Skip to main content

The Human ADME Study

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Methods in Clinical Pharmacology
  • 974 Accesses

Abstract

The human mass balance study is a pivotal study in the drug development process. Whilst a reasonable understanding of the absorption, distribution, metabolism and excretion (ADME) properties of the candidate drug will have been determined using pre-clinical models, the ultimate validation is provided following administration to human volunteers. The human ADME (hADME) study provides the link between pre-clinical safety studies and the clinical observations. Whilst described as a mass balance study, the key objective of the hADME study is the quantification, characterisation and identification of drug and drug metabolites present in systemic circulation. An assessment of the relative exposure between clinical subjects and the species used for pre-clinical safety studies enables a complete safety profile to be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Alvarez L, Cornog R (1939) Helium and hydrogen of mass 3. Phys Rev 56:613

    Article  CAS  Google Scholar 

  • Attwood J, O’Brien B, Loaring HW, Williams A (2010) Evaluation of active counting mode option in LabLogic β-RAM model 5 and Laura software. Poster ISSX 2010. Istanbul, Turkey

    Google Scholar 

  • Axelsson B-O, Jornten-Karlsson M, Michelsen P, Abou-Shakra F (2001) The potential of inductively coupled plasma mass spectrometry detection for high-performance liquid chromatography combined with accurate mass measurement of organic pharmaceutical compounds. Rapid Commun Mass Sprectrom 15:375–385

    Article  CAS  Google Scholar 

  • Baillie TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossman SJ, Klunk LJ, LeBlanc B, Perkins DG, Shipley LA (2002) Drug metabolites in safety testing. Toxicol Appl Pharmacol 182:188–196

    Article  CAS  PubMed  Google Scholar 

  • Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ (1984a) Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem 30:426

    Google Scholar 

  • Bales JR, Sadler PJ, Nicholson JK, Timbrell JA (1984b) Urinary excretion of acetaminophen and its metabolites as studied by proton NMR spectroscopy. Clin Chem 30:1631

    Google Scholar 

  • Bales JR, Nicholson JK, Sadler PJ (1985) Two-dimensional proton nuclear magnetic resonance “maps” of acetaminophen metabolites in human urine. Clin Chem 31:757

    Google Scholar 

  • Bennett CL, Beukens RP, Clover MR, Gove HE, Liebert RB, Litherland AE, Purser KH, Sondheim WE (1977) Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198:508–510

    Article  CAS  PubMed  Google Scholar 

  • Bloomer JC, Beaumont C, Dear GJ, North S, Young G (2016) The value of metabolite identification and quantification in clinical studies. Some case studies enabling early assessment of safety in humans: GlaxoSmithKline. In: Metabolite safety in drug development. Wiley, Hoboken, NJ, pp 275–292

    Chapter  Google Scholar 

  • Caceres-Cortes J, Reilly MD (2010) NMR spectroscopy as a tool to close the gap on metabolite characterisation under MIST. Bioanalysis 2:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Cuyckens F, Koppen V, Kembuegler R, Leclercq L (2008) Improved liquid chromatography-Online radioactivity detection for metabolite profiling. J Chromatogr A 1209:128–135

    Article  CAS  PubMed  Google Scholar 

  • Dear GJ, James AD, Sarda S (2006) Ultra-performance liquid chromatography coupled to linear ion trap mass spectrometry for the identification of drug metabolites in biological samples. Rapid Commun Mass Spectrom 20:1351–1360

    Google Scholar 

  • Dear GJ, Roberts AD, Beamont C, North SE (2008) Evaluation of preparative high performance liquid chromatography and cryoprobe nuclear magnetic resonance spectroscopy for the early quantitative estimation of drug metabolites in early clinical studies. J Chromatogr B 876:182–190

    Article  CAS  Google Scholar 

  • Desmoulin F, Gilard V, Malet-Martino M, Martino R (2002) Metabolism of capecitabine, an oral fluorouracil prodrug: 19F NMR studies in animal models and human urine. Drug Metab Dispos 30:1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Duckett CJ, Bailey NJC, Walker H, Abou-Shakra F, Wilson ID, Lindon JC, Nicholson JK (2002) Quantitation in gradient high performance liquid chromatography/inductively coupled mass spectrometry using diclofenac and chlorpromazine. Rapid Commun Mass Spectrom 16:245–247

    Article  CAS  PubMed  Google Scholar 

  • EMEA (2012) ICH guideline M3 (R2) – questions and answers EMA/CHMP/ICH/507008/2011

    Google Scholar 

  • Erve JCL, Gu M, Wang Y, DeMaio W, Talaat RE (2009) Spectral accuracy of molecular ions in an LTQ/Orbitrap mass spectrometer and implications for elemental composition determination. J Am Soc Mass Spectrom 20:2058–2069

    Article  CAS  PubMed  Google Scholar 

  • European Clinical Trials Directive Communication from the Commission – Detailed guidance on the request to the competent authorities for authorisation of a clinical trial on a medicinal product for human use, the notification of substantial amendments and the declaration of the end of the trial (CT-1) (2010/C 82/01) Available at https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-10/2010_c82_01/2010_c82_01_en.pdf Accessed 8 Aug 2017

  • Haitao Hu, Kishore Kumar Katyayan, Boris A. Czeskis, Everett J (2017) Perkins and Palaniappan Kulanthaivel Drug Metabolism and Disposition 45(4):399–408

    Google Scholar 

  • Hamilton RA, Garnett WR, Kline BJ (1981) Determination of mean valproic acid serum level by assay of a single pooled sample. Clin Pharmacol Ther 29:408–413

    Article  CAS  PubMed  Google Scholar 

  • Hill H (2009) Development of bioanalysis: a short history. Bioanalysis 1(1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Hop CECA, Wang Z, Chen Q, Kwei G (1998) Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening. J Pharm Sci 87(7):901–903

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Katyayan KK, Czeskis BA, Kulanthaivel EJPP (2017) Comparison between radioanalysis and 19f nuclear magnetic resonance spectroscopy in the determination of mass balance , metabolism, and distribution of pefloxacin. Drug Metab Dispos 45(4):399–408

    Article  CAS  PubMed  Google Scholar 

  • Humphreys WG, Unger SE (2006) Safety assessment of drug metabolites: characterisation of chemically stable metabolites. Chem Res Toxicol 19:1564–1569

    Article  CAS  PubMed  Google Scholar 

  • ICH (2009) M3 (R2) non-clinical safety studies for the conduct of human clinical trials and marketing authorisation for pharmaceuticals. Center for Drug Evaluation and Research (CBER), Silver Spring, MD, USA

    Google Scholar 

  • ICRP (1992) International commision on radiological protection. Radiological protection in biomedical research. ICRP publication 62 Ann ICRP 22 No 3

    Google Scholar 

  • Ismail IM, Dear GJ, Roberts AD, Plumb RS, Ayrton J, Sweatma BC, Bowers GD (2002) N-O glucuronidation: a major human metabolic pathway in the elimination of two novel anti-convulsant drug candidates. Xenobiotica 32:29–43

    Article  CAS  PubMed  Google Scholar 

  • James AD, Marvalin C, Luneau A, Meissner A, Camenisch G (2017) Comparison of 19F NMR and 14C measurements for the assessment of ADME of BYL719 (Alpelisib) in humans. Drug Metab Dispos 45:900–907

    Article  CAS  PubMed  Google Scholar 

  • Kuerzel U, Krone V, Zimmer M, Shackleton G (2011) The human ADME study. Drug discovery and evaluation: methods in clinical pharmacology, pp 73–103

    Google Scholar 

  • Krauser J, Walles M, Wolf T, Graf D, Swart P (2012) A unique automation platform for measuring low level radioactivity in metabolite identification studies. PLoS One 7:e39070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruve A, Leito I, Herodes K (2009) Combating matrix effects in LC/ESI/MS: the extrapolative dilution approach. Anal Chim Acta 651(1):75–80

    Article  CAS  PubMed  Google Scholar 

  • Lappin G, Garner RC (2005) The use of accelerator mass spectrometry to obtain early human ADME/PK data. Expert Opin Drug Metab Toxicol 1:23–31

    Article  CAS  PubMed  Google Scholar 

  • Lappin G, Stevens L (2008) Biomedical accelerator mass spectrometry: recent applications in metabolism and pharmacokinetics. Expert Opin Drug Metab Toxicol 4:1021–1033

    Article  CAS  PubMed  Google Scholar 

  • Lappin G, Rowland M, Garner RC (2006) The use of isotopes in the determination of absolute bioavailability of drugs in humans. Expert Opin Drug Metab Toxicol 2:419–427

    Article  CAS  PubMed  Google Scholar 

  • Leblanc B, Jezequel S, Davies T, Hanton G, Taradach T (1998) Binding of drugs to eye melanin is not predictive of ocular toxicity. Regul Toxicol Pharmacol 28:124–132

    Article  CAS  PubMed  Google Scholar 

  • Lenz EM, Wilson ID, Wright B, Partridge EA, Rodgers CT, Haycock PR, Lindon JC, Nicholson JK (2002) A comparison of quantitative NMR and radiolabelling studies of the metabolism and excretion of Statil (3-(4-bromo-2-fluorobenzyl)-4-oxo-3H-phthalazin-1-ylacetic acid) in the rat. J Pharm Biomed Anal 28:31–43

    Article  CAS  PubMed  Google Scholar 

  • Liberman RG, Tannenbaum SR, Hughey BJ, Shefer RE, Klinkowstein RE, Prakash C, Harriman SP, Skipper PL (2004) An interface for direct analysis of 14C in nonvolatile samples by accelerator mass spectrometry. Anal Chem 76:328–334

    Article  CAS  PubMed  Google Scholar 

  • Liberman RG, Skipper PL, Prakash C, Shaffer CL, Flarakos J, Tannenbaum SR (2007) BEAMS Lab: novel approaches to finding a balance between throughput and sensitivity. Nucl Instr Meth Phys Res B 259:773–778

    Article  CAS  Google Scholar 

  • Lim H-K, Yuan C, Qiu X, Silva J, Evans DCA (2015) non-radioactive approach to investigate the metabolism of therapeutic peptides by tagging with 127I and using ICP-MS analysis. Drug Metab Dispos 43(1):17–26. https://doi.org/10.1124//dmd.114.059774

    Article  PubMed  Google Scholar 

  • Litherland AE (1980) Ultrasensitive mass spectrometry with accelerators. Am Rev Nucl Part Sci 30:437–473

    Article  CAS  Google Scholar 

  • Lockley WJS, McEwen A, Cooke R (2012) Tritium: a coming of age for drug discovery and development ADME studies. J Label Compd Radiopharm 55:235–257

    Article  CAS  Google Scholar 

  • Malet-Martino M, Gilard V, Desmoulin F, Martino R (2006) Fluorine nuclear magnetic resonance spectroscopy of human biofluids in the field of metabolic studies of anticancer and antifungal fluoropyrimidine drugs. Clin Chim Acta 366:61–73

    Article  CAS  PubMed  Google Scholar 

  • Mamyrin BA (2001) Time-of-flight mass spectrometry (concepts, achievements, and prospects). Int J Mass Spectrom 206(3):251–266

    Article  CAS  Google Scholar 

  • Marchi I, Rudaz S, Veuthey JL (2009) Sample preparation development and matrix effects evaluation for multianalyte determination in urine. J Pharm Biomed Anal 49(2):459–467

    Article  CAS  PubMed  Google Scholar 

  • McEwen A (2011) Low level radioactive counting. In: Scientific presentation CropWorld London 31 October 2011

    Google Scholar 

  • McEwen A, Wood SG, Wilson KH, Ford GR (2012) Human ADME studies: a post MIST analysis. In: Poster presentation 12th European ISSX Meeting 17–21 June 2012, the Netherlands

    Google Scholar 

  • McEwen A, Henson CM, Wood SG (2014) Quantitative whole-body autoradiography, LC-MS/MS and MALDI for drug-distribution studies in biological samples: the ultimate matrix trilogy. Bioanalysis 6(3):377–391; Miller R (1977) Radioisotope dating with a cyclotron. Science 196(4289):489–494

    Google Scholar 

  • Moriwaki H, Watanabe A, Arakawa R, Tsujimoto Y, Shimizu M, Noda T, Warashina M, Tanaka M (2002) Simultaneous determination of metabolites of trimethylbenzenes, dimethylbenzylmercapturicacid and dimethylhippuric acid, in human urine by solid-phase extraction followed by liquid chromatography tandem mass spectrometry. J Mass Spectrom 37:1152–1157

    Article  CAS  PubMed  Google Scholar 

  • Naito S, Furuta S, Yoshida T, KitadaO O, Fueki T, Unno Y, Ohno H, Onodera N, Kaeamura M, Kurokawa F, Sagami K, Shinoda T, Nakazawa T, Yamazak T (2007) Current opinion: Safety evaluation of drug metabolites in development of pharmaceuticals. J Toxicol Sci 32:329–341

    Article  CAS  PubMed  Google Scholar 

  • Nassar A-EF, Parmentier Y, Martinet M, Lee DY (2004) Liquid chromatography–accurate radioisotope counting and microplate scintillation counter technologies in drug metabolism studies. J Chromatogr Sci 42:348–353

    Article  PubMed  Google Scholar 

  • Nedderman AN, Dear GJ, North S, Obach RS, Higton D (2011) From definition to implementation: a cross industry perspective of past, current and future MIST strategies. Xenobiotica 41:605–622

    Article  CAS  PubMed  Google Scholar 

  • Nelson DE, Korteling RG, Stott WR (1977) Carbon-14: direct detection at natural concentrations. Science 198:507–508

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Buckingham MJ, Sadler PJ (1983) High resolution 1H n.m.r. studies of vertebrate blood and plasma. Biochem J 211(3):605

    Google Scholar 

  • Nicholson JK, Bales JR, Sadler PJ, Juul SM, Mcleod A, Sonksen PH (1984a) Monitoring metabolic disease by proton NMR of urine. The Lancet ii:751

    Google Scholar 

  • Nicholson JK, Flynn MO, Sadler PJ, Macleod A, Juul SM, Sonkson PH (1984b) Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J 217:365

    Google Scholar 

  • Nicholson JK, Timbrell J, Sadler PJ (1985) Two-dimensional proton nuclear magnetic resonance “maps” of acetaminophen metabolites in human urine. Mol Pharmacol 27:644

    Google Scholar 

  • Pedersen-Bjergaard S, Rasmussen KE (2005) Bioanalysis of drugs by liquid microextraction coupled to separation techniques. J Chromatogr B 817:3–12

    Article  CAS  Google Scholar 

  • Prueksaritanont T, Lon JH, Baillie T (2006) Complicating factors in safety testing of drug metabolites: kinetic differences between generated and preformed metabolites. Toxicol Appl Pharmacol 217:143–152

    Article  CAS  PubMed  Google Scholar 

  • Seymour MA (2011) Accelerator MS: its role as a frontline bioanalytical technique. Bioanalysis 3:2817–2823

    Article  CAS  PubMed  Google Scholar 

  • Smith DA, Obach RS (2005) Seeing through the MIST: abundance versus percentage. Commentary on metabolites in safety testing. Drug Metab Dispos 33:1409–1417

    Article  CAS  PubMed  Google Scholar 

  • Smith DA, Obach RS (2006) Metabolites and safety: what are the concerns and how should we address them? Chem Res Toxicol 19:1570–1579

    Article  CAS  PubMed  Google Scholar 

  • Suter M (2010) Challenging developments in three decades of accelerator mass spectrometry at ETH: from large particle accelerators to table size instruments. Eur J Mass Spectrometry 16(3):471–478. https://doi.org/10.1255/ejms.1078

    Article  CAS  Google Scholar 

  • Swart P, Lozac’h F, Zollinger M (2016) A mass balance study and metabolite profiling of sonidegib in healthy male subjects using the microtrace approach. In: Metabolite safety in drug development. Wiley, Hoboken, NJ, pp 243–260

    Chapter  Google Scholar 

  • Timmerman P, Kall MA, Gordon B, Laakso S, Freislehen A, Hucker R (2011) Bioanalysis 2:1185–1194

    Article  Google Scholar 

  • Ullberg S (1954) Studies on the distribution and fate of 35S-labelled benzylpenicillin in the body. Acta Radiol Suppl 118:1–110

    CAS  PubMed  Google Scholar 

  • Ure A (1841) Gouty concretions. Pharm J Transact 1:30–35

    Google Scholar 

  • US FDA guidance for industry (2008) Safety testing of drug metabolites

    Google Scholar 

  • US FDA guidance for industry (2016) Safety testing of drug metabolites

    Google Scholar 

  • Vogel JS, Giacomo JA, Schulze-König T, Keck BD, Lohstroh P, Dueker S (2010) Accelerator mass spectrometry best practices for accuracy and precision in bioanalytical 14C measurements. Bioanalysis 2:455–468

    Article  CAS  PubMed  Google Scholar 

  • Woehler F, Tiedemann F (1824) Z Physiol 1:14

    Google Scholar 

  • World Health Organisation (1977) Use of ionising radiation and radionuclides on human beings for medical purposes. Technical report No 611, Geneva

    Google Scholar 

  • Young GC, Ellis WJ (2007) AMS in drug development at GSK. Nucl Inst Methods Phys Res B 259:752–757

    Article  CAS  Google Scholar 

  • Young GC, Corless S, Felgate CC, Colthup PV (2008) Comparison of a 250 kV single-stage accelerator mass spectrometer with a 5 MV tandem accelerator mass spectrometer-fitness for purpose in bioanalysis. Rapid Commun Mass Spectrom 22:4035–4042

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Zhao W, Vazquez N, Mitroka JG (2005) Analysis of low level radioactive metabolites in biological fluids using high-performance liquid chromatography with microplate scintillation counting: method validation and application. J Pharm Biomed Anal 39:233–245

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew McEwen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

McEwen, A. (2017). The Human ADME Study. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-56637-5_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56637-5_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56637-5

  • Online ISBN: 978-3-319-56637-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics