DNA Demethylation and Epigenetics

Reference work entry


Epigenetic regulation is essential to gene expression programs necessary for normal embryonic development and maintaining cell functions throughout life. DNA methylation on cytosine nucleotides dictates those gene expression programs. However, the steady state levels and patterns of DNA methylation are maintained through the dynamic balance of DNA methylation and demethylation, and changing either side of the balance will certainly lead to the development of disease. In this chapter, we will briefly discuss recent advances on DNA demethylation and the implications in health and disease.


5caC 5fC 5hmC AID Apobec Ascorbic acid BER DNA demethylation DNA repair DNMT1 DNMT3a DNMT3b IDH Somatic hypermutation TDG TET UNG 

List of Abbreviations










Ascorbic Acid


Activation induced cytidine deaminase

AP site

Apurinic/apyrimidinic site, or abasic site


Apolipoprotein B mRNA editing catalytic polypeptide-like


Base excision repair


Clustered regularly interspaced short palindromic repeats/CRISPR associated system 9


DNA (cytosine-5)-methyltransferase 1


DNA (cytosine-5)-methyltransferase 3A


DNA (cytosine-5)-methyltransferase 3B


Isocitrate dehydrogenase


DNA mismatch repair


Somatic hypermutation


Thymine DNA glycosylase


Ten eleven translocation methylcytosine dioxygenases


Uracil DNA glycosylase


  1. Antequera F, Tamame M, Villanueva JR et al (1984) DNA methylation in the fungi. J Biol Chem 259:8033–8036PubMedGoogle Scholar
  2. Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872CrossRefGoogle Scholar
  3. Blaschke K, Ebata KT, Karimi MM et al (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500:222–226CrossRefGoogle Scholar
  4. Cedar H, Bergman Y (2012) Programming of DNA methylation patterns. Annu Rev Biochem 81:97–117CrossRefGoogle Scholar
  5. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27CrossRefGoogle Scholar
  6. Dawson MA, Kouzarides T, Huntly BJ (2012) Targeting epigenetic readers in cancer. N Engl J Med 367:647–657CrossRefGoogle Scholar
  7. Ehrlich M, Gama-Sosa MA, Huang LH et al (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10:2709–2721CrossRefGoogle Scholar
  8. Fritz EL, Papavasiliou FN (2010) Cytidine deaminases: AIDing DNA demethylation? Genes Dev 24:2107–2114CrossRefGoogle Scholar
  9. Gao Z, Liu HL, Daxinger L et al (2010) An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465:106–109CrossRefGoogle Scholar
  10. Geisen S, Barturen G, Alganza AM et al (2014) NGSmethDB: an updated genome resource for high quality, single-cytosine resolution methylomes. Nucleic Acids Res 42:D53–D59CrossRefGoogle Scholar
  11. Georgiou G, Ippolito GC, Beausang J et al (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168CrossRefGoogle Scholar
  12. Harris RS, Dudley JP (2015) APOBECs and virus restriction. Virology 479-480:131–145CrossRefGoogle Scholar
  13. Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334:194CrossRefGoogle Scholar
  14. Jeltsch A (2006) Molecular enzymology of mammalian DNA methyltransferases. Curr Top Microbiol Immunol 301:203–225PubMedGoogle Scholar
  15. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220CrossRefGoogle Scholar
  16. Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98CrossRefGoogle Scholar
  17. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926CrossRefGoogle Scholar
  18. Li L, Connelly MC, Wetmore C et al (2003) Mouse embryos cloned from brain tumors. Cancer Res 63:2733–2736PubMedGoogle Scholar
  19. Liu XS, Wu H, Ji X et al (2016) Editing DNA methylation in the mammalian genome. Cell 167:233–247 e17CrossRefGoogle Scholar
  20. Lorsbach RB, Moore J, Mathew S et al (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–641CrossRefGoogle Scholar
  21. Muramatsu M, Kinoshita K, Fagarasan S et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563CrossRefGoogle Scholar
  22. Okano M, Bell DW, Haber DA et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257CrossRefGoogle Scholar
  23. Palmer BR, Marinus MG (1994) The dam and dcm strains of Escherichia coli – a review. Gene 143:1–12CrossRefGoogle Scholar
  24. Patton KT, Thilbodeau GA (2018) The human body in health & disease, 7th ed. St. Louis, MO: Elsevier; p42.Google Scholar
  25. Rhee I, Bachman KE, Park BH et al (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556CrossRefGoogle Scholar
  26. Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339CrossRefGoogle Scholar
  27. Shenoy N, Bhagat T, Nieves E et al (2017) Upregulation of TET activity with ascorbic acid induces epigenetic modulation of lymphoma cells. Blood Cancer J 7:e587CrossRefGoogle Scholar
  28. Swanton C, Mcgranahan N, Starrett GJ et al (2015) APOBEC enzymes: mutagenic fuel for Cancer evolution and heterogeneity. Cancer Discov 5:704–712CrossRefGoogle Scholar
  29. Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935CrossRefGoogle Scholar
  30. Teng G, Papavasiliou FN (2007) Immunoglobulin somatic hypermutation. Annu Rev Genet 41:107–120CrossRefGoogle Scholar
  31. Tsumura A, Hayakawa T, Kumaki Y et al (2006) Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11:805–814CrossRefGoogle Scholar
  32. Vojta A, Dobrinic P, Tadic V et al (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–5628CrossRefGoogle Scholar
  33. Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41:10–13CrossRefGoogle Scholar
  34. Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534CrossRefGoogle Scholar
  35. Xu X, Tao Y, Gao X et al (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:16009CrossRefGoogle Scholar
  36. Zhang H, Zhu JK (2012) Seeing the forest for the trees: a wide perspective on RNA-directed DNA methylation. Genes Dev 26:1769–1773CrossRefGoogle Scholar
  37. Zhang X, Fu R, Yu J et al (2014) DNA demethylation: where genetics meets epigenetics. Curr Pharm Des 20:1625–1631CrossRefGoogle Scholar
  38. Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Fudan University Shanghai Cancer CenterShanghaiChina
  2. 2.Division of HematologyMayo Clinic, College of MedicineRochesterUSA

Personalised recommendations