Skip to main content

Epigenetic Regulation of Fat Deposition: A Focus on Krüppel-Like Factor 14 (Klf14)

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 137 Accesses

Abstract

Recent studies are beginning to unravel novel mechanisms associated with the epigenetic contribution to the development of obesity; however, there are many questions that still remain. This review will initially provide an overview of a subset of highly conserved transcription factors called Krüpple-like factors which have been shown to play key roles in the regulation of adipose tissue function, type-2-diabetes, lipid metabolism, as well as other aspects of the metabolic syndrome. Focus will then be shifted to the regulation and function of KLF14, a unique imprinted and intron-less Krüpple-like factor that has been shown to be associated with lipid metabolism, dyslipidemia, obesity, and type-2-diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAT:

Brown adipose tissue

BMI:

Body mass index

DIO:

Diet-induced obesity

DMR:

Differentially methylated region

eQTL:

Expression quantitative trait loci

FMD:

Fat mass deposition

GR:

Glucocorticoid receptor

GWAS:

Genome-wide association

HDL:

High-density lipoprotein

KLF14:

Krüppel-like factor 14

MEF:

Mouse embryonic fibroblast

MEST:

Mesoderm specific transcript

T2D:

Type-2-diabetes

Treg:

T-regulatory

UCP1:

Uncoupling protein 1

References

  • Ali A, Ielciu I, Alkreathy HM, Khan AA (2016) KLF17 attenuates estrogen receptor alpha-mediated signaling by impeding ERalpha function on chromatin and determines response to endocrine therapy. Biochim Biophys Acta 1859(7):883–895. https://doi.org/10.1016/j.bbagrm.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  • Anunciado-Koza RP, Higgins DC, Koza RA (2016a) Adipose tissue Mest and Sfrp5 are concomitant with variations of adiposity among inbred mouse strains fed a non-obesogenic diet. Biochimie 124:134–140. https://doi.org/10.1016/j.biochi.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  • Anunciado-Koza RP, Manuel J, Koza RA (2016b) Molecular correlates of fat mass expansion in C57BL/6J mice after short-term exposure to dietary fat. Ann N Y Acad Sci 1363:50–58. https://doi.org/10.1111/nyas.12958

    Article  CAS  PubMed  Google Scholar 

  • Asada M, Rauch A, Shimizu H, Maruyama H, Miyaki S, Shibamori M, … Asahara H (2011) DNA binding-dependent glucocorticoid receptor activity promotes adipogenesis via Kruppel-like factor 15 gene expression. Lab Investig 91(2):203–215. https://doi.org/10.1038/labinvest.2010.170

  • de Assuncao TM, Lomberk G, Cao S, Yaqoob U, Mathison A, Simonetto DA, … Shah VH (2014) New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids. J Biol Chem 289(22):15798–15809. https://doi.org/10.1074/jbc.M113.544346

  • Bacos K, Gillberg L, Volkov P, Olsson AH, Hansen T, Pedersen O, … Ling C (2016) Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun 7:11089. https://doi.org/10.1038/ncomms11089

  • Banerjee SS, Feinberg MW, Watanabe M, Gray S, Haspel RL, Denkinger DJ, … Jain MK (2003) The Kruppel-like factor KLF2 inhibits peroxisome proliferator-activated receptor-gamma expression and adipogenesis. J Biol Chem 278(4):2581–2584. https://doi.org/10.1074/jbc.M210859200

  • Birsoy K, Chen Z, Friedman J (2008) Transcriptional regulation of adipogenesis by KLF4. Cell Metab 7(4):339–347. https://doi.org/10.1016/j.cmet.2008.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burcelin R, Crivelli V, Dacosta A, Roy-Tirelli A, Thorens B (2002) Heterogeneous metabolic adaptation of C57BL/6J mice to high-fat diet. Am J Physiol Endocrinol Metab 282(4):E834–E842

    Article  CAS  Google Scholar 

  • Bysani M, Perfilyev A, de Mello VD, Ronn T, Nilsson E, Pihlajamaki J, Ling C (2017) Epigenetic alterations in blood mirror age-associated DNA methylation and gene expression changes in human liver. Epigenomics 9(2):105–122. https://doi.org/10.2217/epi-2016-0087

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Torrens JI, Anand A, Spiegelman BM, Friedman JM (2005) Krox20 stimulates adipogenesis via C/EBPbeta-dependent and -independent mechanisms. Cell Metab 1(2): 93–106. https://doi.org/10.1016/j.cmet.2004.12.009

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Li S, Yang Y, Yang X, Liu Y, Liu Y, … Wang X (2012) Genome-wide association study validation identifies novel loci for atherosclerotic cardiovascular disease. J Thromb Haemost 10(8):1508–1514. https://doi.org/10.1111/j.1538-7836.2012.04815.x

  • Cho SY, Park PJ, Shin HJ, Kim YK, Shin DW, Shin ES, … Lee TR (2007) (−)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells. Am J Physiol Endocrinol Metab 292(4):E1166–E1172. https://doi.org/10.1152/ajpendo.00436.2006

  • Civelek M, Wu Y, Pan C, Raulerson CK, Ko A, He A, … Lusis AJ (2017) Genetic regulation of adipose gene expression and cardio-metabolic traits. Am J Hum Genet 100(3):428–443. https://doi.org/10.1016/j.ajhg.2017.01.027

  • Elouej S, Rejeb I, Attaoua R, Nagara M, Sallem OK, Kamoun I, … Grigorescu F (2016) Gender-specific associations of genetic variants with metabolic syndrome components in the Tunisian population. Endocr Res 41(4):300–309. https://doi.org/10.3109/07435800.2016.1141945

  • Funnell AP, Maloney CA, Thompson LJ, Keys J, Tallack M, Perkins AC, Crossley M (2007) Erythroid Kruppel-like factor directly activates the basic Kruppel-like factor gene in erythroid cells. Mol Cell Biol 27(7):2777–2790. https://doi.org/10.1128/MCB.01658-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golozoubova V, Cannon B, Nedergaard J (2006) UCP1 is essential for adaptive adrenergic nonshivering thermogenesis. Am J Physiol Endocrinol Metab 291(2):E350–E357. https://doi.org/10.1152/ajpendo.00387.2005

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez CR, Vallcaneras SS, Calandra RS, Gonzalez Calvar SI (2013) Involvement of KLF14 and egr-1 in the TGF-beta1 action on Leydig cell proliferation. Cytokine 61(2):670–675. https://doi.org/10.1016/j.cyto.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Fan Y, Zhang J, Lomberk GA, Zhou Z, Sun L, … Chen YE (2015) Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production. J Clin Invest 125(10): 3819–3830. https://doi.org/10.1172/JCI79048

  • Hong SR, Jung SE, Lee EH, Shin KJ, Yang WI, Lee HY (2017) DNA methylation-based age prediction from saliva: high age predictability by combination of 7 CpG markers. Forensic Sci Int Genet 29:118–125. https://doi.org/10.1016/j.fsigen.2017.04.006

    Article  CAS  PubMed  Google Scholar 

  • Kananen L, Marttila S, Nevalainen T, Jylhava J, Mononen N, Kahonen M, … Hurme M (2016) Aging-associated DNA methylation changes in middle-aged individuals: the young Finns study. BMC Genomics 17:103. https://doi.org/10.1186/s12864-016-2421-z

  • Kanazawa A, Kawamura Y, Sekine A, Iida A, Tsunoda T, Kashiwagi A, … Maeda S (2005) Single nucleotide polymorphisms in the gene encoding Kruppel-like factor 7 are associated with type 2 diabetes. Diabetologia 48(7):1315–1322. https://doi.org/10.1007/s00125-005-1797-0

  • Kawamura Y, Tanaka Y, Kawamori R, Maeda S (2006) Overexpression of Kruppel-like factor 7 regulates adipocytokine gene expressions in human adipocytes and inhibits glucose-induced insulin secretion in pancreatic beta-cell line. Mol Endocrinol 20(4):844–856. https://doi.org/10.1210/me.2005-0138

    Article  CAS  PubMed  Google Scholar 

  • Kerjean A, Dupont JM, Vasseur C, Le Tessier D, Cuisset L, Paldi A, … Jeanpierre M (2000) Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet 9(14):2183–2187

    Google Scholar 

  • Koza RA, Flurkey K, Graunke DM, Braun C, Pan HJ, Reifsnyder PC, … Leiter EH (2004) Contributions of dysregulated energy metabolism to type 2 diabetes development in NZO/H1Lt mice with polygenic obesity. Metabolism 53(6):799–808

    Google Scholar 

  • Koza RA, Nikonova L, Hogan J, Rim JS, Mendoza T, Faulk C, … Kozak LP (2006) Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet 2(5):e81

    Google Scholar 

  • Koza RA, Rogers P, Kozak LP (2009) Inter-individual variation of dietary fat-induced mesoderm specific transcript in adipose tissue within inbred mice is not caused by altered promoter methylation. Epigenetics 4(7):512–518. doi:10031 [pii]

    Article  CAS  Google Scholar 

  • Kozak LP, Newman S, Chao PM, Mendoza T, Koza RA (2010) The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure. PLoS One 5(6):e11015. https://doi.org/10.1371/journal.pone.0011015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leenders JJ, Wijnen WJ, van der Made I, Hiller M, Swinnen M, Vandendriessche T, … Creemers EE (2012) Repression of cardiac hypertrophy by KLF15: underlying mechanisms and therapeutic implications. PLoS One, 7(5):e36754. https://doi.org/10.1371/journal.pone.0036754

  • Li D, Yea S, Li S, Chen Z, Narla G, Banck M, … Walsh MJ (2005) Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem 280(29):26941–26952. https://doi.org/10.1074/jbc.M500463200

  • Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, … Speliotes EK (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518(7538):197–206. https://doi.org/10.1038/nature14177

  • Loft A, Forss I, Siersbaek MS, Schmidt SF, Larsen AS, Madsen JG, … Mandrup S (2015) Browning of human adipocytes requires KLF11 and reprogramming of PPARgamma superenhancers. Genes Dev 29(1):7–22. https://doi.org/10.1101/gad.250829.114

  • Lyssenko V, Groop L, Prasad RB (2015) Genetics of type 2 diabetes: it matters from which parent we inherit the risk. Rev Diabet Stud 12(3–4):233–242. https://doi.org/10.1900/RDS.2015.12.233

    Article  PubMed  PubMed Central  Google Scholar 

  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, … Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508. https://doi.org/10.1056/NEJMoa0808718

  • McConnell BB, Yang VW (2010) Mammalian Kruppel-like factors in health and diseases. Physiol Rev 90(4):1337–1381. https://doi.org/10.1152/physrev.00058.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori T, Sakaue H, Iguchi H, Gomi H, Okada Y, Takashima Y, … Kasuga M (2005) Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280(13):12867–12875. https://doi.org/10.1074/jbc.M410515200

  • Nagare T, Sakaue H, Matsumoto M, Cao Y, Inagaki K, Sakai M, … Kasuga M (2011) Overexpression of KLF15 transcription factor in adipocytes of mice results in down-regulation of SCD1 protein expression in adipocytes and consequent enhancement of glucose-induced insulin secretion. J Biol Chem 286(43):37458–37469. https://doi.org/10.1074/jbc.M111.242651

  • Nair AK, Piaggi P, McLean NA, Kaur M, Kobes S, Knowler WC, … Baier LJ (2016) Assessment of established HDL-C loci for association with HDL-C levels and type 2 diabetes in pima Indians. Diabetologia, 59(3):481–491. https://doi.org/10.1007/s00125-015-3835-x

  • Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, Dina C, Hamid YH, Joly E, … Froguel P (2005) Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci USA 102(13):4807–4812. https://doi.org/10.1073/pnas.0409177102

  • Nikonova L, Koza RA, Mendoza T, Chao PM, Curley JP, Kozak LP (2008) Mesoderm-specific transcript is associated with fat mass expansion in response to a positive energy balance. FASEB J 22(11):3925–3937. https://doi.org/10.1096/fj.08-108266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oishi Y, Manabe I, Tobe K, Tsushima K, Shindo T, Fujiu K, … Nagai R (2005) Kruppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab 1(1):27–39. https://doi.org/10.1016/j.cmet.2004.11.005

  • Oishi Y, Manabe I, Tobe K, Ohsugi M, Kubota T, Fujiu K, … Nagai R (2008) SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nat Med 14(6):656–666. https://doi.org/10.1038/nm1756

  • Okada Y, Kubo M, Ohmiya H, Takahashi A, Kumasaka N, Hosono N, … Tanaka T (2012) Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations. Nat Genet 44(3):302–306. https://doi.org/10.1038/ng.1086

  • Ouyang L, Chen X, Bieker JJ (1998) Regulation of erythroid Kruppel-like factor (EKLF) transcriptional activity by phosphorylation of a protein kinase casein kinase II site within its interaction domain. J Biol Chem 273(36):23019–23025

    Article  CAS  Google Scholar 

  • Parker-Katiraee L, Carson AR, Yamada T, Arnaud P, Feil R, Abu-Amero SN, … Scherer SW (2007) Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution. PLoS Genet 3(5):e65. https://doi.org/10.1371/journal.pgen.0030065

  • Pei H, Yao Y, Yang Y, Liao K, Wu JR (2011) Kruppel-like factor KLF9 regulates PPARgamma transactivation at the middle stage of adipogenesis. Cell Death Differ 18(2):315–327. https://doi.org/10.1038/cdd.2010.100

    Article  CAS  PubMed  Google Scholar 

  • Perdomo J, Verger A, Turner J, Crossley M (2005) Role for SUMO modification in facilitating transcriptional repression by BKLF. Mol Cell Biol 25(4):1549–1559. https://doi.org/10.1128/MCB.25.4.1549-1559.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quadrini KJ, Bieker JJ (2006) EKLF/KLF1 is ubiquitinated in vivo and its stability is regulated by activation domain sequences through the 26S proteasome. FEBS Lett 580(9):2285–2293. https://doi.org/10.1016/j.febslet.2006.03.039

    Article  CAS  PubMed  Google Scholar 

  • Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, … Ling C (2015) Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 24(13):3792–3813. https://doi.org/10.1093/hmg/ddv124

  • Sarmento OF, Svingen PA, Xiong Y, Xavier RJ, McGovern D, Smyrk TC, … Faubion WA (2015) A novel role for KLF14 in T regulatory cell differentiation. Cell Mol Gastroenterol Hepatol 1(2):188–202. e184. https://doi.org/10.1016/j.jcmgh.2014.12.007

  • Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Magi R, … Mohlke KL (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518(7538):187–196. https://doi.org/10.1038/nature14132

  • Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A, … Mu, Ther Consortium (2011) Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet 43(6):561–564. https://doi.org/10.1038/ng.833

  • Smas CM, Sul HS (1993) Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 73(4):725–734

    Article  CAS  Google Scholar 

  • Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, … Loos RJ (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42(11):937–948. https://doi.org/10.1038/ng.686

  • Steegenga WT, Boekschoten MV, Lute C, Hooiveld, GJ, de Groot PJ, Morris TJ, … Muller M (2014) Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs. Age (Dordr) 36(3):9648. https://doi.org/10.1007/s11357-014-9648-x

  • Sue N, Jack BH, Eaton SA, Pearson RC, Funnell AP, Turner J, … Crossley M (2008) Targeted disruption of the basic Kruppel-like factor gene (Klf3) reveals a role in adipogenesis. Mol Cell Biol 28(12):3967–3978. https://doi.org/10.1128/MCB.01942-07

  • Tanahashi T, Shinohara K, Keshavarz P, Yamaguchi Y, Miyawaki K, Kunika K, … Itakura M (2008) The association of genetic variants in Kruppel-like factor 11 and type 2 diabetes in the Japanese population. Diabet Med 25(1):19–26. https://doi.org/10.1111/j.1464-5491.2007.02315.x

  • Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, … Kathiresan S (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307):707–713. https://doi.org/10.1038/nature09270

  • Truty MJ, Lomberk G, Fernandez-Zapico ME, Urrutia R (2009) Silencing of the transforming growth factor-beta (TGFbeta) receptor II by Kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling. J Biol Chem 284(10):6291–6300. https://doi.org/10.1074/jbc.M807791200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida S, Tanaka Y, Ito H, Saitoh-Ohara F, Inazawa J, Yokoyama KK, … Marumo F (2000) Transcriptional regulation of the CLC-K1 promoter by myc-associated zinc finger protein and kidney-enriched Kruppel-like factor, a novel zinc finger repressor. Mol Cell Biol 20(19): 7319–7331

    Google Scholar 

  • Wang Y, Sul HS (2009) Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9. Cell Metab 9(3):287–302. https://doi.org/10.1016/j.cmet.2009.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei X, Yang R, Wang C, Jian X, Li L, Liu H, … Li Z (2017) A novel role for the Kruppel-like factor 14 on macrophage inflammatory response and atherosclerosis development. Cardiovasc Pathol 27:1–8. https://doi.org/10.1016/j.carpath.2016.11.003

  • Wu Z, Wang S (2013) Role of kruppel-like transcription factors in adipogenesis. Dev Biol 373(2):235–243. https://doi.org/10.1016/j.ydbio.2012.10.031

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Srinivasan SV, Neumann JC, Lingrel JB (2005) The KLF2 transcription factor does not affect the formation of preadipocytes but inhibits their differentiation into adipocytes. Biochemistry 44(33):11098–11105. https://doi.org/10.1021/bi050166i

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Sakaguchi M, Medina RJ, Niida A, Sakaguchi Y, Miyazaki M, … Huh NH (2010) Transcriptional regulation of a brown adipocyte-specific gene, UCP1, by KLF11 and KLF15. Biochem Biophys Res Commun 400(1):175–180. https://doi.org/10.1016/j.bbrc.2010.08.039

  • Yang M, Ren Y, Lin Z, Tang C, Jia Y, Lai Y, … Li L (2015) Kruppel-like factor 14 increases insulin sensitivity through activation of PI3K/Akt signal pathway. Cell Signal 27(11):2201–2208. https://doi.org/10.1016/j.cellsig.2015.07.019

  • Zbiec-Piekarska R, Spolnicka M, Kupiec T, Parys-Proszek A, Makowska Z, Paleczka A, … Branicki W (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci Int Genet 17:173–179. https://doi.org/10.1016/j.fsigen.2015.05.001

  • Zhang W, Bieker JJ (1998) Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci USA 95(17): 9855–9860

    Article  CAS  Google Scholar 

  • Zhang J, Yang C, Brey C, Rodriguez M, Oksov Y, Gaugler R, … Hashmi S (2009) Mutation in Caenorhabditis Elegans Kruppel-like factor, KLF-3 results in fat accumulation and alters fatty acid composition. Exp Cell Res 315(15):2568–2580. https://doi.org/10.1016/j.yexcr.2009.04.025

  • Zhang J, Bakheet R, Parhar RS, Huang CH, Hussain MM, Pan X, … Hashmi S (2011) Regulation of fat storage and reproduction by Kruppel-like transcription factor KLF3 and fat-associated genes in Caenorhabditis Elegans. J Mol Biol 411(3):537–553. https://doi.org/10.1016/j.jmb.2011.06.011

  • Zobel DP, Andreasen CH, Burgdorf KS, Andersson EA, Sandbaek A, Lauritzen T, … Hansen T (2009) Variation in the gene encoding Kruppel-like factor 7 influences body fat: studies of 14 818 Danes Eur J Endocrinol 160(4):603–609. https://doi.org/10.1530/EJE-08-0688

Download references

Acknowledgments

Data presented in Figs. 1 and 2 were partially supported by NIH R01DK090361. Support was also provided by the Molecular Phenotyping and Physiology Core Facilities at the Maine Medical Center Research Institute funded by COBRE (NIGMS P30GM106391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Koza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Koza, R.A. (2019). Epigenetic Regulation of Fat Deposition: A Focus on Krüppel-Like Factor 14 (Klf14). In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_94

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics