Skip to main content

Interplay Between Maternal Micronutrients, DNA Methylation, and Brain Development

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 142 Accesses

Abstract

Nutrition during critical periods of life (pregnancy and infancy) is known to play a major role in maintaining brain growth and development. The concept of early-life “programming” reflects the significance of early environmental exposures on the subsequent health of the offspring. Emerging evidence has shown an association between the early-life nutritional deficits with cognitive decline in later life. However, the underlying mechanisms are not well understood. Reports indicate that epigenetic mechanisms that are known to regulate gene expression may play a crucial role in mediating the link between early-life adversities and adult health. This chapter summarizes the role of maternal nutrition especially micronutrients in influencing brain development in the offspring. Micronutrients are required in smaller amounts by the body and act as cofactors for several enzymes involved in biological reactions within the cell. An overview of studies investigating the role of nutrition and DNA methylation patterns in the brain is also provided. A better understanding of the role of nutrition in influencing the brain epigenome may hold the key for prevention of brain disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DHA:

Docosahexaenoic acid

DNMT:

DNA methyltransferases

DOHaD:

Developmental Origins of Health and Disease

DOBHaD:

Developmental Origins of Behavior, Health, and Disease

LCPUFAs:

Long-chain polyunsaturated fatty acids

MeCP2:

Methyl CpG-binding protein 2

SAH:

S-adenosyl-homocysteine

SAM:

S-adenosyl methionine

References

  • Abdou E, Hazell AS (2015) Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochem Res 40:353–361

    Article  CAS  PubMed  Google Scholar 

  • Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23:853–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68:314–319

    Article  PubMed  PubMed Central  Google Scholar 

  • Barua S, Kuizon S, Brown WT, Junaid MA (2016) DNA methylation profiling at single-base resolution reveals gestational folic acid supplementation influences the epigenome of mouse offspring cerebellum. Front Neurosci 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  • Beard JL, Connor JR (2003) Iron status and neural functioning. Annu Rev Nutr 23:41–58

    Article  CAS  PubMed  Google Scholar 

  • Bekdash RA (2016) Choline and the brain: an epigenetic perspective. Adv Neurobiol 12:381–399

    Article  PubMed  Google Scholar 

  • Beltz BS, Tlusty MF, Benton JL, Sandeman DC (2007) Omega-3 fatty acids upregulate adult neurogenesis. Neurosci Lett 415:154–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben-Ari Y (2013) Neuropaediatric and neuroarchaeology: understanding development to correct brain disorders. Acta Paediatr 102(4):331

    Article  PubMed  Google Scholar 

  • Bhate V, Deshpande S, Bhat D, Joshi N, Ladkat R, Watve S et al (2008) Vitamin B12 status of pregnant Indian women and cognitive function in their 9-year-old children. Food Nutr Bull 29:249–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatia HS, Agrawal R, Sharma S, Huo YX, Ying Z, Gomez-Pinilla F (2011) Omega-3 fatty acid deficiency during brain maturation reduces neuronal and behavioral plasticity in adulthood. PLoS One 6:e28451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar S, Taneja S (2001) Zinc and cognitive development. Br J Nutr 85(Suppl 2):S139–S145

    Article  CAS  PubMed  Google Scholar 

  • Black MM (2008) Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull 29(Suppl 2):126–131

    Article  Google Scholar 

  • Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P (2008) Decoding the epigenetic language of neuronal plasticity. Neuron 60:961–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourre JM (2006) Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. J Nutr Health Aging 10:377–385

    CAS  PubMed  Google Scholar 

  • Breton C (2013) The hypothalamus-adipose axis is a key target of developmental programming by maternal nutritional manipulation. J Endocrinol 216:19–31

    Article  CAS  Google Scholar 

  • Brown AS, Susser ES (2008) Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull 34:1054–1063

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlson SJ, Fallon EM, Kalish BT, Gura KM, Puder M (2013) The role of the omega-3 fatty acid dha in the human life cycle. J Parenter Enter Nutr 37:15–22

    Article  CAS  Google Scholar 

  • Chang H, Zhang T, Zhang Z, Bao R, Fu C, Wang Z et al (2011) Tissue-specific distribution of aberrant dna methylation associated with maternal low-folate status in human neural tube defects. J Nutr Biochem 22:1172–1177

    Article  CAS  PubMed  Google Scholar 

  • Chen HF, Su HM (2013) Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life. J Nutri Biochem 24:70–80

    Article  CAS  Google Scholar 

  • Chowanadisai W, Kelleher SL, Lönnerdal B (2005) Maternal zinc deficiency reduces NMDA receptor expression in neonatal rat brain, which persists into early adulthood. J Neurochem 94:510–519

    Article  CAS  PubMed  Google Scholar 

  • da Costa KA, Sanders LM, Fischer LM, Zeisel SH (2011) Docosahexaenoic acid in plasma phosphatidylcholine may be a potential marker for in vivo phosphatidylethanolamine n-methyltransferase activity in humans. Am J Clin Nutr 93:968–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craciunescu CN, Albright CD, Mar MH, Song J, Zeisel SH (2003) Choline availability during embryonic development alters progenitor cell mitosis in developing mousehippocampus. J Nutr 133:3614–3618

    Article  CAS  PubMed  Google Scholar 

  • Crider KS, Yang TP, Berry RJ, Bailey LB (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv Nutr 3:21–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S et al (2012) Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 13:R43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deckelbaum RJ, Worgall TS, Seo T (2006) N-3 fatty acids and gene expression. Am J Clin Nutr 83(Suppl 6):1520S–1525S

    Article  CAS  PubMed  Google Scholar 

  • Delange F (2000) The role of iodine in brain development. Proc Nutr Soc 59:75–79

    Article  CAS  PubMed  Google Scholar 

  • Dror DK, Allen LH (2008) Effect of vitamin B12 deficiency on neurodevelopment in infants: current knowledge and possible mechanisms. Nutr Rev 66:250–255

    Article  PubMed  Google Scholar 

  • Du Q, Luu PL, Stirzaker C, Clark SJ (2015) Methyl-CpG-binding domain proteins: readers of the epigenome. Epigenomics 7:1051–1073

    Article  CAS  PubMed  Google Scholar 

  • Fan G, Martinowich K, Chin MH, He F, Fouse SD, Hutnick L et al (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132:3345–3356

    Article  CAS  PubMed  Google Scholar 

  • Fedorova I, Salem N Jr (2006) Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essent Fatty Acids 75:271–289

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Fan G (2009) The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 89:67–84

    Article  CAS  PubMed  Google Scholar 

  • Ferland G (2013) Vitamin K and brain function. Semin Thromb Hemost 39:849–855

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Roig S, Lai SC, Murphy MM, Fernandez-Ballart J, Quadros EV (2012) Vitamin B12 deficiency in the brain leads to dna hypomethylation in the TCblR/CD320 knockout mouse. Nutr Metab (Lond) 9:41

    Article  CAS  Google Scholar 

  • Franzek EJ, Sprangers N, Janssens AC, Van Duijn CM, Van De Wetering BJ (2008) Prenatal exposure to the 1944-45 Dutch “hunger winter” and addiction later in life. Addiction 103:433–438

    Article  PubMed  Google Scholar 

  • Fukui K, Nakamura K, Shirai M, Hirano A, Takatsu H, Urano S (2015) Long-term vitamin E-deficient mice exhibit cognitive dysfunction via elevation of brain oxidation. J Nutr Sci Vitaminol (Tokyo) 61:362–368

    Article  CAS  Google Scholar 

  • Fuso A, Scarpa S (2011) One-carbon metabolism and Alzheimer’s disease: is it all a methylation matter? Neurobiol Aging 32:1192–1195

    Article  CAS  PubMed  Google Scholar 

  • Gabory A, Attig L, Junien C (2011) Epigenetic mechanisms involved in developmental nutritional programming. World J Diabetes 2:164–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Geoffroy A, Kerek R, Pourie G, Helle D, Gueant JL, Daval JL et al (2016) Late maternal folate supplementation rescues from methyl donor deficiency-associated brain defects by restoring let-7 and miR-34 pathways. Mol Neurobiol. https://doi.org/10.1007/s12035-016-0035-8

  • Georgieff MK (2007) Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 85:614S–620S

    CAS  PubMed  Google Scholar 

  • Gibellini F, Smith TK (2010) The Kennedy pathway--de novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62:414–428

    Article  CAS  PubMed  Google Scholar 

  • Gilbert ME, Hedge JM, Valentín-Blasini L, Blount BC, Kannan K, Tietge J et al (2013) An animal model of marginal iodine deficiency during development: the thyroid axis and neurodevelopmental outcome. Toxicol Sci 132:177–195

    Article  CAS  PubMed  Google Scholar 

  • Giussani DA (2011) The vulnerable developing brain. Proc Natl Acad Sci U S A 108:2641–2642

    Article  PubMed  PubMed Central  Google Scholar 

  • Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haghighi F, Galfalvy H, Chen S, Huang YY, Cooper TB, Burke AK (2015) DNA methylation perturbations in genes involved in polyunsaturated fatty acid biosynthesis associated with depression and suicide risk. Front Neurol 6:92

    Article  PubMed  PubMed Central  Google Scholar 

  • Handy DE, Castro R, Loscalzo J (2011) Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation 123:2145–2156

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison FE, May JM (2009) Vitamin C function in the brain: vital role of the ascorbate transporter SVCT2. Free Radic Biol Med 46(6):719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawes JE, Tesic D, Whitehouse AJ, Zosky GR, Smith JT, Wyrwoll CS (2015) Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav Brain Res 286:192–200

    Article  CAS  PubMed  Google Scholar 

  • He F, Lupu DS, Niculescu MD (2014) Perinatal alpha-linolenic acid availability alters the expression of genes related to memory and to epigenetic machinery, and the MECP2 DNA methylation in the whole brain of mouse offspring. Int J Dev Neurosci 36:38–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoek HW, Brown AS, Susser E (1998) The Dutch famine and schizophrenia spectrum disorders. Soc Psychiatry Psychiatr Epidemiol 33:373–379

    Article  CAS  PubMed  Google Scholar 

  • Hoile SP, Clarke-Harris R, Huang RC, Calder PC, Mori TA, Beilin LJ et al (2014) Supplementation with n-3 long-chain polyunsaturated fatty acids or olive oil in men and women with renal disease induces differential changes in the dna methylation of FADS2 and elovl5 in peripheral blood mononuclear cells. PLoS One 9:e109896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii D, Matsuzawa D, Matsuda S, Tomizawa H, Sutoh C, Shimizu E (2014) Methyl donor-deficient diet during development can affect fear and anxiety in adulthood in C57BL/6J mice. PLoS One 9:e105750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacka FN, Ystrom E, Brantsaeter AL, Karevold E, Roth C, Haugen M et al (2013) Maternal and early postnatal nutrition and mental health of offspring by age 5 years: a prospective cohort study. J Am Acad Child Adolesc Psychiatry 52:1038–1047

    Article  PubMed  Google Scholar 

  • Juliandi B, Abematsu M, Nakashima K (2010) Epigenetic regulation in neural stem cell differentiation. Develop Growth Differ 52:493–504

    Article  CAS  Google Scholar 

  • Kennedy DO (2016) B vitamins and the brain: mechanisms, dose and efficacy–a review. Forum Nutr 8(2):68

    Google Scholar 

  • Kerek R, Geoffroy A, Bison A, Martin N, Akchiche N, Pourie G et al (2013) Early methyl donor deficiency may induce persistent brain defects by reducing Stat3 signaling targeted by mir-124. Cell Death Dis 4:e755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J et al (2004) Regional patterns of gene expression in human and chimpanzee brains. Genome Res 14:1462–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khot V, Kale A, Joshi A, Chavan-Gautam P, Joshi S (2014) Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids. Biomed Res Int 2014:613078

    Article  PubMed  PubMed Central  Google Scholar 

  • Khot V, Chavan-Gautam P, Joshi S (2015) Proposing interactions between maternal phospholipids and the one carbon cycle: a novel mechanism influencing the risk for cardiovascular diseases in the offspring in later life. Life Sci 129:16–21

    Article  CAS  PubMed  Google Scholar 

  • Kirkbride JB, Susser E, Kundakovic M, Kresovich JK, Davey Smith G, Relton CL (2012) Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects? Epigenomics 4:303–315

    Article  CAS  PubMed  Google Scholar 

  • Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Jayasooriya AP et al (2004) Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci U S A 101:10931–10936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacheva VP, Mellott TJ, Davison JM, Wagner N, Lopez-Coviella I, Schnitzler AC et al (2007) Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of dnmt1 expression. J Biol Chem 282:31777–31788

    Article  CAS  PubMed  Google Scholar 

  • Kozlenkov A, Roussos P, Timashpolsky A, Barbu M, Rudchenko S, Bibikova M et al (2014) Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Res 42:109–127

    Article  CAS  PubMed  Google Scholar 

  • de Kroon AI, Rijken PJ, De Smet CH (2013) Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog Lipid Res 52:374–394

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S (2011) Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global dna methylation patterns in Wistar rats. PLoS One 6:e17706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Fata G, Weber P, Mohajeri MH (2014) Effects of vitamin E on cognitive performance during ageing and in Alzheimer's disease. Forum Nutr 6:5453–5472

    Google Scholar 

  • Ladd-Acosta C, Pevsner J, Sabunciyan S, Yolken RH, Webster MJ, Dinkins T et al (2007) DNA methylation signatures within the human brain. Am J Hum Genet 81:1304–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanet E, Maurange C (2014) Building a brain under nutritional restriction: insights on sparing and plasticity from drosophila studies. Front Physiol 5:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    Article  CAS  PubMed  Google Scholar 

  • Levenson CW, Morris D (2011) Zinc and neurogenesis: making new neurons from development to adulthood. Adv Nutr 2:96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6:a019133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Kim J, Buckett PD, Böhlke M, Maher TJ, Wessling-Resnick M (2011) Severe postnatal iron deficiency alters emotional behavior and dopamine levels in the prefrontal cortex of young male rats. J Nutr 141:2133–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhao SR, Reyes T (2015) Neurological and epigenetic implications of nutritional deficiencies on psychopathology: conceptualization and review of evidence. Int J Mol Sci 16:18129–18148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozoff B, Georgieff MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13:158–165

    Article  PubMed  Google Scholar 

  • Lu H, Liu X, Deng Y, Qing H (2013) DNA methylation, a hand behind neurodegenerative diseases. Front Aging Neurosci 5:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012:736837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ly A, Ishiguro L, Kim D, Im D, Kim SE, Sohn KJ et al (2016) Maternal folic acid supplementation modulates dna methylation and gene expression in the rat offspring in a gestation period-dependent and organ-specific manner. J Nutr Biochem 33:103–110

    Article  CAS  PubMed  Google Scholar 

  • Malouf R, Grimley Evans J (2003) The effect of vitamin B6 on cognition. Cochrane Database Syst Rev 4:CD004393

    Google Scholar 

  • Mehedint MG, Craciunescu CN, Zeisel SH (2010) Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proc Natl Acad Sci U S A 107:12834–12839

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizee MR, Wooldrik D, Lakeman KA, van het Hof B, Drexhage JA, Geerts D et al (2013) Retinoic acid induces blood-brain barrier development. J Neurosci 33:1660–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molloy AM, Kirke PN, Brody LC, Scott JM, Mills JL (2008) Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr Bull 29(Suppl 2):101–111

    Article  Google Scholar 

  • Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38:23–38

    Article  CAS  PubMed  Google Scholar 

  • Morris MJ, Monteggia LM (2014) Role of DNA methylation and the DNA methyltransferases in learning and memory. Dialogues Clin Neurosci 16:359–371

    PubMed  PubMed Central  Google Scholar 

  • Neul JL (2012) The relationship of Rett syndrome and MECP2 disorders to autism. Dialogues Clin Neurosci 14:253–262

    PubMed  PubMed Central  Google Scholar 

  • Nguyen S, Meletis K, Fu D, Jhaveri S, Jaenisch R (2007) Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dyn 236:1663–1676

    Article  CAS  PubMed  Google Scholar 

  • Nguyen MV, Du F, Felice CA, Shan X, Nigam A, Mandel G et al (2012) MeCP2 is critical for maintaining mature neuronal networks and global brain anatomy during late stages of postnatal brain development and in the mature adult brain. J Neurosci 32:10021–10034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niculescu MD, Craciunescu CN, Zeisel SH (2006) Dietary choline deficiency alters global and gene-specific dna methylation in the developing hippocampus of mouse fetal brains. FASEB J 20:43–49

    Article  CAS  PubMed  Google Scholar 

  • Niculescu MD, Lupu DS, Craciunescu CN (2013) Perinatal manipulation of alpha-linolenic acid intake induces epigenetic changes in maternal and offspring livers. FASEB J 27:350–358

    Article  CAS  PubMed  Google Scholar 

  • Numata S, Ye T, Hyde TM, Guitart-Navarro X, Tao R, Wininger M et al (2012) DNA methylation signatures in development and aging of the human prefrontal cortex. Am J Hum Genet 90:260–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson CR, Mello CV (2010) Significance of vitamin a to brain function, behavior and learning. Mol Nutr Food Res 54:489–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paternain L, Martisova E, Campion J, Martinez JA, Ramirez MJ, Milagro FI (2016) Methyl donor supplementation in rats reverses the deleterious effect of maternal separation on depression-like behaviour. Behav Brain Res 299:51–58

    Article  CAS  PubMed  Google Scholar 

  • Pechtel P, Pizzagalli DA (2011) Effects of early life stress on cognitive and affective function: an integrated review of human literature. Psychopharmacology 214:55–70

    Article  CAS  PubMed  Google Scholar 

  • Pepper MR, Black MM (2011) B12 in fetal development. Semin Cell Dev Biol 22:619–623

    Article  CAS  PubMed  Google Scholar 

  • Pogribny IP, Karpf AR, James SR, Melnyk S, Han T, Tryndyak VP (2008) Epigenetic alterations in the brains of fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Res 1237:25–34

    Article  CAS  PubMed  Google Scholar 

  • Prado EL, Dewey KG (2014) Nutrition and brain development in early life. Nutr Rev 72:267–284

    Article  PubMed  Google Scholar 

  • Prohaska JR, Gybina AA (2005) Rat brain iron concentration is lower following perinatal copper deficiency. J Neurochem 93:698–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds E (2006) Vitamin B12, folic acid, and the nervous system. Lancet Neurol 5:949–960

    Article  CAS  PubMed  Google Scholar 

  • del Rio Garcia C, Torres-Sanchez L, Chen J, Schnaas L, Hernandez C, Osorio E et al (2009) Maternal MTHFR 677C>T genotype and dietary intake of folate and vitamin B(12): their impact on child neurodevelopment. Nutr Neurosci 12:13–20

    Article  CAS  PubMed  Google Scholar 

  • Ross SA (2003) Diet and DNA methylation interactions in cancer prevention. Ann N Y Acad Sci 983:197–207

    Article  CAS  PubMed  Google Scholar 

  • Roth RB, Hevezi P, Lee J, Willhite D, Lechner SM, Foster AC et al (2006) Gene expression analyses reveal molecular relationships among 20 regions of the human CNS. Neurogenetics 7:67–80

    Article  CAS  PubMed  Google Scholar 

  • Sable P, Randhir K, Kale A, Chavan-Gautam P, Joshi S (2015) Maternal micronutrients and brain global methylation patterns in the offspring. Nutr Neurosci 18:30–36

    Article  CAS  PubMed  Google Scholar 

  • Sandberg R, Yasuda R, Pankratz DG, Carter TA, Del Rio JA, Wodicka L et al (2010) Regional and strain-specific gene expression mapping in the adult mouse brain. Proc Natl Acad Sci U S A 97:11038–11043

    Article  Google Scholar 

  • Sandstead HH (2000) Causes of iron and zinc deficiencies and their effects on brain. J Nutr 130:347S–349S

    Article  CAS  PubMed  Google Scholar 

  • Schneider E, Dittrich M, Bock J, Nanda I, Muller T, Seidmann L et al (2016) CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development. Gene 592:110–118

    Article  CAS  PubMed  Google Scholar 

  • Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM (2004) Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol 160:102–109

    Article  PubMed  Google Scholar 

  • Skeaff SA (2011) Iodine deficiency in pregnancy: the effect on neurodevelopment in the child. Forum Nutr 3:265–273

    Google Scholar 

  • Spiers H, Hannon E, Schalkwyk LC, Smith R, Wong CC, O'Donovan MC et al (2015) Methylomic trajectories across human fetal brain development. Genome Res 25:338–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steenweg-de Graaff J, Tiemeier H, Steegers-Theunissen RP, Hofman A, Jaddoe VW, Verhulst FC et al (2014) Maternal dietary patterns during pregnancy and child internalising and externalising problems. The generation R study. Clin Nutr 33:115–121

    Article  PubMed  Google Scholar 

  • Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20:327–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Stover PJ (2009) One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr 139:2402–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan EL, Grayson B, Takahashi D, Robertson N, Maier A, Bethea CL et al (2010) Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci 30:3826–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun MA, Sun Z, Wu X, Rajaram V, Keimig D, Lim J et al (2016) Mammalian brain development is accompanied by a dramatic increase in bipolar DNA methylation. Sci Rep 6:32298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomizawa H, Matsuzawa D, Ishii D, Matsuda S, Kawai K, Mashimo Y et al (2015) Methyl-donor deficiency in adolescence affects memory and epigenetic status in the mouse hippocampus. Genes Brain Behav 14:301–309

    Article  CAS  PubMed  Google Scholar 

  • Tveden-Nyborg P, Vogt L, Schjoldager JG, Jeannet N, Hasselholt S, Paidi MD et al (2012) Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs. PLoS One 7:e48488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi E, Zhuang Y, Agrawal R, Ying Z, Gomez-Pinilla F (2015) Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol Dis 73:307–318

    Article  CAS  PubMed  Google Scholar 

  • Van den Bergh BR (2011) Developmental programming of early brain and behaviour development and mental health: a conceptual framework. Dev Med Child Neurol 53(Suppl 4):19–23

    Article  PubMed  Google Scholar 

  • Wang L, Wang F, Guan J, Le J, Wu L, Zou J et al (2010) Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr 91:1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG (2006) Maternal methyl supplements increase offspring dna methylation at axin fused. Genesis 44:401–406

    Article  CAS  PubMed  Google Scholar 

  • Watkins SM, Zhu X, Zeisel SH (2003) Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. J Nutr 133:3386–3391

    Article  CAS  PubMed  Google Scholar 

  • Wrottesley SV, Lamper C, Pisa PT (2016) Review of the importance of nutrition during the first 1000 days: maternal nutritional status and its associations with fetal growth and birth, neonatal and infant outcomes among African women. J Dev Orig Health Dis 7:144–162

    Article  CAS  PubMed  Google Scholar 

  • Xu MQ, Sun W, Liu BX, Feng GY, Yu L, Yang L et al (2009) Prenatal malnutrition and adult schizophrenia: further evidence from the 1959-1961 Chinese famine. Schizophr Bull 35:568–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Yavin E, Himovichi E, Eilam R (2009) Delayed cell migration in the developing rat brain following maternal omega-3 alpha linolenic acid dietary deficiency. Neuroscience 162:1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Jin L, Zhang X, Yu X (2013) Effects of maternal mild zinc deficiency and zinc supplementation in offspring on spatial memory and hippocampal neuronal ultrastructural changes. Nutrition 29:457–461

    Article  CAS  PubMed  Google Scholar 

  • Zeisel SH (2011) The supply of choline is important for fetal progenitor cells. Semin Cell Dev Biol 22:624–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zovkic IB, Guzman-Karlsson MC, Sweatt JD (2013) Epigenetic regulation of memory formation and maintenance. Learn Mem 20:61–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rathod, R., Joshi, S. (2019). Interplay Between Maternal Micronutrients, DNA Methylation, and Brain Development. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics