10971

    Article  PubMed  PubMed Central  Google Scholar 

  • Devic I, Hwang H, Edgar JS et al (2011) Salivary alpha-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain 134:e178

    Article  PubMed  PubMed Central  Google Scholar 

  • Di L, Kerns EH (eds) (2015) Blood-brain barrier in drug discovery: optimizing brain exposure of CNS drugs and minimizing brain side effect for peripheral drugs. Wiley, Malden

    Google Scholar 

  • Dingemanse J, Danhof M, Breimer DD (1998) Pharmacokinetic-pharmacodynamic modeling of CNS drug effects: an overview. Pharmacol Ther 38:1–52

    Article  Google Scholar 

  • Donovan MD, Boylan GB, Murray DM et al (2015) Treating disorders of the neonatal central nervous system: pharmacokinetic and pharmacodynamic considerations with a focus on antiepileptics. Br J Clin Pharmacol 8:62–77

    Google Scholar 

  • Doody RS, Raman R, Farlow M, Alzheimer’s Disease Cooperative Study Steering Committee, Siemers E, Sethuraman G, Mohs R, Semagacestat Study Group (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369:341–350

    Article  CAS  PubMed  Google Scholar 

  • Durham TB, Blanco MJ (2015) Target engagement in lead generation. Bioorg Med Chem Lett 25:998–1008

    Article  PubMed  Google Scholar 

  • FDA (2014) Guidance for industry and FDA staff qualification process for drug development tools. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research. Silver Spring, MD, USA

    Google Scholar 

  • Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2:566–580

    Article  CAS  PubMed  Google Scholar 

  • Giacomelli C, Daniele S, Martini C (2017) Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 131:1–15

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni G (2006) Multiple sclerosis cerebrospinal fluid biomarkers. Dis Markers 22:187–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert L, Weuve J, Scherr P et al (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80:1778–1783

    Article  PubMed  PubMed Central  Google Scholar 

  • Henley S, Bates G, Tabrizi S (2005) Biomarkers for neurodegenerative diseases. Curr Opin Neurol 18:698–705

    Article  PubMed  Google Scholar 

  • Hughes L, Hayduk R, Vanbelle C (2014) Integrating biomarkers in Alzheimer’s disease trials: review of compliance with biomarker assessments in Alzheimer’s disease clinical trials. Available from the author upon request

    Google Scholar 

  • ICH (2017). Pediatric guideline. Available at: http://www.ich.org/products/guidelines/efficacy/efficacy-single/article/addendumclinical-investigation-of-medicinal-products-in-the-pediatric-population.html (accessed 30 November 2017)

  • Ittner LM, Götz J (2011) Amyloid-β and tau – a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12:67–72

    Article  Google Scholar 

  • Jobert M, Wilson F, Ruigt G, The IPEG Pharmaco-EEG Guidelines Committee et al (2012) Guidelines for the recording and evaluation of pharmaco-EEG data in man: the international Pharmaco-EEG society (IPEG). Neuropsychobiology 66:201–220

    Article  PubMed  Google Scholar 

  • Johnson KA, Minoshima S, Bohnen NI et al (2013) Update on appropriate use criteria for amyloid PET imaging: dementia experts, mild cognitive impairment, and education. J Nucl Med 54:1011–1013

    Article  PubMed  Google Scholar 

  • Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–716

    Article  CAS  PubMed  Google Scholar 

  • Lambracht-Washington D, Rosenberg RN (2013) Anti-amyloid beta to tau-based immunization: developments in immunotherapy for Alzheimer’s disease. Immunotargets Ther 2:105–114

    Article  PubMed Central  Google Scholar 

  • Li T, Yang D, Sushchky S et al (2011) Models for LRRK2-linked Parkinsonism. Parkinsons Dis 2011:942412

    PubMed  PubMed Central  Google Scholar 

  • Maharaj AR, Barrett JS, Edginton AN (2013) A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J 15:455–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melham M (2013) Translation of central nervous system occupancy from animal models: application of pharmacokinetic/pharmacodynamic modeling. J Pharmacol Exp Ther 347:2–6

    Article  Google Scholar 

  • Mestra TA, Sampaio C (2017) Huntington’s disease: linking pathogenesis to the development of experimental therapeutics. Curr Neurol Neurosci Rep 17:18

    Article  Google Scholar 

  • Nair G, Shea C, Crainiceanu C et al (2013) Quantification of multiple-sclerosis-related brain atrophy in two heterogeneous MRI datasets using mixed-effects modeling. Neuroimage Clin 3:171–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen JC, Tolbert D, Patel M et al (2014) Vigabatrin pediatric dosing information for refractory complex partial seizures: results from a population dose–response analysis. Epilepsia 55:e134–e138

    Article  CAS  PubMed  Google Scholar 

  • Ousset P-J, Cummings J, Delrieu J et al (2001) Is Alzheimer’s disease drug development broken? What must be improved. JPAD 1(1), 2014 Proc Natl Acad Sci USA, pp 1–7

    Google Scholar 

  • Pangalos M, Schechter L, Hurko O (2007) Drug development for CNS disorders: strategies for balancing risk and reducing attrition. Nat Rev Drug Discov 6:521–532

    Article  CAS  PubMed  Google Scholar 

  • Parkinson Progression Marker Initiative (2011) The Parkinson progression marker initiative (PPMI). Prog Neurobiol 95:629–635

    Article  Google Scholar 

  • Pellock JM, Carman WH, Thyagarajan V et al (2012) Efficacy of antiepileptic drugs in adults predicts efficacy in children: a systematic review. Neurology 79:1482–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellock JM, Arzimanoglou A, D’Cruz, Pediatric Epilepsy Consortium for Extrapolation et al (2017) Extrapolating evidence of antiepileptic drug efficacy in adults to children ≥2 years of age with focal seizures: the case for disease similarity. Epilepsia 58:1686

    Article  PubMed  Google Scholar 

  • Politis M, Piccini P (2012) Positron emission tomography imaging in neurological disorders. J Neurol 259:1769–1780

    Article  PubMed  Google Scholar 

  • Quintiles proprietary database

    Google Scholar 

  • Reichel A (2009) Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Chem Biodivers 6:2030–2049

    Article  CAS  PubMed  Google Scholar 

  • Reichel A (2015) Pharmacokinetics of CNS penetration. In: Di L, Kerns EH (eds) Blood-brain barrier in drug discovery: optimizing brain exposure of CNS drugs and minimizing brain side effect for peripheral drugs. Wiley, Malden, pp 7–36

    Google Scholar 

  • Riascher SL, Saykin AJ, West JP et al (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6:347–361

    Article  Google Scholar 

  • Rizk ML, Zou L, Savic RM et al (2017) Importance of drug pharmacokinetics at the site of action. Clin Transl Sci 10:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rutkove S, Caress J, Cartwright M et al (2012) Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph Lateral Scler 13:439–445

    Article  PubMed  PubMed Central  Google Scholar 

  • Salloway S, Sperling R, Fox NC, Bapineuzumab 301 and 302 Clinical Trial Investigators et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert KD, Wiener JI (2013) The impact of DaTscan on the diagnosis and management of movement disorders: a retrospective study. Am J Neurodegener Dis 2:29–34

    PubMed  PubMed Central  Google Scholar 

  • Sethi S, Brietzke E (2016) Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. Int J Neuropsychopharmacol 19:pyv096

    Article  Google Scholar 

  • Shapira A (2013) Recent developments in biomarkers in Parkinson disease. Curr Opin Neurol 26:395–400

    Article  Google Scholar 

  • Silva G, Furie K (2009) Biomarkers in neurology. In: Woodbury-Harris KM, Coull BM (eds) Clinical trials in the neurosciences. Karger, Basel, pp 55–61

    Chapter  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72:971–983

    Article  Google Scholar 

  • Tuntland H, Espehaug B, Forland O et al (2014) Reablement in community-dwelling adults: study protocol for a randomised controlled trial. BMC Geriatr 14:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Tysnes O, Storstein A (2017) The epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 124:901–905

    Article  Google Scholar 

  • Villoslada P (2010) Focus on biomarkers: biomarkers for multiple sclerosis. Drug News Perspect 23:585–595

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hoekstra J, Zuo C et al (2013) Biomarkers of Parkinson’s disease: current status and future. Drug Discov Today 18:155–162

    Article  PubMed  Google Scholar 

  • Wiltshire HR, Kilpatrick GJ, Tilbrook GS (2012) A placebo and midazolam-controlled phase I single ascending dose study evaluating the safety, pharmacokinetics, and pharmacodynamics of remimazolam. Anesth Analg 115:284–296

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Karashima M, Arai Y et al (2017) Prediction of human pharmacokinetic profile after transdermal drug application using excised human skin. J Pharm Sci 106:2787–2794

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne Hughes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hughes, L., Trad, M., Boyer, S., Lee, D., Yin, W. (2018). Pharmacodynamic Evaluation: CNS Methodologies. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-56637-5_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56637-5_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56637-5

  • Online ISBN: 978-3-319-56637-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics