Linking Enhancer to Epigenetics: New Way to Think About Human Diseases

  • Zhuojuan Luo
  • Chengqi LinEmail author
Reference work entry


The spatiotemporal-specific gene expression in different cell types from a common genome of a multicellular organism is the basis of cellular function, tissue development, and homeostasis of the multicellular life. Dysregulation of the spatiotemporal gene expression pattern often leads to disease pathogenesis. Enhancers define distinct cell identities by determining the precise spatiotemporal patterns of gene expression during development. Enhancers can also respond to diverse environmental signals including different nutritional status to fine-tune the cellular functional demands. Thus, unraveling the intricate regulatory process of enhancer in governing gene expression has become a major thrust of the biological field to decipher developmental process and disease pathogenesis.


Enhancer Epigenetics Transcription RNA polymerase II Chromatin Histone modification cis-Regulatory element Human diseases Enhancer-promoter communication Topologically associating domain 

List of Abbreviations


Chromosome conformation capture


ALL1-fused gene from chromosome 9




Acute myeloid leukemia


Bromodomain and extra-terminal


Bromodomain-containing protein 4


CRISPR-associated protein-9 nuclease


CREB-binding protein


CTCF-binding site


Cyclin-dependent kinase 9


Cornelia de Lange syndrome


Chronic myelogenous leukemia


Complex proteins associated with set1


Cyclic AMP-responsive element-binding protein


Clustered regularly interspaced short palindromic repeat


CCCTC-binding factor


C-terminal domain


DNase I hypersensitive site


Diffuse intrinsic pontine glioma




DRB-sensitivity-inducing factor




Epidermal growth factor


Eleven-nineteen Lys-rich leukemia


Encyclopedia of DNA Elements


Eleven-nineteen leukemia


Enhancer RNA


Estrogen receptor-α


Enhancer of zeste homolog 2


Forkhead box


General transcription factor


Genome-wide association study


Histone H3 lysine 27 acetylation


Histone H3 lysine 27 trimethylation


Histone H3 lysine 4 monomethylation


Histone H3 lysine 4 trimethylation


Hexamethylene bisacetamide inducible 1


Hexamethylene bisacetamide inducible 2


Human Genome Project


Hodgkin lymphoma


International Cancer Genome Consortium


Immediate early gene


Jumonji C


Locked nucleic acid antisense oligonucleotide


Lysine (K)-specific demethylase 1A


Mixed lineage leukemia


Model Organism Encyclopedia of DNA Elements


Messenger RNA


Negative elongation factor


Nucleosome-free region


Next-generation sequencing


Non-Hodgkin lymphoma




Nucleosome remodeling and histone deacetylation


Polycomb group


Pre-initiation complex


Peroxisome proliferator-activated receptor gamma


Polycomb repressive complex 2


Positive transcription elongation factor b


RNA polymerase II


RNA recognition motif


Ribosomal RNA


Super elongation complex


SEC-like 2


SEC-like 3


Small interfering RNA


Single nucleotide polymorphism


Small nuclear ribonucleoprotein particle


Simian virus 40


Topologically associating domain


T-cell acute lymphoblastic leukemia


The Cancer Genome Atlas




Trithorax related


Trithorax group


Transcription start site




Ubiquitously transcribed X chromosome tetratricopeptide repeat protein


  1. Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13(10):720–731CrossRefGoogle Scholar
  2. Arner E, Daub CO et al (2015) Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347(6225):1010–1014CrossRefGoogle Scholar
  3. Banerji J, Rusconi S et al (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27(2 Pt 1):299–308CrossRefGoogle Scholar
  4. Banerji J, Olson L et al (1983) A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33(3):729–740CrossRefGoogle Scholar
  5. Buenrostro JD, Giresi PG et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10(12):1213–1218CrossRefGoogle Scholar
  6. Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49(5):825–837CrossRefGoogle Scholar
  7. Chen K, Chen Z et al (2015) Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes. Nat Genet 47(10):1149–1157CrossRefGoogle Scholar
  8. Creyghton MP, Cheng AW et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107(50):21931–21936CrossRefGoogle Scholar
  9. de Wit E, Vos ES et al (2015) CTCF binding polarity determines chromatin looping. Mol Cell 60(4):676–684CrossRefGoogle Scholar
  10. Di Croce L, Helin K (2013) Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 20(10):1147–1155CrossRefGoogle Scholar
  11. Dixon JR, Selvaraj S et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380CrossRefGoogle Scholar
  12. Dorsett D (2011) Cohesin: genomic insights into controlling gene transcription and development. Curr Opin Genet Dev 21(2):199–206CrossRefGoogle Scholar
  13. Filippakopoulos P, Knapp S (2014) Targeting bromodomains: epigenetic readers of lysine acetylation. Nat Rev Drug Discov 13(5):337–356CrossRefGoogle Scholar
  14. Gardini A, Baillat D et al (2014) Integrator regulates transcriptional initiation and pause release following activation. Mol Cell 56(1):128–139CrossRefGoogle Scholar
  15. Gui Y, Guo G et al (2011) Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet 43(9):875–878CrossRefGoogle Scholar
  16. Guo Y, Xu Q et al (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162(4):900–910CrossRefGoogle Scholar
  17. Haakonsson AK, Stahl Madsen M et al (2013) Acute genome-wide effects of rosiglitazone on PPARgamma transcriptional networks in adipocytes. Mol Endocrinol 27(9):1536–1549CrossRefGoogle Scholar
  18. Hannenhalli S, Kaestner KH (2009) The evolution of fox genes and their role in development and disease. Nat Rev Genet 10(4):233–240CrossRefGoogle Scholar
  19. Heintzman ND, Stuart RK et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318CrossRefGoogle Scholar
  20. Herz HM, Mohan M et al (2012) Enhancer-associated H3K4 monomethylation by Trithorax-related, the drosophila homolog of mammalian Mll3/Mll4. Genes Dev 26(23):2604–2620CrossRefGoogle Scholar
  21. Hu D, Gao X et al (2013) The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol Cell Biol 33(23):4745–4754CrossRefGoogle Scholar
  22. Hudson TJ, Anderson W et al (2010) International network of cancer genome projects. Nature 464(7291):993–998CrossRefGoogle Scholar
  23. Izumi K, Nakato R et al (2015) Germline gain-of-function mutations in AFF4 cause a developmental syndrome functionally linking the super elongation complex and cohesin. Nat Genet 47(4):338–344CrossRefGoogle Scholar
  24. Jin Q, Yu LR et al (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30(2):249–262CrossRefGoogle Scholar
  25. Kagey MH, Newman JJ et al (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature 467(7314):430–435CrossRefGoogle Scholar
  26. Kaikkonen MU, Spann NJ et al (2013) Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 51(3):310–325CrossRefGoogle Scholar
  27. Kim TK, Hemberg M et al (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187CrossRefGoogle Scholar
  28. Lai F, Gardini A et al (2015) Integrator mediates the biogenesis of enhancer RNAs. Nature 525(7569):399–403CrossRefGoogle Scholar
  29. Lee JE, Wang C et al (2013) H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. elife 2:e01503CrossRefGoogle Scholar
  30. Levine M (2011) Paused RNA polymerase II as a developmental checkpoint. Cell 145(4):502–511CrossRefGoogle Scholar
  31. Lewis PW, Muller MM et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340(6134):857–861CrossRefGoogle Scholar
  32. Li G, Ruan X et al (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148(1–2):84–98CrossRefGoogle Scholar
  33. Li W, Notani D et al (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498(7455):516–520CrossRefGoogle Scholar
  34. Lieberman-Aiden E, van Berkum NL et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293CrossRefGoogle Scholar
  35. Lin C, Smith ER et al (2010) AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia. Mol Cell 37(3):429–437CrossRefGoogle Scholar
  36. Lin C, Garrett AS et al (2011) Dynamic transcriptional events in embryonic stem cells mediated by the super elongation complex (SEC). Genes Dev 25(14):1486–1498CrossRefGoogle Scholar
  37. Lin C, Garruss AS et al (2013) The RNA pol II elongation factor Ell3 marks enhancers in ES cells and primes future gene activation. Cell 152(1–2):144–156CrossRefGoogle Scholar
  38. Luo Z, Lin C (2016) Enhancer, epigenetics, and human disease. Curr Opin Genet Dev 36:27–33CrossRefGoogle Scholar
  39. Luo Z, Lin C et al (2012a) The super elongation complex family of RNA polymerase II elongation factors: gene target specificity and transcriptional output. Mol Cell Biol 32(13):2608–2617CrossRefGoogle Scholar
  40. Luo Z, Lin C et al (2012b) The super elongation complex (SEC) family in transcriptional control. Nat Rev Mol Cell Biol 13(9):543–547CrossRefGoogle Scholar
  41. Mannini L, Lamaze FC et al (2015) Mutant cohesin affects RNA polymerase II regulation in Cornelia de Lange syndrome. Sci Rep 5:16803CrossRefGoogle Scholar
  42. Maurano MT, Humbert R et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337(6099):1190–1195CrossRefGoogle Scholar
  43. Mendenhall EM, Williamson KE et al (2013) Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31(12):1133–1136CrossRefGoogle Scholar
  44. Morin RD, Johnson NA et al (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185CrossRefGoogle Scholar
  45. Morin RD, Mendez-Lago M et al (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476(7360):298–303CrossRefGoogle Scholar
  46. Ntziachristos P, Tsirigos A et al (2014) Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature 514(7523):513–517CrossRefGoogle Scholar
  47. Pasquali L, Gaulton KJ et al (2014) Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 46(2):136–143CrossRefGoogle Scholar
  48. Pekowska A, Benoukraf T et al (2011) H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO J 30(20):4198–4210CrossRefGoogle Scholar
  49. Piunti A, Shilatifard A (2016) Epigenetic balance of gene expression by Polycomb and COMPASS families. Science 352(6290):aad9780CrossRefGoogle Scholar
  50. Qi W, Chan H et al (2012) Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci USA 109(52):21360–21365CrossRefGoogle Scholar
  51. Rada-Iglesias A, Bajpai R et al (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470(7333):279–283CrossRefGoogle Scholar
  52. Schaukowitch K, Joo JY et al (2014) Enhancer RNA facilitates NELF release from immediate early genes. Mol Cell 56(1):29–42CrossRefGoogle Scholar
  53. Sneeringer CJ, Scott MP et al (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B- cell lymphomas. Proc Natl Acad Sci USA 107(49):20980–20985CrossRefGoogle Scholar
  54. Soccio RE, Chen ER et al (2015) Genetic variation determines PPARgamma function and anti-diabetic drug response in vivo. Cell 162(1):33–44CrossRefGoogle Scholar
  55. Takahashi H, Parmely TJ et al (2011) Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146(1):92–104CrossRefGoogle Scholar
  56. Thurman RE, Rynes E et al (2012) The accessible chromatin landscape of the human genome. Nature 489(7414):75–82CrossRefGoogle Scholar
  57. Tie F, Banerjee R et al (2012) Histone demethylase UTX and chromatin remodeler BRM bind directly to CBP and modulate acetylation of histone H3 lysine 27. Mol Cell Biol 32(12):2323–2334CrossRefGoogle Scholar
  58. Tuan D, Kong S et al (1992) Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci USA 89(23):11219–11223CrossRefGoogle Scholar
  59. Van der Meulen J, Sanghvi V et al (2015) The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia. Blood 125(1):13–21CrossRefGoogle Scholar
  60. van Haaften G, Dalgliesh GL et al (2009) Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41(5):521–523CrossRefGoogle Scholar
  61. Varambally S, Dhanasekaran SM et al (2002) The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419(6907):624–629CrossRefGoogle Scholar
  62. Weinstein JN, Collisson EA et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120CrossRefGoogle Scholar
  63. Whyte WA, Bilodeau S et al (2012) Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 482(7384):221–225CrossRefGoogle Scholar
  64. Wu G, Broniscer A et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44(3):251–253CrossRefGoogle Scholar
  65. Yamaguchi H, Hung MC (2014) Regulation and role of EZH2 in cancer. Cancer Res Treat J Korean Cancer Assoc 46(3):209–222CrossRefGoogle Scholar
  66. Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25(21):2227–2241CrossRefGoogle Scholar
  67. Zuin J, Dixon JR et al (2014) Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci USA 111(3):996–1001CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina

Personalised recommendations