Advertisement

Role of PIWI-Interacting RNA (piRNA) as Epigenetic Regulation

  • Danielle Queiroz CalcagnoEmail author
  • Elizangela Rodrigues da Silva Mota
  • Fabiano Cordeiro Moreira
  • Stefanie Braga Maia de Sousa
  • Rommel Rodríguez Burbano
  • Paulo Pimentel Assumpção
Reference work entry

Abstract

PIWI-interacting RNAs are a distinct group of small noncoding RNAs that are abundantly expressed in the animal germ line and are involved in silencing transposable genetic elements to maintain genome integrity. Accumulating evidence suggests that PIWI-interacting RNAs are also capable of mediating DNA methylation and thus can silence genes related to cancer, acting either as tumor suppressors or oncogenes. In recent years, several studies have significantly improved the understanding of PIWI-interacting RNA biogenesis, characterization, and function. Here, we discuss these recent findings and highlight some aspects of the role of PIWI-interacting RNAs in epigenetic modifications, the possible cancer implications and the effect of nutrition. Finally, we provide a brief description of the PIWI-interacting RNAs data analysis workflow and suggest some potential biological and clinical applications of these important molecules.

Keywords

ncRNA piRNA PIWI Primary biogenesis Ping-pong amplification AUB AGO3 Epigenetic regulation DNA methylation Histone modification Transposable elements Cancer piRNA-seq 

List of Abbreviation

10A

Adenosine at position 10

AGO3

Argonaute 3

AUB

Aubergine

ChIP

Chromatin immunoprecipitation

CTCs

Circulating tumor cells

DMR

Differentially methylated region

DNMT3L

DNA-methyltransferase 3-like

DNMTs

DNA methyltransferases

EMT

Epithelial mesenchymal transition

ERM

Ezrin/Radixin/Moesin

FSH

Follicle-stimulating hormone

H3K9

Histone H3 lysine 9

HENMT1

Hen methyltransferase homolog 1

HMTs

Histone methyltransferases

HP1

Heterochromatin 1 protein

LINE1

Long interspersed element-1

lncRNAs

Long noncoding RNAs

mRNA

Messenger RNA

miRNAs

MicroRNAs

ncRNAs

Noncoding RNAs

NGS

Next-generation sequencing

nt

Nucleotides

piRISC

piRNA-Induced silencing complex

piRNAs

PIWI-interacting RNAs

piRNA-seq

piRNA sequencing

PIWI

P-element Induced Wimpy Testis

PNLDC1

Poly(A)-specific ribonuclease PARN-like domain-containing protein 1

pre-piRNA

piRNA precursor

SAM

S-adenosylmethionine

SDMAs

Symmetric dimethylarginines

siRNAs

Small interfering RNAs

ssRNA

Single-stranded RNA

Su (var) 3–9

Suppressor of variegation 3–9

TDRD

Tudor domain

TEs

Transposable elements

Zuc

Zucchini

References

  1. Aravin A, Gaidatzis D, Pfeffer S et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207PubMedPubMedCentralGoogle Scholar
  2. Assumpção CB, Calcagno DQ, Araújo TM et al (2015a) The role of piRNA and its potential clinical implications in cancer. Epigenomics 7(6):975–984PubMedPubMedCentralCrossRefGoogle Scholar
  3. Assumpção MB, Moreira FC, Hamoy IG et al (2015b) High-throughput miRNA sequencing reveals a field effect in gastric cancer and suggests an epigenetic network mechanism. Bioinform Biol Insights 9:111–117PubMedPubMedCentralCrossRefGoogle Scholar
  4. Assumpção PP, Dos Santos SE, Dos Santos AK et al (2016) The adjacent to tumor sample trap. Gastric Cancer 19(3):1024–1025PubMedCrossRefGoogle Scholar
  5. Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brayet J, Zehraoui F, Jeanson-Leh L et al (2014) Towards a piRNA prediction using multiple kernel fusion and support vector machine. Bioinformatics 30(17):i364–i370PubMedPubMedCentralCrossRefGoogle Scholar
  7. Brennecke J, Aravin AA, Stark A et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128(6):1089–10103PubMedPubMedCentralCrossRefGoogle Scholar
  8. Busch J, Ralla B, Jung M et al (2015) Piwi-interacting RNAs as novel prognostic markers in clear cell renal cell carcinomas. J Exp Clin Cancer Res 34(1):61PubMedPubMedCentralCrossRefGoogle Scholar
  9. Calcagno DQ, Smith MAC, Burbano RR et al (2015) Cancer type-specific epigenetic changes: gastric cancer. Methods Mol Biol 1238:79–101PubMedCrossRefGoogle Scholar
  10. Chen J, Xue Y (2016) Emerging roles of non-coding RNAs in epigenetic regulation. Sci China Life Sci 59:227–235PubMedCrossRefGoogle Scholar
  11. Cheng J, Guo JM, Xiao BX et al (2011) piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta 412(17–18):1621–1625PubMedCrossRefGoogle Scholar
  12. Cheng J, Deng H, Xiao B et al (2012) piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 315(1):12–17PubMedCrossRefGoogle Scholar
  13. Cordaux R, Bater MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10(10):691–703PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cordeiro A, Navarro A, Gaya A et al (2016) PiwiRNA-651 as marker of treatment response and survival in classical Hodgkin lymphoma. Oncotarget 7(29):46002–46013PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cui L, Lou Y, Zhang X et al (2011) Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 44(13):1050–10571PubMedCrossRefGoogle Scholar
  16. Czech B, Hannon GJ (2016) One loop to rule them all: the ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci 41(4):324–337PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dennis C, Brasset E, Sarkar A et al (2016) Export of piRNA precursors by EJC triggers assembly of cytoplasmic Yb-body in Drosophila. Nat Commun 7:13739PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ferreira HJ, Heyn H, Garcia del Muro X, Vidal A, Larriba S, Muñoz C, Villanueva A, Esteller M (2014) Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis. Epigenetics 9(1):113–118.  https://doi.org/10.4161/epi.27237. Epub 2013 Nov 18
  19. Fu Q, Wang PJ (2014) Mammalian piRNAs: biogenesis, function, and mysteries. Spermatogenesis 4(1):e27889PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fu A, Di Jacobs, Hoffman AE et al (2015) PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis 36(10):1094–1102PubMedPubMedCentralCrossRefGoogle Scholar
  21. Gebert D, Ketting RF, Zischler H et al (2015) piRNAs from pig testis provide evidence for a conserved role of the Piwi pathway in post-transcriptional gene regulation in mammals. PLoS One 10(5):e0124860PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gigek CO, Chen ES, Calcagno DQ et al (2012) Epigenetic mechanisms in gastric cancer. Epigenomics 4(3):279–294PubMedCrossRefGoogle Scholar
  23. Guan Y, Liang G, Hawken PAR et al (2015) Roles of small RNAs in the effects of nutrition on apoptosis and spermatogenesis in the adult testis. Sci Rep 5:10372PubMedPubMedCentralCrossRefGoogle Scholar
  24. Han BW, Wang W, Li C (2015) piRNA-guided transposon cleavage initiljates zucchini-dependent, phased piRNA production. Science 348(6236):817–821PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hashim A, Rizzo F, Marchese G et al (2014) RNA sequencing identifies specific PIWI-interacting small non-coding RNA expression patterns in breast cancer. Oncotarget 5(20):9901–9910PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hirakata S, Siomi MC (2016) piRNA biogenesis in the germline: from transcription of piRNA genomic sources to piRNA maturation. Biochim Biophys Acta 1859(1):82–92PubMedCrossRefGoogle Scholar
  27. Horwich MD, Li C, Matranga C et al (2007) The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 17(14):1265–1272PubMedCrossRefGoogle Scholar
  28. Huang G, Hu H, Xue X et al (2013a) Altered expression of piRNAs and their relation with clinicopathologic features of breast cancer. Clin Transl Oncol 15(7):563–568bPubMedCrossRefGoogle Scholar
  29. Huang XA, Yin INH, Sweeney S et al (2013b) A major epigenetic programming mechanism guided by piRNAs. Dev Cell 24:502–516PubMedPubMedCentralCrossRefGoogle Scholar
  30. Humberto JF, Heyn H, del Muro XG, Vidal A, Larriba S, Muñoz C, Villanueva A, Esteller M (2014) Epigenetic loss of the PIWI/piRNA machinery in human testicular tumorigenesis. Epigenetics 9(1):113–118CrossRefGoogle Scholar
  31. Ipsaro JJ, Haase AD, Knott SR et al. (2012) The structural biochemistry of zucchini implicates it as a nuclease in piRNA biogenesis. Nature 491(7423):279–283.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Itou D, Shiromoto Y, Yukiho SY et al (2015) Induction of DNA methylation by artificial piRNA production in male germ cells. Curr Biol 25:901–906PubMedCrossRefGoogle Scholar
  33. Izumi N, Shoji K, Sakaguchi Y et al (2016) Identification and functional analysis of the pre-piRNA 3′ trimmer in silkworms. Cell 164(5):962–973PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jie Y, Wang Y, Fang B, Zhang S, Cheng B (2016) piR-651 and its function in 95-D lung cancer cells. Biomed RepGoogle Scholar
  35. Kamminga LM, Luteijn MJ, Broeder MJ et al (2010) Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J 29(21):3688–3700PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139PubMedCrossRefGoogle Scholar
  37. Kin T, Yamada K, Terai G et al (2007) fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences. Nucleic Acids Res 35:D145–D148PubMedCrossRefGoogle Scholar
  38. Kirino Y, Mourelatos Z (2007) Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat Struct Mol Biol 14(4):347–348PubMedCrossRefGoogle Scholar
  39. Krakowsky RH, Tollefsbol TO (2015) Impact of nutrition on non-coding RNA epigenetics in breast and gynecological cancer. Front Nutr 2:16PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kwon C, Tak H, Rho M et al (2014) Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem Biophys Res Commun 446(1):218–223PubMedCrossRefGoogle Scholar
  41. Law PT, Qin H, Ching AK et al (2013) Deep sequencing of small RNA transcriptome reveals novel non-coding RNAs in hepatocellular carcinoma. J Hepatol 58(6):1165–1173PubMedCrossRefGoogle Scholar
  42. Le Thomas A, Toth KF, Aravin AA (2014) To be or not to be a piRNA: genomic origin and processing of piRNAs. Genome Biol 15(1):204PubMedPubMedCentralCrossRefGoogle Scholar
  43. Li D, Luo Y, Gao Y, Yang Y, Wang Y, Xu Y, Tan S, Zhang Y, Duan J, Yang Y (2016) piR-651 promotes tumor formation in non-small cell lung carcinoma through the upregulation of cyclin D1 and CDK4. Int J Mol Med 38(3):927–936.  https://doi.org/10.3892/ijmm.2016.2671. Epub 2016 Jul 11
  44. Li Y, Wu X, Gao H, Jin JM, Li AX, Kim YS, Pal SK, Nelson RA, Lau CM, Guo C, Mu B, Wang J, Wang F, Wang J, Zhao Y, Chen W, Rossi JJ, Weiss LM, Wu H (2015) Piwi-interacting RNAs (piRNAs) are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Mol Med 21:381–388.  https://doi.org/10.2119/molmed.2014.00203
  45. Lim SL, Qu ZP, Kortschak RD et al (2015) HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet 11(10):e1005620PubMedPubMedCentralCrossRefGoogle Scholar
  46. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550PubMedPubMedCentralCrossRefGoogle Scholar
  47. Manakov SA, Pezic D, Marinov GK et al (2015) MIWI2 and MILI have differential effects on piRNA biogenesis and DNA methylation. Cell Rep 12(8):1234–1243PubMedPubMedCentralCrossRefGoogle Scholar
  48. Mani SR, Juliano CE (2013) Untangling the web: the diverse functions of the PIWI/piRNA pathway. Mol Reprod Dev 80(8):632–664PubMedPubMedCentralCrossRefGoogle Scholar
  49. Martinez VD, Enfield KS, Rowbotham DA et al (2015) An atlas of gastric PIWI interacting RNA transcriptomes and their utility for identifying signatures of gastric cancer recurrence. Gastric Cancer 19(2):660–6655PubMedPubMedCentralCrossRefGoogle Scholar
  50. Martins NNF, Oliveira KCS, Bona AB et al (2016) The emerging role of miRNAs and their clinical implication in biliary tract cancer. Gastroenterol Res Pract 2016:9797410–9797420Google Scholar
  51. Mei Y, Wang Y, Kumari P et al (2015) A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun 6:7316PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mohn F, Handler D, Brennecke J (2015) piRNA-guided slicing specifies transcripts for zucchini-dependent, phased piRNA biogenesis. Science 348(6236):812–817PubMedPubMedCentralCrossRefGoogle Scholar
  53. Müller S, Raulefs S, Bruns P et al (2015) Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer. Mol Cancer 14:94PubMedPubMedCentralCrossRefGoogle Scholar
  54. Ng KW, Anderson C, Marshall EA et al (2016) Piwi-interacting RNAs in cancer: emerging functions and clinical utility. Mol Cancer 5(5):1–13Google Scholar
  55. Nishimasu H, Ishizu H, Saito K et al (2012) Structure and function of zucchini endoribonuclease in piRNA biogenesis. Nature 491:284–287PubMedPubMedCentralCrossRefGoogle Scholar
  56. Oliveira KCS, Araújo MT, Albuquerque CI et al (2016) Role of miRNAs and their potential to be useful as diagnostic and prognostic biomarkers in gastric cancer. World J Gastroenterol 22(35):7951–7962CrossRefGoogle Scholar
  57. Oliveri D, Sykora MM, Sachidanandam R et al (2010) An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J 29:3301–3317CrossRefGoogle Scholar
  58. Peng JC, Lin H (2013) Beyond transposons: the epigenetic and somatic functions of the Piwi-piRNA mechanism. Curr Opin Cell Biol 25(2):190–194PubMedPubMedCentralCrossRefGoogle Scholar
  59. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842PubMedPubMedCentralCrossRefGoogle Scholar
  60. Rajasethupathy P, Antonov I, Sheridan R et al (2012) A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell 149:693–707PubMedPubMedCentralCrossRefGoogle Scholar
  61. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ross RJ, Weiner MM, Lin H (2014) PIWI proteins and PIWI-interacting RNAs in the soma. Nature 505(7483):353–359PubMedPubMedCentralCrossRefGoogle Scholar
  63. Sai Lakshmi S, Agrawal S (2008) piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res 36:D173–D177PubMedCrossRefGoogle Scholar
  64. Saito K, Ishizu H, Komai M et al (2010) Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev 24:2493–2498PubMedPubMedCentralCrossRefGoogle Scholar
  65. Senti KA, Jurczak D, Sachidanandam R et al (2015) piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire. Genes Dev 29:1747–1762PubMedPubMedCentralCrossRefGoogle Scholar
  66. Tóth KF, Pezic D, Stuwe E et al (2016) The piRNA pathway guards the germline genome against transposable elements. Adv Exp Med Biol 886:51–77PubMedPubMedCentralCrossRefGoogle Scholar
  67. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515PubMedPubMedCentralCrossRefGoogle Scholar
  68. Trasler JM (2009) Epigenetics in spermatogenesis. Mol Cell Endocrinol 306:33–36PubMedCrossRefGoogle Scholar
  69. Wang W, Han BW, Tipping C et al (2015) Slicing and binding by Ago3 or Aub trigger Piwi-bound piRNA production by distinct mechanisms. Mol Cell 59(5):819–830PubMedPubMedCentralCrossRefGoogle Scholar
  70. Watanabe T, Tomizawa S, Mitsuya K et al (2011) Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332:848–852PubMedPubMedCentralCrossRefGoogle Scholar
  71. Weick EM, Miska EA (2014) piRNAs: from biogenesis to function. Development 141(18):3458–3471PubMedCrossRefGoogle Scholar
  72. Yan H, Wu QL, Sun CY et al (2014) piRNA-823 contributes to tumorigenesis by regulating de novo DNA methylation and angiogenesis in multiple myeloma. Leukemia 29(1):196–206PubMedCrossRefGoogle Scholar
  73. Yao J, Wang YW, Fang BB, Zhang SJ, Cheng BL (2016) piR-651 and its function in 95-D lung cancer cells. Biomed Rep 4(5):546–550. Epub 2016 Mar 8Google Scholar
  74. Yuping L, Wu X (2015) Piwi-interacting RNAs (piRNAs) are dysregulated in renal cell carcinoma and associated with tumor metastasis and cancer-specific survival. Mol Med 21(1):1Google Scholar
  75. Zhang H, Ren Y, Xu H et al (2013) The expression of stem cell protein Piwil2 and piR-932 in breast cancer. Surg Oncol 22(4):217–223PubMedCrossRefGoogle Scholar
  76. Zhang P, Si X, Geir Skogerbo G et al (2014) piRBase: a web resource assisting piRNA functional study. Database (Oxford) 2014:bau110Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Danielle Queiroz Calcagno
    • 1
    Email author
  • Elizangela Rodrigues da Silva Mota
    • 1
  • Fabiano Cordeiro Moreira
    • 1
  • Stefanie Braga Maia de Sousa
    • 1
  • Rommel Rodríguez Burbano
    • 2
  • Paulo Pimentel Assumpção
    • 1
  1. 1.Núcleo de Pesquisas em OncologiaUniversidade Federal do ParáBelémBrazil
  2. 2.Laboratório de Biologia MolecularHospital Ophir LoyolaBelémBrazil

Personalised recommendations