Skip to main content

Bioanalysis of Clinical Studies

  • Living reference work entry
  • First Online:
  • 224 Accesses

Abstract

Powerful analytical techniques are one key requirement for the successful drug research and drug development. The concentration of drugs, prodrugs, and metabolites has to be determined in very diverse matrices such as plasma (blood), urine, feces, and also in different organ tissues (depending on the nature of drug and on the targeted organs).

This is a preview of subscription content, log in via an institution.

References and Further Reading

  • Abu-Qare AW, Abou-Donia MB (2001) A validated HPLC method for the determination of pyridostigmine bromide, acetaminophen, acetylsalicylic acid and caffeine in rat plasma and urine. J Pharm Biomed Anal 26:939–947

    Article  CAS  Google Scholar 

  • Annesley TM (2003) Ion suppression in mass spectrometry. Clin Chem 49:1041–1044

    Article  CAS  Google Scholar 

  • Baker SD, Zhao M, He P, Carducci MA, Verweij J, Sparreboom A (2004) Simultaneous analysis of docetaxel and the formulation vehicle polysorbate 80 in human plasma by liquid chromatography/tandem mass spectrometry. Anal Biochem 324:276–284

    Article  CAS  Google Scholar 

  • Barratè S, Sarati S, Frigerio E, James CA, Ye C, Zhang Q (2004) Quantitation of SU1 1248, an oral multi-target tyrosine kinase inhibitor, and its metabolite in monkey tissues by liquid chromatograph with tandem mass spectrometry following semi-automated liquid–liquid extraction. J Chromatogr 1024:87–94

    Article  Google Scholar 

  • Beck O, Stephanson N, Morris RG, Sallustio BC, Hjemdahl P (2004) Determination of perhexiline and hydroxyperhexiline in plasma by liquid chromatography–mass spectrometry. J Chromatogr B 805:87–91

    Article  CAS  Google Scholar 

  • Bogialli S, Curini R, Di Corcia A, Nazzari M, Sergi M (2003) Confirmatory analysis of sulfonamide antibacterials in bovine liver and kidney: extraction with hot water and liquid chromatography coupled to a single- or triple-quadrupole mass spectrometer. Rapid Commun Mass Spectrom 17:1146–1156

    Article  CAS  Google Scholar 

  • Bonato PS, Del Lama MPFM, de Carvalho R (2003) Enantioselective determination of ibuprofen in plasma by high-performance liquid chromatography–electrospray mass spectrometry. J Chromatogr B 796:413–420

    Article  CAS  Google Scholar 

  • Boner PL, Liu DDW, Feely WF, Robinson RA, Wu J (2003) Determination and confirmation of 5-hydroxyflunixin in raw bovine milk using liquid chromatography tandem mass spectrometry. J Agric Food Chem 51:7555–7559

    Article  CAS  Google Scholar 

  • Chambers E, Wagrowski-Diehl DM, Lu Z, Mazzeo JR (2007) Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J Chromatogr B 852:22–34

    Article  CAS  Google Scholar 

  • Chu F, Kiang CH, Sung ML, Reeve HB, RL TT (1999) A rapid, sensitive HPLC method for the determination of ganciclovir in human plasma and serum. J Pharm Biomed Anal 21:657–667

    Article  CAS  Google Scholar 

  • Cole RB (1997) Electrospray ionisation mass spectrometry – fundamentals, instrumentation and applications. Wiley, New York

    Google Scholar 

  • CPMP/ICH/281/95 (1996) EEC note for guidance, validation of analytical procedures: methodology. London

    Google Scholar 

  • CPMP/ICH/381/95 (1994) EEC note for guidance on validation of analytical procedures: definitions and terminology. London

    Google Scholar 

  • Crommentuin KML, Rosing H, Hillebrand MJX, Huitema ADR, Beijnen JH (2004) Simultaneous quantification of the new HIV protease inhibitors atazanavir and tipranavir in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Chromatogr 804:359–367

    Google Scholar 

  • Dams R, Huestis MA, Lambert WE, Murphy CM (2003) Matrix effect in bio-analysis of illicit drugs with LC-MS/MS influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom 14:1290–1294

    Article  CAS  Google Scholar 

  • De Jonge ME, van Dam SM, Hillebrand MJX, Rosing H, Huitema ADR, Rodenhuis S, Beijnen JH (2004) Simultaneous quantification of cyclophosphamide, 4-hydroxycyclophosphamide, N,N′,N″-triethylenethiophosphoramide (thiotepa) and N,N′,N″-triethylenephosphoramide (tepa) in human plasma by high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-MS/MS). J Mass Spectrom 39:262–271

    Article  Google Scholar 

  • Ding J, Neue UD (1999) A new approach to the effective preparation of plasma samples for rapid drug quantitation using on-line solid phase extraction mass spectrometry. Rapid Commun Mass Spectrom 13:2151–2159

    Article  CAS  Google Scholar 

  • Dole M, Match LL, Hines RL, Mobley RC, Ferguson LD, Alice MB (1968) Molecular beams of macroions. J Chem Phys 49:2240–2249

    Article  CAS  Google Scholar 

  • Dorschel CA, Ekmanis JL, Oberholtzer JE, Warren FV, Bidlingmeyer BA (1989) LC detectors: evaluation and practical implications of linearity. Anal Chem 61:951–968

    Article  Google Scholar 

  • Dubois M, Fenaille F, Clement G, Lechmann M, Tabet JC, Ezan E, Becher F (2008) Immunopurification and mass spectrometric quantification of the active form of a chimeric therapeutic antibody in human serum. Anal Chem 80:1737–1745

    Article  CAS  Google Scholar 

  • Ezan E, Dubois M, Becher F (2009) Bioanalysis of recombinant proteins and antibodies by mass spectrometry. Analyst 134(5):825–834

    Article  CAS  Google Scholar 

  • Gaskell SJ (1997) Electrospray: principles and practice. J Mass Spectrom 32:677–688

    Article  CAS  Google Scholar 

  • Getie M, Neubert RHH (2004) LC–MS determination of desmopressin acetate in human skin samples. J Pharm Biomed Anal 35:921–927

    Article  CAS  Google Scholar 

  • Guevremont R (2004) High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogr 1058:3–19

    Article  CAS  Google Scholar 

  • Hopfgartner G, Bourgogne E (2003) Quantitative high-throughput analysis of drugs in biological matrices by mass spectrometry. Mass Spectrom Rev 22:195–214

    Article  CAS  Google Scholar 

  • Hou W, Watters JW, McLeod HL (2004) Simple and rapid docetaxel assay in human plasma by protein precipitation and high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B 804:263–267

    Article  CAS  Google Scholar 

  • Hows MEP, Ashmeade TE, Billinton A, Perren MJ, Austin AA, Virley DJ, Organ AJ, Shah AJ (2004) High-performance liquid chromatography/tandem mass spectrometry assay for the determination of 1-methyl-4-phenyl pyridinium (MPP+) in brain homogenates. J Neurosci Methods 137:221–226

    Article  CAS  Google Scholar 

  • Hüsgen AG (2006) Fast and ultra-fast analysis with the agilent 1200 series rapid resolution LC system compared to a conventional agilent 1100 series LC system using sub 2-μm particle columns. Application Note, publication number 5989–5672EN

    Google Scholar 

  • Ito Y, Goto T, Oka H, Matsumoto H, Takeba K (2004) Application of ion-exchange cartridge clean-up in food analysis VI. Determination of six penicillins in bovine tissues by liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr 1042:107–111

    Article  CAS  Google Scholar 

  • Jennings W (1987) Analytical gas chromatography. Academic, London

    Google Scholar 

  • Jin SE, Ban E, Kim YB, Kim CK (2004) Development of HPLC method for the determination of levosulpiride in human plasma. J Pharm Biomed Anal 35:929–936

    Article  CAS  Google Scholar 

  • King R, Bonfiglio R, Fernandez-Metzler C, Miller-Stein C, Olah T (2000) Mechanistic investigation of ionization suppression in electrospray ionization. J Am Soc Mass Spectrom 11:942–950

    Article  CAS  Google Scholar 

  • Laurito TL, Mendes GD, Vincenzo S, Caliendo G, de Moraes MEA, De Nucci G (2004) Bromazepam determination in human plasma by high-performance liquid chromatography coupled to tandem mass spectrometry: a highly sensitive and specific tool for bioequivalence studies. J Mass Spectrom 39:168–176

    Article  CAS  Google Scholar 

  • Liang HR, Foltz RL, Meng M, Bennett P (2003) Ionization enhancement in atmospheric pressure chemical ionization and suppression in electrospray ionization between target drugs and stable-isotope-labeled internal standards in quantitative liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2815–2821

    Article  CAS  Google Scholar 

  • Lim CK, Lord G (2002) Current developments in LC–MS for pharmaceutical analysis. Biol Pharm Bull 26:547–557

    Article  Google Scholar 

  • Moeller MR, Steinmeyer S, Kraemer T (1998) Determination of drugs of abuse in blood. J Chromatogr B 713:91–109

    Article  CAS  Google Scholar 

  • O’Connor D (2002) Automated sample preparation and LC-MS for high-throughput ADME quantification. Curr Opin Drug Disc Develop 5:52–58

    Google Scholar 

  • Pascoe R, Foley JP, Gusev AI (2001) Reduction in matrix-related signal suppression effects in electrospray ionization mass spectrometry using on-line two-dimensional liquid chromatography. Anal Chem 73:6014–6023

    Article  CAS  Google Scholar 

  • Pichini S, Pacifici R, Pellegrini M, Marchei E, Lozano J, Murillo J, Vall O, Garcia-Algar O (2004) Development and validation of a high-performance liquid chromatography-mass spectrometry assay for determination of amphetamine, methamphetamine, and methylenedioxy derivatives in meconium. Anal Chem 76:2124–2132

    Article  CAS  Google Scholar 

  • Raffaelli A, Saba A (2003) Atmospheric pressure photoionization mass spectrometry. Mass Spectrom Rev 22:318–331

    Article  CAS  Google Scholar 

  • Robb DB, Covey TR, Bruins AP (2000) Atmospheric pressure photoionization: an ionization method for liquid chromatography–mass spectrometry. Anal Chem 72:3653–3659

    Article  CAS  Google Scholar 

  • Schuhmacher J, Zimmer D, Tesche F, Pickard V (2003) Matrix effects during analysis of plasma samples by electrospray and atmospheric pressure chemical ionization mass spectrometry: practical approaches to their elimination. Rapid Commun Mass Spectrom 17:1950–1957

    Article  CAS  Google Scholar 

  • Shah VP (2007) The history of bioanalytical method validation and regulation: evolution of a guidance document on bioanalytical methods validation. AAPS J 9:E43–E47

    Article  CAS  Google Scholar 

  • Shah VP, Midha KK, Findlay JW, Hill HM, Hulse JD, McGilveray IJ, McKay G, Miller KJ, Patnaik RN, Powell ML, Tonelli A, Viswanathan CT, Yacobi A (2000) Bioanalytical method validation – a revisit with a decade of progress. Pharm Res 17:1551–1557

    Article  CAS  Google Scholar 

  • Sottani C, Zuchetti M, Zaffaroni M, Bettinelli M, Minoia C (2004) Validated procedure for simultaneous trace level determination of the anti-cancer agent gemcitabine and its metabolite in human urine by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom 18:1017–1023

    Article  CAS  Google Scholar 

  • Stovkis E, Nan-Offeringa GAH, Ouwehand M, Tibben MM, Rosing H, Schnaars Y, Grigat M, Romeis P, Schellens JHM, Beijnen JH (2004a) Quantitative analysis of D-24851, a novel anticancer agent, in human plasma and urine by liquid chromatography coupled with tandem mass spectrometry. Rapid Commun Mass Spectrom 18:1465–1471

    Article  Google Scholar 

  • Stovkis E, Rosing H, López-Lázaro L, Beijnen JH (2004b) Simple and sensitive liquid chromatographic quantitative analysis of the novel marine anticancer drug YondelisTM (ET-743, trabectedin) in human plasma using column switching and tandem mass spectrometric detection. J Mass Spectrom 39:431–436

    Article  Google Scholar 

  • Swartz ME (2005) Separation science redefined. 5:8–14. Retrieved 7 Oct 2005, from http://chromatographyonline.findanalytichem.com/lcgc/data/articlestandard//lcgc/242005/164646/article.pdf

  • Thevis M, Thomas A, Schänzer W (2008) Mass spectrometric determination of insulins and their degradation products in sports drug testing. Mass Spectrom Rev 27(1):35–50

    Article  CAS  Google Scholar 

  • Tiller PR, Romanyshyn LA, Neue UD (2003) Fast LC/MS in the analysis of small molecules. Anal Bioanal Chem 337:788–802

    Article  Google Scholar 

  • U.S. Department of Health and Human Services Food and Drug Administration (2001) Guidance for industry: bioanalytical method validation. U.S. Department of Health and Human Services, Beltsville

    Google Scholar 

  • van den Broek I, Sparidans RW, Schellens JH, Beijnen JH (2008) Quantitative bioanalysis of peptides by liquid chromatography coupled to (tandem) mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 872(1–2):1–22

    Article  Google Scholar 

  • Venn RF (ed) (2000) Principles of bioanalysis. Taylor & Francis, London

    Google Scholar 

  • Viberg A, Sandström M, Jansson B (2004) Determination of cefuroxime in human serum or plasma by liquid chromatography with electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 18:707–710

    Article  CAS  Google Scholar 

  • Viswanathan CT, Bansal S, Booth B, DeStefano AJ, Rose MJ, Sailstad J, Shah VP, Skelli JP, Swann PG, Weiner R (2007) Workshop/conference report – quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. AAPS J 9:E30–E42

    Article  Google Scholar 

  • Whiteaker JR, Zhao L, Zhang HY, Feng LC, Piening BD, Anderson L, Paulovich AG (2007) Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Anal Biochem 362:44–54

    Article  CAS  Google Scholar 

  • Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem 57:675–679

    Article  CAS  Google Scholar 

  • Willoughby R, Sheehan E, Mitrovich S (1998) A global view of LC/MS. Global View Publishing, Pittsburgh

    Google Scholar 

  • Xia YQ, Whigan DB, Jemal M (1999) A simple liquid–liquid extraction with hexane for low-picogram determination of drugs and their metabolites in plasma by high-performance liquid chromatography with positive ion electrospray tandem mass spectrometry. Rapid Commun Mass Spectrom 13:1611–1621

    Article  CAS  Google Scholar 

  • Zhang Z, Pan H, Chen X (2009) Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev 28(1):147–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joern Krause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Krause, J., Schmidt, R. (2019). Bioanalysis of Clinical Studies. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-56637-5_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56637-5_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56637-5

  • Online ISBN: 978-3-319-56637-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics