Skip to main content

Diet-Induced Epigenetic Modifications and Implications for Intestinal Diseases

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Epigenetic modifications, such as post-translational modifications of histones, DNA methylation, and microRNA expression, are involved in gene transcription changes in the cells in response to environmental signals. It is now clear that particular phenotypes are the consequences of environmental effects on epigenetic marks. In this chapter, we describe the interactions existing between environment and epigenetic marks. Among the environmental factors, we’ll specially focus on diet, through different examples such as the effect of diet on bee cast formation, on microbiota composition and short-chain fatty acid concentration in the gut, and the consequences on epigenetic marks. Finally, we describe the link that exists between diet and epigenetic modifications in the context of inflammatory bowel disease (IBD). So far, epigenetic marks have been poorly investigated in the context of IBD, but it has recently become an expanding field of research since new data raise crucial role for epigenetic modifications in the etiology of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BPA:

Bisphenol A

CD:

Crohn’s Disease

DNMT:

DNA-Methyltransferase

DSS:

Dextran Sodium Sulfate

EWAS:

Epigenome Wide Association Study

GPR43:

G-protein Coupled Receptors 43

HC:

Healthy Controls

HDAC:

Histone Deacetylase

HFD:

High-Fat Diet

HPTM:

Histone Post-Translational Modification

IAP:

Intracisternal A Particle

IBD:

Inflammatory Bowel Disease

IEC:

Intestinal Epithelial Cells

KAT2B:

Lysine Acetyltransferase 2B

SCFA:

Short-Chain Fatty Acid

SNP:

Single-Nucleotide Polymorphism

UC:

Ulcerative Colitis

References

  • Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, Sauvanet P, Bernalier-Donadille A, Denis S, Hofman P, Bonnet R et al (2016) Western diet induces a shift in microbiota composition enhancing susceptibility to adherent-invasive E. coli infection and intestinal inflammation. Sci Rep 6:19032

    Article  CAS  Google Scholar 

  • Bai AHC, Wu WKK, Xu L, Wong SH, Go MY, Chan AWH, Harbord M, Zhang S, Chen M, Wu JCY et al (2016) Dysregulated lysine acetyltransferase 2B promotes inflammatory bowel disease pathogenesis through transcriptional repression of interleukin-10. J Crohns Colitis 10:726–734

    Article  Google Scholar 

  • Bernstein CN, Shanahan F (2008) Disorders of a modern lifestyle: reconciling the epidemiology of inflammatory bowel diseases. Gut 57:1185–1191

    Article  Google Scholar 

  • Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT (2016) Corrigendum: dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 536:238

    Article  CAS  Google Scholar 

  • Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng G, Peng H, Zhang X, Zhang Y et al (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397–400

    Article  CAS  Google Scholar 

  • Cooke J, Zhang H, Greger L, Silva A-L, Massey D, Dawson C, Metz A, Ibrahim A, Parkes M (2012) Mucosal genome-wide methylation changes in inflammatory bowel disease. Inflamm Bowel Dis 18:2128–2137

    Article  Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400S

    Article  CAS  Google Scholar 

  • Denizot J, Desrichard A, Agus A, Uhrhammer N, Dreux N, Vouret-Craviari V, Hofman P, Darfeuille-Michaud A, Barnich N (2015) Diet-induced hypoxia responsive element demethylation increases CEACAM6 expression, favouring Crohn’s disease-associated Escherichia coli colonisation. Gut 64:428–437

    Google Scholar 

  • Dolinoy DC (2008) The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 66(Suppl 1):S7–S11

    Article  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104:13056–13061

    Article  CAS  Google Scholar 

  • Franke A, McGovern DPB, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, Lees CW, Balschun T, Lee J, Roberts R et al (2010) Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 42:1118–1125

    Article  CAS  Google Scholar 

  • Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F, Mascagni P, Fantuzzi G, Dinarello CA, Siegmund B (2006) Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol 176:5015–5022

    Article  CAS  Google Scholar 

  • Harris RA, Shah R, Hollister EB, Tronstad RR, Hovdenak N, Szigeti R, Versalovic J, Kellermayer R (2016) Colonic mucosal epigenome and microbiome development in children and adolescents. J Immunol Res 2016:9170162

    Article  Google Scholar 

  • Hinnebusch BF, Meng S, Wu JT, Archer SY, Hodin RA (2002) The effects of short-chain fatty acids on human colon cancer cell phenotype are associated with histone hyperacetylation. J Nutr 132:1012–1017

    Article  CAS  Google Scholar 

  • Keyes MK, Jang H, Mason JB, Liu Z, Crott JW, Smith DE, Friso S, Choi S-W (2007) Older age and dietary folate are determinants of genomic and p16-specific DNA methylation in mouse colon. J Nutr 137:1713–1717

    Article  CAS  Google Scholar 

  • Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, Keller MP, Attie AD, Rey FE, Denu JM (2016) Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol Cell 64:982–992

    Article  CAS  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  CAS  Google Scholar 

  • Lee H-S (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients 7:9492–9507

    Article  CAS  Google Scholar 

  • Li C-J, Li RW, Baldwin RL, Blomberg LA, Wu S, Li W (2016) Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification. Gene Regul Syst Biol 10:1–8

    Google Scholar 

  • Lin Z, Hegarty JP, Cappel JA, Yu W, Chen X, Faber P, Wang Y, Kelly AA, Poritz LS, Peterson BZ et al (2011) Identification of disease-associated DNA methylation in intestinal tissues from patients with inflammatory bowel disease. Clin Genet 80:59–67

    Article  CAS  Google Scholar 

  • Lin Z, Hegarty JP, Yu W, Cappel JA, Chen X, Faber PW, Wang Y, Poritz LS, Fan J-B, Koltun WA (2012) Identification of disease-associated DNA methylation in B cells from Crohn’s disease and ulcerative colitis patients. Dig Dis Sci 57:3145–3153

    Article  CAS  Google Scholar 

  • Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol 12:304–314

    Article  CAS  Google Scholar 

  • Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62:67–72

    Article  CAS  Google Scholar 

  • Mao W, Schuler MA, Berenbaum MR (2015) A dietary phytochemical alters caste-associated gene expression in honey bees. Sci Adv 1:e1500795

    Article  Google Scholar 

  • Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D et al (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286

    Article  CAS  Google Scholar 

  • Nimmo ER, Prendergast JG, Aldhous MC, Kennedy NA, Henderson P, Drummond HE, Ramsahoye BH, Wilson DC, Semple CA, Satsangi J (2012) Genome-wide methylation profiling in Crohn’s disease identifies altered epigenetic regulation of key host defense mechanisms including the Th17 pathway. Inflamm Bowel Dis 18:889–899

    Article  Google Scholar 

  • Pinsk V, Lemberg DA, Grewal K, Barker CC, Schreiber RA, Jacobson K (2007) Inflammatory bowel disease in the South Asian pediatric population of British Columbia. Am J Gastroenterol 102:1077–1083

    Article  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  Google Scholar 

  • Quévrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, Miquel S, Carlier L, Bermúdez-Humarán LG, Pigneur B et al (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65:415–425

    Article  Google Scholar 

  • Reynolds CM, Gray C, Li M, Segovia SA, Vickers MH (2015) Early life nutrition and energy balance disorders in offspring in later life. Nutrients 7:8090–8111

    Article  CAS  Google Scholar 

  • Rogler G, Zeitz J, Biedermann L (2016) The search for causative environmental factors in inflammatory bowel disease. Dig Dis Basel Switz 34(Suppl 1):48–55

    Article  Google Scholar 

  • Rossi O, van Berkel LA, Chain F, Tanweer Khan M, Taverne N, Sokol H, Duncan SH, Flint HJ, Harmsen HJM, Langella P et al (2016) Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci Rep 6:18507

    Article  CAS  Google Scholar 

  • Saito S, Kato J, Hiraoka S, Horii J, Suzuki H, Higashi R, Kaji E, Kondo Y, Yamamoto K (2011) DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm Bowel Dis 17:1955–1965

    Article  Google Scholar 

  • Schaible TD, Harris RA, Dowd SE, Smith CW, Kellermayer R (2011) Maternal methyl-donor supplementation induces prolonged murine offspring colitis susceptibility in association with mucosal epigenetic and microbiomic changes. Hum Mol Genet 20:1687–1696

    Article  CAS  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533

    Article  Google Scholar 

  • Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F et al (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351:391–396

    Article  CAS  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736

    Article  CAS  Google Scholar 

  • Sun M, Wu W, Liu Z, Cong Y (2017) Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J Gastroenterol 52:1–8

    Article  CAS  Google Scholar 

  • Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249

    Article  CAS  Google Scholar 

  • Tsaprouni LG, Ito K, Powell JJ, Adcock IM, Punchard N (2011) Differential patterns of histone acetylation in inflammatory bowel diseases. J Inflamm Lond Engl 8:1

    Article  CAS  Google Scholar 

  • Tschurtschenthaler M, Kachroo P, Heinsen F-A, Adolph TE, Rühlemann MC, Klughammer J, Offner FA, Ammerpohl O, Krueger F, Smallwood S et al (2016) Paternal chronic colitis causes epigenetic inheritance of susceptibility to colitis. Sci Rep 6:31640

    Article  CAS  Google Scholar 

  • Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D (2008) Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem 19:587–593

    Article  CAS  Google Scholar 

  • Zhu K, Liu M, Fu Z, Zhou Z, Kong Y, Liang H, Lin Z, Luo J, Zheng H, Wan P et al (2017) Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet 13:e1006946

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Denizot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gimier, E., Barnich, N., Denizot, J. (2019). Diet-Induced Epigenetic Modifications and Implications for Intestinal Diseases. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_117

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_117

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics