Skip to main content

Epigenetics, Dietary Restriction, and Insects: Implications for Humankind

  • Reference work entry
  • First Online:
  • 165 Accesses

Abstract

Diet nutrition has been confirmed to influence health for decades. Proper total nutrition intake is beneficial for organisms’ health from yeast, insects, rodents, to humans. Epigenetic factors are considered to be one of the mediators of the dietary effects, which make the effects remembered from one cell generation to the next by marking on the genome. In this chapter, we will review the accumulative evidences about the association between epigenetic factors (including DNA methylation, histone modifications, and other epigenetic factors), and diet nutrition especially dietary restriction, and its implications for humankind. At the same time, we suggest that insects can be employed as efficient models to investigate the fundamental basis of human diseases especially the involvement of epigenetic mechanisms, because insects owe inexpensive cost, easy accessibility, shorter generations, along with conserved epigenetic mechanisms and signaling pathways with humans.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5mC:

5-Methylcytosine

6mA:

N6-Methyladenine

10-HDA:

(E)-10-hydroxy-2-decenoic acid

ChIP-seq:

Chromatin immunoprecipitation sequencing

DMGs:

Differentiated methylated genes

Dnmts:

DNA methyltransferases

DR:

Dietary restriction

EGFR:

Epidermal growth factor receptor

H3K27ac:

Histone H3 at lysine 27

HAD:

10-hydroxy-2-decenoic acid

HDAC:

Histone deacetylase

HDACi:

Histone deacetylase inhibitor

LC-MS/MS:

Liquid chromatography coupled with tandem mass spectrometry

lnc-RNAs:

Long noncoding RNAs

LPHC:

Low-protein, high-carbohydrate diet

OCM:

One-carbon metabolism

RJ:

Royal jelly

SAM:

S-adenosylmethionine

Sir2 :

Sirtuin-2

TEs:

Transposable elements

WJ:

Worker jelly

References

  • Bauer JH, Morris SNS, Chang C et al (2009) dSir2 and Dmp53 interact to mediate aspects of CR-dependent lifespan extension in D. melanogaster. Aging (Albany NY) 1:38–48

    Article  CAS  Google Scholar 

  • Bayersdorfer F, Voigt A, Schneuwly S et al (2010) Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson’s disease. Neurobiol Dis 40:113–119

    Article  CAS  Google Scholar 

  • Bednar J, Horowitz RA, Grigoryev SA et al (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci 95:14173–14178

    Article  CAS  Google Scholar 

  • Beeler SM, Wong GT, Zheng JM et al (2014) Whole-genome DNA methylation profile of the jewel wasp (Nasonia vitripennis). G3 4:383–388

    Article  CAS  Google Scholar 

  • Bergman P, Seyedoleslami ES, Engström Y (2016) Drosophila as a model for human diseases – focus on innate immunity in barrier epithelia. Curr Top Dev Biol. Academic 121:29–81

    Google Scholar 

  • Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9:2395–2402

    Article  CAS  Google Scholar 

  • Bingsohn L, Knorr E, Vilcinskas A (2016) The model beetle Tribolium castaneum can be used as an early warning system for transgenerational epigenetic side effects caused by pharmaceuticals. Comp Biochem Physiol C 185–186:57–64

    Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  Google Scholar 

  • Boerjan B, Sas F, Emst UR et al (2011) Locust phase polyphenism: does epigenetic precede endocrine regulation? Gen Comp Endocrinol 173:120–128

    Article  CAS  Google Scholar 

  • Bonasio R, Li Q, Lian J et al (2012) Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr Biol 22:1755–1764

    Article  CAS  Google Scholar 

  • Buttstedt A, Ihling CH, Pietzsch M et al (2016) Royalactin is not a royal making of a queen. Nature 537:E10–E12

    Article  CAS  Google Scholar 

  • Capuano F, Mülleder M, Kok R et al (2014) Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem 86:3697–3702

    Article  CAS  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking. DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  Google Scholar 

  • Chen PN, Chu SC, Kuo WH et al (2011) Epigallocatechin-3 Gallate inhibits invasion, epithelial −mesenchymal transition, and tumor growth in oral cancer cells. J Agric Food Chem 59:3836–3844

    Article  CAS  Google Scholar 

  • Dickman MJ, Kucharski R, Maleszka R et al (2013) Extensive histone post-translational modification in honey bees. Insect Biochem Mol Biol 43:125–137

    Article  CAS  Google Scholar 

  • Falckenhayn C, Boerjan B, Raddatz G et al (2013) Characterization of genome methylation patterns in the desert locust, Schistocerca gregaria. J Exp Biol 216:1423–1429

    Article  CAS  Google Scholar 

  • Fontana L, Partridge L (2015) Promoting health and longevity through diet: from model organisms to humans. Cell 161:106–118

    Article  CAS  Google Scholar 

  • Ford D (2013) Honeybees and cell lines as models of DNA methylation and aging in response to diet. Exp Gerontol 48:614–619

    Article  CAS  Google Scholar 

  • Foret S, Kucharski R, Pellegrini M et al (2012) DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci 109:4968–4973

    Article  CAS  Google Scholar 

  • Freitak D, Schmidtberg H, Dickel F et al (2014) The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence 5:547–554

    Article  Google Scholar 

  • Guan C, Zeng ZJ, Wang ZL et al (2013) Expression of Sir2, Hdac1 and Ash2 in Honey Bee (Apis Mellifera L.) Queens and Workers. J Apic Sci 57:67–73

    Google Scholar 

  • Guo S, Jiang F, Yang P et al (2016) Characteristics and expression patterns of histone-modifying enzyme systems in the migratory locust. Insect Biochem Mol Biol 76:18–28

    Article  CAS  Google Scholar 

  • Hoffmann J, Romey R, Fink C et al (2013) Overexpression of Sir2 in the adult fat body is sufficient to extend lifespan of male and female Drosophila. Aging (Albany NY) 5:315–327

    Article  CAS  Google Scholar 

  • Hu C-W, Chen J-L, Hsu Y-W et al (2015) Trace analysis of methylated and hydroxymethylated cytosines in DNA by isotope-dilution LC–MS/MS: first evidence of DNA methylation in Caenorhabditis elegans. Biochem J 465:39–47

    Article  CAS  Google Scholar 

  • Hunt JH, Kensinger BJ, Kossuth JA et al (2007) A diapause pathway underlies the gyne phenotype in Polistes wasps, revealing an evolutionary route to caste-containing insect societies. Proc Natl Acad Sci 104:14020–14025

    Article  CAS  Google Scholar 

  • Kamakura M (2011) Royalactin induces queen differentiation in honeybees. Nature 473:478–483

    Article  CAS  Google Scholar 

  • Kim CH, Lee EK, Choi YJ et al (2016a) Short-term calorie restriction ameliorates genomewide, age-related alterations in DNA methylation. Aging Cell 15:1074–1081

    Article  CAS  Google Scholar 

  • Kim D, Thairu MW, Hansen AK (2016b) Novel insights into insect-microbe interactions – role of epigenomics and small RNAs. Front Plant Sci 7:1164

    PubMed  PubMed Central  Google Scholar 

  • Kucharski R, Maleszka J, Foret S et al (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  CAS  Google Scholar 

  • Lee J, Hwang YJ, Kim KY et al (2013) Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics 10:664–676

    Article  CAS  Google Scholar 

  • Liao Z, Jia Q, Li F et al (2010) Identification of two piwi genes and their expression profile in honeybee, Apis mellifera. Arch Insect Biochem 74:91–102

    CAS  Google Scholar 

  • Li-Byarlay H, Li Y, Stroud H et al (2013) RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc Natl Acad Sci 110:12750–12755

    Article  CAS  Google Scholar 

  • Lopez TE, Pham HM, Nguyen BV et al (2016) Green tea polyphenols require the mitochondrial iron transporter, mitoferrin, for lifespan extension in Drosophila melanogaster. Arch Insect Biochem 93:210–221

    Article  CAS  Google Scholar 

  • Lyko F, Maleszka R (2011) Insects as innovative models for functional studies of DNA methylation. Trends Genet 27:127–131

    Article  CAS  Google Scholar 

  • Lyko F, Ramsahoye BH, Jaenisch R (2000) Development: DNA methylation in Drosophila melanogaster. Nature 408:538–540

    Article  CAS  Google Scholar 

  • Lyko F, Foret S, Kucharski R et al (2010) The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 8:e1000506

    Article  Google Scholar 

  • Marhold J, Rothe N, Pauli A et al (2004) Conservation of DNA methylation in dipteran insects. Insect Mol Biol 13:117–123

    Article  CAS  Google Scholar 

  • Mason JB, Tang SY (2017) Folate status and colorectal cancer risk: a 2016 update. Mol Asp Med 53:73–79

    Article  CAS  Google Scholar 

  • Mattocks DA, Mentch SJ, Shneyder J et al (2017) Short term methionine restriction increases hepatic global DNA methylation in adult but not young male C57BL/6J mice. Exp Gerontol 88:1–8

    Article  CAS  Google Scholar 

  • Mukherjee K, Vilcinskas A (2014) Development and immunity-related microRNAs of the lepidopteran model host Galleria mellonella. BMC Genomics 15:1–12

    Article  Google Scholar 

  • Mukherjee K, Twyman RM, Vilcinskas A (2015) Insects as models to study the epigenetic basis of disease. Prog Biophys Mol Biol 118:69–78

    Article  CAS  Google Scholar 

  • Paoli PP, Wakeling LA, Wright GA et al (2014) The dietary proportion of essential amino acids and Sir2 influence lifespan in the honeybee. Age 36:1239–1247

    Article  CAS  Google Scholar 

  • Prüßing K, Voigt A, Schulz JB (2013) Drosophila melanogaster as a model organism for Alzheimer’s disease. Mol Neurodegener 8:1–12

    Article  Google Scholar 

  • Romanoski CE, Glass CK, Stunnenberg HG et al (2015) Epigenomics: roadmap for regulation. Nature 518:314–316

    Article  CAS  Google Scholar 

  • Shi YY, Huang ZY, Zeng ZJ et al (2011) Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae). PLoS One 6:e18808

    Article  CAS  Google Scholar 

  • Simola DF, Ye C, Mutti NS et al (2013) A chromatin link to caste identity in the carpenter ant Camponotus floridanus. Genome Res 23:486–496

    Article  CAS  Google Scholar 

  • Slade JD, Staveley BE (2016) Extended longevity and survivorship during amino-acid starvation in a Drosophila Sir2 mutant heterozygote. Genome 59:311–318

    Article  CAS  Google Scholar 

  • Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14:204–220

    Article  CAS  Google Scholar 

  • Snell-Rood EC, Troth A, Moczek AP (2013) DNA methylation as a mechanism of nutritional plasticity: limited support from horned beetles. J Exp Zool Part B: Mol Devel Evol 320:22–34

    Article  CAS  Google Scholar 

  • Spannhoff A, Kim YK, Raynal NJM et al (2011) Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Rep 12:238–243

    Article  CAS  Google Scholar 

  • Sukla KK, Nagar R, Raman R (2014) Vitamin-B12 and folate deficiency, major contributing factors for anemia: a population based study. e-SPEN J 9:e45–e48

    Article  Google Scholar 

  • Tabunoki H, Ono H, Ode H et al (2013) Identification of key uric acid synthesis pathway in a unique mutant silkworm Bombyx mori model of Parkinson’s disease. PLoS One 8:e69130

    Article  CAS  Google Scholar 

  • Terrapon N, Li C, Robertson HM et al (2014) Molecular traces of alternative social organization in a termite genome. Nat Commun 5:3636

    Article  CAS  Google Scholar 

  • Tipping M, Perrimon N (2014) Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 229:27–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (2012) The epigenotype. Int J Epidemiol 41:10–13

    Article  CAS  Google Scholar 

  • Wion D, Casadesus J (2006) N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat Rev Microbiol 4:183–192

    Article  CAS  Google Scholar 

  • Xia Q, Zhou Z, Lu C et al (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 6:1937–1940

    Google Scholar 

  • Xiang H, Zhu J, Chen Q et al (2010) Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol 28:516–520

    Article  CAS  Google Scholar 

  • Xiong Y, Zhao K, Wu J et al (2013) HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila. Proc Natl Acad Sci 110:4604–4609

    Article  CAS  Google Scholar 

  • Yang D, Lian T, Tu J et al (2016) LncRNA mediated regulation of aging pathways in Drosophila melanogaster during dietary restriction. Aging 8:2182–2203

    Article  CAS  Google Scholar 

  • Zemach A, McDaniel IE, Silva P et al (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  CAS  Google Scholar 

  • Zhang G, Huang H, Liu D et al (2015) N6-Methyladenine DNA modification in Drosophila. Cell 161:893–906

    Article  CAS  Google Scholar 

  • Zhou X, Oi FM, Scharf ME (2006) Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc Natl Acad Sci 103:4499–4504

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lian, T., Gaur, U., Yang, M. (2019). Epigenetics, Dietary Restriction, and Insects: Implications for Humankind. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics