Skip to main content

Modulation of microRNA by Vitamin D in Cancer Studies

  • Reference work entry
  • First Online:

Abstract

Vitamin D, a steroid hormone, is well known for its influence in regulating gene expression via the action of the vitamin D receptor, in addition to its classical roles in maintaining calcium homeostasis and bone health. Recently, vitamin D status has been linked to a number of additional nonskeletal diseases, including cancers. Aberrant miRNA profiles have been demonstrated in malignant tissues and in the serum and plasma of cancer patients, leading to investigations into the potential that vitamin D-dependent modulation of miRNA profiles is involved in determining the risk and progression of malignancy. A number of studies, mostly in cell culture models, have demonstrated the modulation of a number of miRNA in a number of cancers; however, results vary depending on the cell line, stimulation concentration, and time of treatment. Additional studies are needed to assess similar relationships in other diseases where risk is linked to vitamin D status. While few studies have been conducted in humans, differences in serum profiles relative to vitamin D levels have been demonstrated. miRNA may provide a link between vitamin D status and disease risk, and this may offer a potential therapeutic avenue. Evidence exists to show that vitamin D can modulate miRNA levels by altering expression of the enzymes involved in miRNA biogenesis and direct and indirect induction of miRNA transcription. However, additional studies are needed to fully elucidate the genetic pathways resulting in modulation of miRNA and to understand the complex interactions between miRNA and vitamin D-related targets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1,25(OH)2D:

1,25-dihydroxycholecalciferol/calcitriol

25(OH)D:

25-hydroxycholecaliferol/calcidiol

Ago:

Argonaute

AML:

Acute myeloid leukemia

CRC:

Colorectal cancer

LPS:

Lipopolysaccharide

mRNA:

Messenger RNA

miRNA:

microRNA

pre-miRNA:

Precursor microRNA

pri-miRNA:

Primary microRNA

RISC:

RNA-induced silencing complex

RXR:

Retinoic acid receptor

VDR:

Vitamin D receptor

VDRE:

Vitamin D response element

References

  • Adorini L, Penna G (2008) Control of autoimmune diseases by the vitamin D endocrine system. Nat Clin Pract Rheumatol 4:404–412

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Díaz S et al (2012) MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. Hum Mol Genet 21(10):2157–2165

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartoszewski R et al (2011) The unfolded protein response (UPR)-activated transcription factor X-box-binding protein 1 (XBP1) induces microRNA-346 expression that targets the human antigen peptide transporter 1 (TAP1) mRNA and governs immune regulatory genes. J Biol Chem 286(48):41862–41870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckett EL et al (2014) The role of vitamins and minerals in modulating the expression of microRNA. Nutr Res Rev 27(1):94–106

    Article  CAS  PubMed  Google Scholar 

  • Biasiolo M et al (2011) Impact of host genes and strand selection on miRNA and miRNA* expression. PLoS One 6(8):e23854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borkowski R et al (2015) Genetic mutation of p53 and suppression of the miR-17 approximately 92 cluster are synthetic lethal in non-small cell lung cancer due to upregulation of vitamin D signaling. Cancer Res 75(4):666–675

    Article  CAS  PubMed  Google Scholar 

  • Carlberg C, Campbell MJ (2013) Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor. Steroids 78(2):127–136

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet G et al (2015) Vitamin D signaling in calcium and bone homeostasis: a delicate balance. Best Pract Res Clin Endocrinol Metab 29(4):621–631

    Article  CAS  PubMed  Google Scholar 

  • Chang S et al (2015) miR-145 mediates the antiproliferative and gene regulatory effects of vitamin D3 by directly targeting E2F3 in gastric cancer cells. Oncotarget 6(10):7675–7685

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheloufi S et al (2010) A dicer-independent miRNA biogenesis pathway that requires ago catalysis. Nature 465:584–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y et al (2013) 1,25-Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages. J Immunol 190(7):3687–3695

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2014) MicroRNA-346 mediates tumor necrosis factor alpha-induced downregulation of gut epithelial vitamin D receptor in inflammatory bowel diseases. Inflamm Bowel Dis 20(11):1910–1918

    Article  PubMed  Google Scholar 

  • Chiosea S et al (2006) Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. Am J Pathol 169(5):1812–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Zhuo X et al (2010) Vitamin D3 up-regulated protein 1(VDUP1) is regulated by FOXO3A and miR-17-5p at the transcriptional and post-transcriptional levels, respectively, in senescent fibroblasts. J Biol Chem 285(41):31491–31501

    Article  CAS  PubMed Central  Google Scholar 

  • Disanto G et al (2012) Vitamin D receptor binding, chromatin states and association with multiple sclerosis. Hum Mol Genet 21(16):3575–3586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enquobahrie D et al (2011) Global maternal early pregnancy peripheral blood mRNA and miRNA expression profiles according to plasma 25-hydroxyvitamin D concentrations. J Matern Fetal Neonatal Med 24(8):1002–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang F et al (2011) Prediagnostic plasma vitamin D metabolites and mortality among patients with prostate cancer. PLoS One 6(4):e18625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetahu IS et al (2014) Vitamin D and the epigenome. Front Physiol 5:164

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontemaggi G et al (2015) Identification of post-transcriptional regulatory networks during myeloblast-to-monocyte differentiation transition. RNA Biol 12(7):690–700

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman RC et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandini S et al (2011) Meta-analysis of observational studies of serum 25-hydroxyvitamin D levels and colorectal, breast and prostate cancer and colorectal adenoma. Int J Cancer 128(6):1414–1424

    Article  CAS  PubMed  Google Scholar 

  • Garzon R et al (2006) MicroRNA expression and function in cancer. Trends Mol Med 12(12):580–587

    Article  CAS  PubMed  Google Scholar 

  • Giangreco AA, Nonn L (2013) The sum of many small changes: microRNAs are specifically and potentially globally altered by vitamin D3 metabolites. J Steroid Biochem Mol Biol 136:86–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giangreco A et al (2013) Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue. Cancer Prev Res (Phila) 6(5):483–494

    Article  CAS  Google Scholar 

  • Giovannucci E (2005) The epidemiology of vitamin D and cancer incidence and mortality: a review (United States). Cancer Causes Control 16(2):83–95

    Article  PubMed  Google Scholar 

  • Gocek E et al (2011) MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res 71(19):6230–6239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Duarte RJ et al (2015) Calcitriol increases Dicer expression and modifies the microRNAs signature in SiHa cervical cancer cells. Biochem Cell Biol 93(4):376–384

    Article  CAS  PubMed  Google Scholar 

  • Griffin MD et al (2001) Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci U S A 98(12):6800–6805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan H et al (2013) 1,25-Dihydroxyvitamin D3 up-regulates expression of hsa-let-7a-2 through the interaction of VDR/VDRE in human lung cancer A549 cells. Gene 522(2):142–146

    Article  CAS  PubMed  Google Scholar 

  • He L et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heikkinen S et al (2011) Nuclear hormone 1alpha,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res 39(21):9181–9193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu JY et al (2001) Reduced 1alpha-hydroxylase activity in human prostate cancer cells correlates with decreased susceptibility to 25-hydroxyvitamin D3-induced growth inhibition. Cancer Res 61(7):2852–2856

    CAS  PubMed  Google Scholar 

  • Iosue I et al (2013) Argonaute 2 sustains the gene expression program driving human monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis 4:e926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs ET et al (2016) Vitamin D and colorectal, breast, and prostate cancers: a review of the epidemiological evidence. J Cancer 7(3):232–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao L et al (2014) miR-663 induces castration-resistant prostate cancer transformation and predicts clinical recurrence. J Cell Physiol 229(7):834–844

    Article  CAS  PubMed  Google Scholar 

  • Jorde R et al (2012) Plasma profile of microRNA after supplementation with high doses of vitamin D3 for 12 months. BMC Res Notes 5(1):245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Kim V (2012) MicroRNA factory: RISC assembly from precursor MicroRNAs. Mol Cell 46(4):384–386

    Article  CAS  PubMed  Google Scholar 

  • Kinjyo I et al (2002) SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17(5):583–591

    Article  CAS  PubMed  Google Scholar 

  • Komagata S et al (2009) Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol Pharmacol 76(4):702–709

    Article  CAS  PubMed  Google Scholar 

  • Lamprecht S, Lipkin M (2003) Chemoprevention of colon cancer by calcium, vitamin D and folate: molecular mechanisms. Nat Rev Cancer 3:601–614

    Article  CAS  PubMed  Google Scholar 

  • Lappe J et al (2007) Vitamin D and calcium supplementation reduces cancer risk: results of a randomized trial1,2. Am J Clin Nutr 85(6):1586–1591

    Article  CAS  PubMed  Google Scholar 

  • Lee Y et al (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J et al (2013) Hypermethylation and post-transcriptional regulation of DNA methyltransferases in the ovarian carcinomas of the laying hen. PLoS One 8(4):e61658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ et al (2014) Low 25(OH) vitamin D3 levels are associated with adverse outcome in newly diagnosed, intensively treated adult acute myeloid leukemia. Cancer 120(4):521–529

    Article  CAS  PubMed  Google Scholar 

  • Li YC et al (2014) MicroRNA-mediated mechanism of vitamin D regulation of innate immune response. J Steroid Biochem Mol Biol 144(Pt A):81–86

    Article  CAS  PubMed  Google Scholar 

  • Li F et al (2015) 1alpha,25-Dihydroxyvitamin D3 prevents the differentiation of human lung fibroblasts via microRNA-27b targeting the vitamin D receptor. Int J Mol Med 36(4):967–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PT et al (2012) MicroRNA-21 targets the vitamin D-dependent antimicrobial pathway in leprosy. Nat Med 18(2):267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y et al (2015) 1alpha,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells. J Steroid Biochem Mol Biol 148:166–171

    Article  CAS  PubMed  Google Scholar 

  • Min D et al (2013) Downregulation of miR-302c and miR-520c by 1,25(OH)2D3 treatment enhances the susceptibility of tumour cells to natural killer cell-mediated cytotoxicity. Br J Cancer 109(3):723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyaura C et al (1981) 1 alpha,25-Dihydroxyvitamin D3 induces differentiation of human myeloid leukemia cells. Biochem Biophys Res Commun 102(3):937–943

    Article  CAS  PubMed  Google Scholar 

  • Mohamadkhani A et al (2015) Negative association of plasma levels of vitamin D and miR-378 with viral load in patients with chronic hepatitis B infection. Hepat Mon 15(6):e28315

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohr SB et al (2011) Ultraviolet B and incidence rates of leukemia worldwide. Am J Prev Med 41(1):68–74

    Article  PubMed  Google Scholar 

  • Mohri T et al (2009) MicroRNA regulates human vitamin D receptor. Int J Cancer 125(6):1328–1333

    Article  CAS  PubMed  Google Scholar 

  • Munker R et al (1986) Vitamin D compounds. Effect on clonal proliferation and differentiation of human myeloid cells. J Clin Invest 78(2):424–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newmark HL et al (2009) Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: a preclinical model for human sporadic colon cancer. Carcinogenesis 30(1):88–92

    Article  CAS  PubMed  Google Scholar 

  • Padi S et al (2013) MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. Gastroenterology 145(2):437–446

    Article  CAS  PubMed  Google Scholar 

  • Pedersen AW et al (2009) Phenotypic and functional markers for 1alpha,25-dihydroxyvitamin D(3)-modified regulatory dendritic cells. Clin Exp Immunol 157(1):48–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X et al (2010) Protection against cellular stress by 25-hydroxyvitamin D3 in breast epithelial cells. J Cell Biochem 110(6):1324–1333

    Article  CAS  PubMed  Google Scholar 

  • Pobezinsky LA et al (2015) Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function. Nat Immunol 16(5):517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prosser DE, Jones G (2004) Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci 29(12):664–673

    Article  CAS  PubMed  Google Scholar 

  • Ramagopalan SV et al (2010) A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res 20(10):1352–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaki T et al (2005) Metabolism of vitamin D3 by cytochromes P450. Front Biosci 10:119–134

    Article  CAS  PubMed  Google Scholar 

  • Salvatori B et al (2011) Critical role of c-Myc in acute myeloid leukemia involving direct regulation of miR-26a and histone methyltransferase EZH2. Genes Cancer 2(5):585–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvatori B et al (2012) The microRNA-26a target E2F7 sustains cell proliferation and inhibits monocytic differentiation of acute myeloid leukemia cells. Cell Death Dis 3:e413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schotte D et al (2012) MicroRNAs in acute leukemia: from biological players to clinical contributors. Leukemia 26(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Singh PK et al (2015) VDR regulation of microRNA differs across prostate cell models suggesting extremely flexible control of transcription. Epigenetics 10(1):40–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonkoly E et al (2012) MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma. Oncogene 1:e3

    Article  CAS  Google Scholar 

  • Tangpricha V et al (2005) Vitamin D deficiency enhances the growth of MC-26 colon cancer xenografts in Balb/c mice. J Nutr 135(10):2350–2354

    Article  CAS  PubMed  Google Scholar 

  • Thorne JL et al (2011) Epigenetic control of a VDR-governed feed-forward loop that regulates p21(waf1/cip1) expression and function in non-malignant prostate cells. Nucleic Acids Res 39(6):2045–2056

    Article  CAS  PubMed  Google Scholar 

  • Ting H et al (2013) Identification of microRNA-98 as a therapeutic target inhibiting prostate cancer growth and a biomarker induced by vitamin D. J Biol Chem 288(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Townsend K et al (2005) Autocrine metabolism of vitamin D in normal and malignant breast tissue. Clin Cancer Res 11(9):3579–3586

    Article  CAS  PubMed  Google Scholar 

  • Trump DL et al (2009) Vitamin D deficiency and insufficiency among patients with prostate cancer. BJU Int 104(7):909–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volinia S et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T et al (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117:503–511

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2009) MicroRNAs181 regulate the expression of p27Kip1 in human myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3. Cell Cycle 8(5):736–741

    Article  CAS  PubMed  Google Scholar 

  • Wang WL et al (2011) Effects of 1alpha,25 dihydroxyvitamin D3 and testosterone on miRNA and mRNA expression in LNCaP cells. Mol Cancer 10:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2012) Where is the vitamin D receptor? Arch Biochem Biophys 523(1):123–133

    Article  CAS  PubMed  Google Scholar 

  • Wickramasinghe NS et al (2009) Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res 37(8):2584–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X et al (2012) miR-125b regulation of androgen receptor signaling via modulation of the receptor complex co-repressor NCOR2. Biores Open Access 1(2):55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye EA, Steinle JJ (2016) miR-146a attenuates inflammatory pathways mediated by TLR4/NF-kappaB and TNFalpha to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediat Inflamm 2016:3958453

    Google Scholar 

  • Yi R et al (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2010) microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer 103(8):1215–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2011) DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex. Nat Struct Mol Biol 18(5):556–563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma L. Beckett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Beckett, E.L., Veysey, M., Yates, Z., Lucock, M. (2019). Modulation of microRNA by Vitamin D in Cancer Studies. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics