Skip to main content

Long-Term Complications in Diabetes Mellitus and the Interrelationship of Blood Vessel Formation, Endothelial Progenitor Cells, and gDNA Methylation

  • Reference work entry
  • First Online:
  • 130 Accesses

Abstract

Diabetes mellitus is a disease of metabolic dysregulation resulting in microvascular and macrovascular complications. As such, the endothelial cell (EC) is a fundamental cell type targeted by the hyperglycemic (HG) episodes that occur in the disease, and this causes abnormalities in the basic process of blood vessel formation (BVF). These abnormalities in BVF are seen in the acute and chronic states of DM, with the latter chronic effects termed “metabolic memory” (MM). Abnormalities in BVF in DM are based on abnormalities in the processes of vasculargenesis and subsequent angiogenesis. In humans, vasculargenesis is dependent on endothelial progenitor cells (EPCs), and these cells have been reported to be dysfunctional in DM. Studies in an animal model of DM and MM have shown that hyperglycemia induces epigenetic changes observed as gDNA hypomethylation in a loci-specific but genome-wide fashion. The role of these gDNA methylation changes as a contributing factor in the long-term complications of DM seen in MM is unclear, but may relate to dysfunctions in mechanisms involved in the regulation of gene expression. This chapter provides an overview of the interrelation of (1) DM/MM, (2) BVF, (3) EPC, and (4) gDNA methylation and proposes mechanisms to explain these relationships and experimental approaches to test the validity of these mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5mC:

5-Methylcytosine

AGE:

Advanced glycation end products

BVF:

Blood vessel formation

CpG:

Cytosine-phosphate-guanine (a dinucleotide)

CTGF:

Connective tissue growth factor

CV:

Cardiovascular system

DM:

Diabetes mellitus

ECs:

Endothelial cells

EPCs:

Endothelial progenitor cells

MM:

Metabolic memory

MRs:

Methylated regions (of gDNA)

HUCECs:

Human umbilical cord endothelial cells

HG:

Hyperglycemia

ORF:

Open reading frame

ROS:

Reactive oxygen species

TF:

Transcription factor

TSS:

Transcription start site

References

  • Antonio N, Fernandes R, Soares A, Soares F, Lopes A, Carvalheiro T, Paiva A, Pego GM, Providencia LA, Goncalves L, Ribeiro CF (2014) Reduced levels of circulating endothelial progenitor cells in acute myocardial infarction patients with diabetes or pre-diabetes: accompanying the glycemic continuum. Cardiovasc Diabetol 13:101

    Article  Google Scholar 

  • Baynes JW (1991) Role of oxidative stress in development of complications in diabetes. Diabetes 40(4):405–412

    Article  CAS  Google Scholar 

  • Beach SR, Brody GH, Barton AW, Philibert RA (2016) Exploring genetic moderators and epigenetic mediators of contextual and family effects: from gene x environment to epigenetics. Dev Psychopathol:1–14

    Google Scholar 

  • Berezin AE, Samura TA, Kremzer AA, Berezina TA, Martovitskaya YV, Gromenko EA (2016) An association of serum vistafin level and number of circulating endothelial progenitor cells in type 2 diabetes mellitus patients. Diabetes Metab Syndr 10:205–212

    Article  Google Scholar 

  • Bjornsson HT, Fallin MD, Feinberg AP (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet: TIG 20(8):350–358

    Article  CAS  Google Scholar 

  • Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625

    Article  CAS  Google Scholar 

  • Caramori ML, Kim Y, Moore JH, Rich SS, Mychaleckyj JC, Kikyo N, Mauer M (2012) Gene expression differences in skin fibroblasts in identical twins discordant for type 1 diabetes. Diabetes 61(3):739–744

    Article  CAS  Google Scholar 

  • Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936

    Article  CAS  Google Scholar 

  • Chong MS, Ng WK, Chan JK (2016) Concise review: endothelial progenitor cells in regenerative medicine: applications and challenges. Stem Cells Transl Med 5(4):530–538

    Article  CAS  Google Scholar 

  • Costa P, Soares R (2013) Neovascularization in diabetes and its complications. Unraveling the angiogenic paradox. Life Sci 92(22):1037–1045

    Article  CAS  Google Scholar 

  • Delaval K, Feil R (2004) Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 14(2):188–195

    Article  CAS  Google Scholar 

  • Dhliwayo N, Sarras M, Luczkowski E, Mason S, Intine R (2014) Parp inhibition prevents ten eleven translocase enzyme activation and hyperglycemia induced DNA methylation. Diabetes 63:3069–3076

    Article  Google Scholar 

  • Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49(1):4–8

    Article  CAS  Google Scholar 

  • Drela E, Stankowska K, Kulwas A, Rosc D (2012) Endothelial progenitor cells in diabetic foot syndrome. Adv Clin Exp Med 21(2):249–254

    PubMed  Google Scholar 

  • Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45(9):1449–1457

    Article  CAS  Google Scholar 

  • Fadini GP, Ferraro F, Quaini F, Asahara T, Madeddu P (2014) Concise review: diabetes, the bone marrow niche, and impaired vascular regeneration. Stem Cells Transl Med 3(8):949–957

    Article  CAS  Google Scholar 

  • Fernando CA, Conrad PA, Bartels CF, Marques T, To M, Balow SA, Nakamura Y, Warman ML (2010) Temporal and spatial expression of CCN genes in zebrafish. Dev Dyn 239(6):1755–1767

    Article  CAS  Google Scholar 

  • Franca CN, Amaral JB, Tuleta ID, Siviero F, Ferreira CE, Izar MC, Fonseca FA (2016) Challenges facing the use of endothelial progenitor cells in stem cell therapies. Crit Rev Eukaryot Gene Expr 26(2):161–162

    Article  Google Scholar 

  • Gluckman PD, Hanson MA, Beedle AS (2007) Non-genomic transgenerational inheritance of disease risk. Bioessays 29(2):145–154

    Article  CAS  Google Scholar 

  • Goerke SM, Obermeyer J, Plaha J, Stark GB, Finkenzeller G (2014) Endothelial progenitor cells from peripheral blood support bone regeneration by provoking an angiogenic response. Microvasc Res 98C:40–47

    Google Scholar 

  • Grutzmacher C, Park S, Zhao Y, Morrison ME, Sheibani N, Sorenson CM (2013) Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes. Am J Physiol Ren Physiol 304(1):F19–F30

    Article  CAS  Google Scholar 

  • He Y, Ecker JR (2015) Non-CG methylation in the human genome. Annu Rev Genomics Hum Genet 16:55–77

    Article  CAS  Google Scholar 

  • Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S, Sarkar S (2014) Use of epigenetic drugs in disease: an overview. Genet Epigenet 6:9–19

    Article  CAS  Google Scholar 

  • Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463(7280):474–484

    Article  CAS  Google Scholar 

  • Inzucchi S, Majumdar S (2015) Glycemic targets: what is the evidence? Med Clin North Am 99(1):47–67

    Article  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186

    Article  CAS  Google Scholar 

  • Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130(12):2779–2791

    Article  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  Google Scholar 

  • Jirtle RL, Sander M, Barrett JC (2000) Genomic imprinting and environmental disease susceptibility. Environ Health Perspect 108(3):271–278

    Article  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  Google Scholar 

  • Kuiper EJ, Witmer AN, Klaassen I, Oliver N, Goldschmeding R, Schlingemann RO (2004) Differential expression of connective tissue growth factor in microglia and pericytes in the human diabetic retina. Br J Ophthalmol 88(8):1082–1087

    Article  CAS  Google Scholar 

  • Leontovich AAIRV, Sarras MP Jr (2016) Epigenetic studies point to DNA replication/repair genes as a basis for the heritable nature of long term complications in diabetes. J Diabetes Res 2016:1–10

    Article  Google Scholar 

  • Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53(1):195–199

    Article  CAS  Google Scholar 

  • Luttun A, Carmeliet G, Carmeliet P (2002) Vascular progenitors: from biology to treatment. Trends Cardiovasc Med 12(2):88–96

    Article  CAS  Google Scholar 

  • Martos SN, Tang WY, Wang Z (2015) Elusive inheritance: transgenerational effects and epigenetic inheritance in human environmental disease. Prog Biophys Mol Biol 118(1–2):44–54

    Article  Google Scholar 

  • Menegazzo L, Albiero M, Avogaro A, Fadini GP (2012) Endothelial progenitor cells in diabetes mellitus. Biofactors 38(3):194–202

    Article  CAS  Google Scholar 

  • Morgan DK, Whitelaw E (2008) The case for transgenerational epigenetic inheritance in humans. Mamm Genome: Off J Int Mamm Genome Soc 19(6):394–397

    Article  Google Scholar 

  • Mosammaparast N, Shi Y (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179

    Article  CAS  Google Scholar 

  • Olsen AS, Sarras MP, Leontovich A, Intine RV (2012) Heritable transmission of diabetic metabolic memory in zebrafish correlates with and aberrant Gene expression. Diabetes 61(2):485–491

    Article  CAS  Google Scholar 

  • Peters EB, Liu B, Christoforou N, West JL, Truskey GA (2015) Umbilical cord blood-derived mononuclear cells exhibit Pericyte-like phenotype and support network formation of endothelial progenitor cells in vitro. Ann Biomed Eng 43:2552–2568

    Article  Google Scholar 

  • Pi L, Shenoy AK, Liu J, Kim S, Nelson N, Xia H, Hauswirth WW, Petersen BE, Schultz GS, Scott EW (2012) CCN2/CTGF regulates neovessel formation via targeting structurally conserved cystine knot motifs in multiple angiogenic regulators. FASEB J 26(8):3365–3379

    Article  CAS  Google Scholar 

  • Pirola L, Balcerczyk A, Tothill RW, Haviv I, Kaspi A, Lunke S, Ziemann M, Karagiannis T, Tonna S, Kowalczyk A, Beresford-Smith B, Macintyre G, Kelong M, Hongyu Z, Zhu J, El-Osta A (2011) Genome-wide analysis distinguishes hyperglycemia regulated epigenetic signatures of primary vascular cells. Genome Res 21(10):1601–1615

    Article  CAS  Google Scholar 

  • Prattichizzo F, Giuliani A, Ceka A, Rippo MR, Bonfigli AR, Testa R, Procopio AD, Olivieri F (2015) Epigenetic mechanisms of endothelial dysfunction in type 2 diabetes. Clin Epigenetics 7(1):56

    Article  Google Scholar 

  • Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R (2012) Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol 23(3):458–469

    Article  CAS  Google Scholar 

  • Rakyan V K, Beyan H, Down T A, Hawa M I, Maslau S, Aden D, Daunay A, Busato F, Mein C A, Manfras B, Dias K R, Bell C G, Tost J +, Boehm B O, Beck S, Leslie R D. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 2011; 7(9): e1002300

    Article  CAS  Google Scholar 

  • Rando OJ (2012) Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 22(2):148–155

    Article  CAS  Google Scholar 

  • Ribatti D (2007) The discovery of endothelial progenitor cells. An historical review. Leuk Res 31(4):439–444

    Article  CAS  Google Scholar 

  • Riddle MC (2010) Effects of intensive glucose lowering in the management of patients with type 2 diabetes mellitus in the action to control cardiovascular risk in diabetes (ACCORD) trial. Circulation 122(8):844–846

    Article  Google Scholar 

  • Rodriguez H, Rafehi H, Bhave M, El-Osta A (2016) Metabolism and chromatin dynamics in health and disease. Mol Aspects Med 54:1–15

    Article  Google Scholar 

  • Roy S, Sala R, Cagliero E, Lorenzi M (1990) Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci U S A 87(1):404–408

    Article  CAS  Google Scholar 

  • Sarras MP, Leontovich AA, Olsen AS, Intine RV (2013) Impaired tissue regeneration corresponds with altered expression of developmental genes that persists in the metabolic memory state of diabetic zebrafish. Wound Repair Regen: Off Publ Wound Heal Soc Eur Tissue Repair Soc 21(2):320–328

    Article  Google Scholar 

  • Sarras MP Jr, Mason S, McAllister G, Intine RV (2014) Inhibition of poly-ADP ribose polymerase enzyme activity prevents hyperglycemia-induced impairment of angiogenesis during wound healing. Wound Repair Regen 22(5):666–670

    Article  Google Scholar 

  • Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87(1):4–14

    Article  CAS  Google Scholar 

  • Siekmann AF, Affolter M, Belting HG (2013) The tip cell concept 10 years after: new players tune in for a common theme. Exp Cell Res 319(9):1255–1263

    Article  CAS  Google Scholar 

  • Skinner MK, Manikkam M, Haque MM, Zhang B, Savenkova MI (2012) Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions. Genome Biol 13(10):R91

    Article  CAS  Google Scholar 

  • Skyler JS, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale EAM, Howard BV, Kirkman MS, Kosiborod M, Reaven P, Sherwin RS, American Diabetes Association, American College of Cardiology Foundation, American Heart Association (2009) Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care 32(1):187–192

    Article  Google Scholar 

  • Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC (2002) Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 106(22):2781–2786

    Article  Google Scholar 

  • Volkmar M, Dedeurwaerder S, Cunha DA, Ndlovu MN, Defrance M, Deplus R, Calonne E, Volkmar U, Igoillo-Esteve M, Naamane N, Del GS, Masini M, Bugliani M, Marchetti P, Cnop M, Eizirik DL, Fuks F (2012) DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J 31(6):1405–1426

    Article  CAS  Google Scholar 

  • Werling NJ, Thorpe R, Zhao Y (2013) A systematic approach to the establishment and characterization of endothelial progenitor cells for gene therapy. Hum Gene Ther Methods 24(3):171–184

    Article  CAS  Google Scholar 

  • Whitelaw NC, Whitelaw E (2008) Transgenerational epigenetic inheritance in health and disease. Curr Opin Genet Dev 18(3):273–279

    Article  CAS  Google Scholar 

  • Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2010) Evidence of increased islet cell proliferation in patients with recent-onset type 1 diabetes. Diabetologia 53(9):2020–2028

    Article  CAS  Google Scholar 

  • Williams KT, Garrow TA, Schalinske KL (2008) Type I diabetes leads to tissue-specific DNA hypomethylation in male rats. J Nutr 138(11):2064–2069

    Article  CAS  Google Scholar 

  • Yoon Y (2013) Reprogramming diabetic stem or progenitor cells for treating diabetic complications. Trans-NIH Angiogenesis Workshop, Division of Cancer Prevention. Lister Hill, NIH Main Campus, Division of Cancer Prevention

    Google Scholar 

  • Yuen RK, Jiang R, Penaherrera MS, McFadden DE, Robinson WP (2011) Genome-wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies. Epigenetics Chromatin 4(1):10

    Article  CAS  Google Scholar 

  • Zhang H, Cai X, Yi B, Huang J, Wang J, Sun J (2014) Correlation of CTGF gene promoter methylation with CTGF expression in type 2 diabetes mellitus with or without nephropathy. Mol Med Rep 9(6):2138–2144

    Article  CAS  Google Scholar 

  • Zhao J, Goldberg J, Bremner JD, Vaccarino V (2012) Global DNA methylation is associated with insulin resistance: a monozygotic twin study. Diabetes 61(2):542–546

    Article  CAS  Google Scholar 

  • Zhong Q, Kowluru RA (2010) Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon. J Cell Biochem 110(6):1306–1313

    Article  CAS  Google Scholar 

  • Zuo GW, Kohls CD, He BC, Chen L, Zhang W, Shi Q, Zhang BQ, Kang Q, Luo J, Luo X, Wagner ER, Kim SH, Restegar F, Haydon RC, Deng ZL, Luu HH, He TC, Luo Q (2010) The CCN proteins: important signaling mediators in stem cell differentiation and tumorigenesis. Histol Histopathol 25(6):795–806

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Sarras Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sarras, M.P., Leontovich, A.A. (2019). Long-Term Complications in Diabetes Mellitus and the Interrelationship of Blood Vessel Formation, Endothelial Progenitor Cells, and gDNA Methylation. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics