Skip to main content

Epigenetic Aspects of Nuclear Receptor Coregulators: How Nutritional and Environmental Signals Change Gene Expression Patterns

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Nuclear receptor coregulators are a large family of proteins that interact with nuclear receptors at promoters and enhancers to alter gene expression. Modifications induced by coregulators will either amplify or suppress the rate of transcription. Nuclear receptors themselves are transcription factors that are stimulated by hormonal, metabolic, and environmental stimuli; they are then directed to target gene promoters to initiate transcription. The nature of the nuclear receptor ligand is a large determinant of which coregulator complexes are recruited, either recruiting coactivators or corepressors. Agonists generally recruit coactivators that amplify transcription, whereas antagonists will generally recruit corepressors that will dampen transcription. Interestingly, bivalent or dual-function coregulators have recently come to light. Their effects appear to be dependent on cell-type, tissue-type, and/or developmental stage; much remains to be elucidated with regards to this class of coregulators.

Once formed, the coregulator complex exerts its effects through multiple mechanisms that are largely dependent on editing the epigenome. Enzymes are recruited into coregulator complexes that act on chromatin, DNA, and on other coregulator complex subunits. Histone acetylases, deacetylases, methyltransferases, and demethylases are some of the most important enzymes in the control of the target gene promoter context. Acetylation is generally associated with coactivator activity, while methylation acts in both activation and repression. Another mechanism implicates repositioning, eviction, or exchange of nucleosome components in an ATP-dependent manner. These and many other post-translational modifications also affect coregulators themselves, being subject to sumoylation, phosphorylation, as well as acetylation and methylation. The dynamic regulation of both coregulators and epigenomes allows rapid adaptation to the cellular and metabolic milieu.

A large number of coregulator complexes have been shown to be extremely important in nutrition and metabolism. Adipose tissue and the liver have been extensively studied and have proven to be the major tissues in which coregulators and their epigenetic functions contribute to metabolic and nutritional adaptation. Interestingly coregulators have also been demonstrated to tightly control cellular metabolism and the inflammatory response, two key processes in nutritional and metabolic disease. This chapter describes the mechanisms through which coregulators exert their functions, with a particular emphasis on the epigenome. We also describe pertinent examples from scientific literature that demonstrate the epigenetic aspects on nuclear receptor coregulators in nutrition and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF2:

Activator function 2

AP:

Associated protein

BAT:

Brown adipose tissue

C/EBPα:

CCAAT/enhancer-binding protein C/EBPα

CBP:

p300/CREB binding protein

CDK4:

Cyclin-dependent kinase 4

CoREST:

Repressor element-1 silencing transcription factor corepressor 1

CYP7A1:

Cholesterol hydroxylase

CYP8B1:

Sterol hydroxylase

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferases

EHMT:

Histone methyltransferase

ER:

Estrogen receptor (NR3A1/2)

eRNA:

Enhancer-associated RNA

GLUT:

Glucose transporter

GNAT:

Gcn5-related N-acetyltransferase

GPS2:

G-protein pathway suppressor2

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

HIF1 α:

Hypoxia-inducible factor 1α

ISWI:

Imitation switch

LBD:

Ligand binding domain

LRH1:

Liver receptor homolog 1 (NR5A2)

LSD/KDM:

Lysine demethylases

LXR:

Liver X receptor (NR1H2/3)

MYST:

MOZ-Ybf2-Sas3-Tip60

NCOA:

Nuclear receptor coactivator

NCoR:

Nuclear receptor corepressor

NR:

Nuclear receptor

PCAF:

p300/CBP-associated factor

PGC1α:

PPARγ coactivator

PROX1:

Prospero homeobox protein 1

PTM:

Post-translational modification

RAR:

Retinoic acid receptor (NR1B1/2/3)

RIP140:

Receptor-interacting protein 140

RNA:

Ribonucleic acid

RNF4:

RING finger protein 4

SAM:

S-Adenosyl methionine

SET:

Su (var) 3-9, enhancer of zeste, trithorax

SIRT:

Sirtuin

SRA:

Steroid receptor RNA activator

SUMO:

Small ubiquitin-like modifiers

SWI/SNF:

Switch/sucrose non-fermenting

TLE3:

Transducin-like enhancer 3

TR:

Thyroid hormone receptor (NR1A1/2)

TRIM24:

Tripartite motif containing 24

UCP1:

Uncoupling protein 1

WAT:

White adipose tissue

References

  • Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J, Helin K (2009) The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes Dev 23(10):1171–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baas T (2013) Closer to class IIa HDAC inhibitors. SciBX 6(13). Published Online: https://doi.org/10.1038/scibx.2013.301

  • Becnel LB, Darlington YF, Ochsner SA, Easton-Marks JR, Watkins CM, McOwiti A, Kankanamge WH, Wise MW, DeHart M, Margolis RN, McKenna NJ (2015) Nuclear receptor signaling atlas: opening access to the biology of nuclear receptor signaling pathways. PLoS One 10(9):e0135615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford DC, Kasper LH, Wang R, Chang Y, Green DR, Brindle PK (2011) Disrupting the CH1 domain structure in the acetyltransferases CBP and p300 results in lean mice with increased metabolic control. Cell Metab 14(2):219–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A et al (2006) A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells. Cell 125 (2):315–326

    Google Scholar 

  • Cardamone MD, Tanasa B, Chan M, Cederquist CT, Andricovich J, Rosenfeld MG, Perissi V (2014) GPS2/KDM4A pioneering activity regulates promoter-specific recruitment of PPARgamma. Cell Rep 8(1):163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11(4):547–560

    Article  CAS  PubMed  Google Scholar 

  • Chauchereau A, Amazit L, Quesne M, Guiochon-Mantel A, Milgrom E (2003) Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J Biol Chem 278(14):12335–12343

    Article  CAS  PubMed  Google Scholar 

  • Chevillard-Briet M, Trouche D, Vandel L (2002) Control of CBP co-activating activity by arginine methylation. EMBO J 21(20):5457–5466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HK, Yoo JY, Jeong MH, Park SY, Shin DM, Jang SW, Yoon HG, Choi KC (2013) Protein kinase A phosphorylates NCoR to enhance its nuclear translocation and repressive function in human prostate cancer cells. J Cell Physiol 228(6):1159–1165

    Article  CAS  PubMed  Google Scholar 

  • Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H, Schoonjans K, Puigserver P, O'Malley BW, Auwerx J (2008) The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc Natl Acad Sci U S A 105(44):17187–17192

    Article  PubMed  PubMed Central  Google Scholar 

  • Creixell P, Linding R (2012) Cells, shared memory and breaking the PTM code. Mol Syst Biol 8:598

    Article  PubMed  PubMed Central  Google Scholar 

  • Dasgupta S, O’Malley BW (2014) Transcriptional coregulators: emerging roles of SRC family of coactivators in disease pathology. J Mol Endocrinol 53(2):R47–R59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis AP, Lonard DM, Nawaz Z, O'Malley BW (2005) Inhibition of the 26S proteasome blocks progesterone receptor-dependent transcription through failed recruitment of RNA polymerase II. J Steroid Biochem Mol Biol 94(4):337–346

    Article  CAS  PubMed  Google Scholar 

  • Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6(8):227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drori S, Girnun GD, Tou L, Szwaya JD, Mueller E, Xia K, Shivdasani RA, Spiegelman BM (2005) Hic-5 regulates an epithelial program mediated by PPARgamma. Genes Dev 19(3):362–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elder D (1984) Theory of epigenetic coding. J Theor Biol 108(3):327–332

    Article  CAS  PubMed  Google Scholar 

  • Fan R, Toubal A, Goni S, Drareni K, Huang Z, Alzaid F, Ballaire R, Ancel P, Liang N, Damdimopoulos A, Hainault I, Soprani A, Aron-Wisnewsky J, Foufelle F, Lawrence T, Gautier JF, Venteclef N, Treuter E (2016) Loss of the co-repressor GPS2 sensitizes macrophage activation upon metabolic stress induced by obesity and type 2 diabetes. Nat Med 22(7):780–791

    Article  CAS  PubMed  Google Scholar 

  • Fang S, Suh JM, Atkins AR, Hong SH, Leblanc M, Nofsinger RR, Yu RT, Downes M, Evans RM (2011) Corepressor SMRT promotes oxidative phosphorylation in adipose tissue and protects against diet-induced obesity and insulin resistance. Proc Natl Acad Sci U S A 108(8):3412–3417

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Majada V, Aguilera C, Villanueva A, Vilardell F, Robert-Moreno A, Aytes A, Real FX, Capella G, Mayo MW, Espinosa L, Bigas A (2007) Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proc Natl Acad Sci U S A 104(1):276–281

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (2002) Enzymatic activity associated with class II HDACs Is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Molecular Cell 9(1):45–57

    Google Scholar 

  • Foulds CE, Feng Q, Ding C, Bailey S, Hunsaker TL, Malovannaya A, Hamilton RA, Gates LA, Zhang Z, Li C, Chan D, Bajaj A, Callaway CG, Edwards DP, Lonard DM, Tsai SY, Tsai MJ, Qin J, O'Malley BW (2013) Proteomic analysis of coregulators bound to ERalpha on DNA and nucleosomes reveals coregulator dynamics. Mol Cell 51(2):185–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girdwood D, Bumpass D, Vaughan OA, Thain A, Anderson LA, Snowden AW, Garcia-Wilson E, Perkins ND, Hay RT (2003) P300 transcriptional repression is mediated by SUMO modification. Mol Cell 11(4):1043–1054

    Article  CAS  PubMed  Google Scholar 

  • Glass CK, Saijo K (2010) Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat Rev Immunol 10(5):365–376

    Article  CAS  PubMed  Google Scholar 

  • Guenther MG, Barak O, Lazar MA (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Molecular and Cellular Biology 21(18):6091–6101

    Google Scholar 

  • Guidici M, Goni S, Fan R, Treuter E (2015) Nuclear receptor coregulators in metabolism and disease. Handbook of experimental pharmacology. PMID:25903414. Berlin, New York, Springer-Verlag.

    Google Scholar 

  • Gupta P, Huq MD, Khan SA, Tsai NP, Wei LN (2005) Regulation of co-repressive activity of and HDAC recruitment to RIP140 by site-specific phosphorylation. Mol Cell Proteomics 4(11):1776–1784

    Article  CAS  PubMed  Google Scholar 

  • Hakli M, Lorick KL, Weissman AM, Janne OA, Palvimo JJ (2004) Transcriptional coregulator SNURF (RNF4) possesses ubiquitin E3 ligase activity. FEBS Lett 560(1–3):56–62

    Article  CAS  PubMed  Google Scholar 

  • Halachmi S, Marden E, Martin G, MacKay H, Abbondanza C, Brown M (1994) Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264(5164):1455–1458

    Article  CAS  PubMed  Google Scholar 

  • Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, Kurokawa M, Won KJ, Seale P (2014) Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab 19(4):593–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, Fang D, Huang X, Tom MW, Ngo V, Solomon D, Mueller S, Paris PL, Zhang Z, Petritsch C, Gupta N, Waldman TA, James CD (2014) Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med 20(12):1394–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haumaitre C, Lenoir O, Scharfmann R (2008) Histone deacetylase inhibitors modify pancreatic cell fate determination and amplify endocrine progenitors. Mol Cell Biol 28(20):6373–6383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horlein AJ, Naar AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Soderstrom M, Glass CK et al (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377(6548):397–404

    Article  CAS  PubMed  Google Scholar 

  • Huang N, vom Baur E, Garnier JM, Lerouge T, Vonesch JL, Lutz Y, Chambon P, Losson R (1998) Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators. EMBO J 17(12):3398–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Chandra V, Rastinejad F (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 72:247–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson T, Venteclef N, Toresson G, Damdimopoulos AE, Ehrlund A, Lou X, Sanyal S, Steffensen KR, Gustafsson JA, Treuter E (2009) GPS2 is required for cholesterol efflux by triggering histone demethylation, LXR recruitment, and coregulator assembly at the ABCG1 locus. Mol Cell 34(4):510–518

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Minter LC, Stratton SA, Yang P, Abbas HA, Akdemir ZC, Pant V, Post S, Gagea M, Lee RG, Lozano G, Barton MC (2015) TRIM24 suppresses development of spontaneous hepatic lipid accumulation and hepatocellular carcinoma in mice. J Hepatol 62(2):371–379

    Article  CAS  PubMed  Google Scholar 

  • Jonas BA, Privalsky ML (2004) SMRT and N-CoR corepressors are regulated by distinct kinase signaling pathways. J Biol Chem 279(52):54676–54686

    Article  CAS  PubMed  Google Scholar 

  • Kemper JK, Xiao Z, Ponugoti B, Miao J, Fang S, Kanamaluru D, Tsang S, Wu SY, Chiang CM, Veenstra TD (2009) FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 10(5):392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Xiao C, Wang RH, Lahusen T, Xu X, Vassilopoulos A, Vazquez-Ortiz G, Jeong WI, Park O, Ki SH, Gao B, Deng CX (2010) Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab 12(3):224–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Xiao Z, Kwon S, Sun X, Ryerson D, Tkac D, Ma P, Wu SY, Chiang CM, Zhou E, Xu HE, Palvimo JJ, Chen LF, Kemper B, Kemper JK (2015) A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J 34(2):184–199

    Article  CAS  PubMed  Google Scholar 

  • Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13(18):2339–2352

    Article  CAS  PubMed  Google Scholar 

  • Kiskinis E, Chatzeli L, Curry E, Kaforou M, Frontini A, Cinti S, Montana G, Parker MG, Christian M (2014) RIP140 represses the “brown-in-white” adipocyte program including a futile cycle of triacylglycerol breakdown and synthesis. Mol Endocrinol 28(3):344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kugel JF, Goodrich JA (2012) Non-coding RNAs: key regulators of mammalian transcription. Trends Biochem Sci 37(4):144–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Stallcup MR (2017) Glucocorticoid receptor binding to chromatin is selectively controlled by the coregulator Hic-5 and chromatin remodeling enzymes. J Biol Chem 292(22):9320–9334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KK, Workman JL (2007) Histone acetyltransferase complexes: one size doesn't fit all. Nat Rev Mol Cell Biol 8(4):284–295

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Dominy JE, Choi YJ, Jurczak M, Tolliday N, Camporez JP, Chim H, Lim JH, Ruan HB, Yang X, Vazquez F, Sicinski P, Shulman GI, Puigserver P (2014) Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510(7506):547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonardsson G, Steel JH, Christian M, Pocock V, Milligan S, Bell J, So PW, Medina-Gomez G, Vidal-Puig A, White R, Parker MG (2004) Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci U S A 101(22):8437–8442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3(6):429–438

    Article  CAS  PubMed  Google Scholar 

  • Leuenberger N, Pradervand S, Wahli W (2009) Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. J Clin Invest 119(10):3138–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Fan W, Xu J, Lu M, Yamamoto H, Auwerx J, Sears DD, Talukdar S, Oh D, Chen A, Bandyopadhyay G, Scadeng M, Ofrecio JM, Nalbandian S, Olefsky JM (2011) Adipocyte NCoR knockout decreases PPARgamma phosphorylation and enhances PPARgamma activity and insulin sensitivity. Cell 147(4):815–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Spann NJ, Kaikkonen MU, Lu M, Oh DY, Fox JN, Bandyopadhyay G, Talukdar S, Xu J, Lagakos WS, Patsouris D, Armando A, Quehenberger O, Dennis EA, Watkins SM, Auwerx J, Glass CK, Olefsky JM (2013) NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids. Cell 155(1):200–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TF, Vachharajani VT, Yoza BK, McCall CE (2012) NAD+−dependent sirtuin 1 and 6 proteins coordinate a switch from glucose to fatty acid oxidation during the acute inflammatory response. J Biol Chem 287(31):25758–25769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Huang Y, Yang D, Li X, Liang J, Lin L, Zhang M, Zhong K, Liang B, Li J (2014) Overexpression of TRIM24 is associated with the onset and progress of human hepatocellular carcinoma. PLoS One 9(1):e85462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lonard DM, Nawaz Z, Smith CL, O’Malley BW (2000) The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5(6):939–948

    Article  CAS  PubMed  Google Scholar 

  • Louet JF, Chopra AR, Sagen JV, An J, York B, Tannour-Louet M, Saha PK, Stevens RD, Wenner BR, Ilkayeva OR, Bain JR, Zhou S, DeMayo F, Xu J, Newgard CB, O’Malley BW (2010) The coactivator SRC-1 is an essential coordinator of hepatic glucose production. Cell Metab 12(6):606–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M, Kettmann R, Dequiedt F (2007) Class IIa histone deacetylases: regulating the regulators. Oncogene 26(37):5450–5467

    Article  CAS  PubMed  Google Scholar 

  • McKenna B, Guo M, Reynolds A, Hara M, Stein R (2015) Dynamic recruitment of functionally distinct Swi/Snf chromatin remodeling complexes modulates Pdx1 activity in islet beta cells. Cell Rep 10(12):2032–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millard CJ, Watson PJ, Fairall L, Schwabe JW (2013) An evolving understanding of nuclear receptor coregulator proteins. J Mol Endocrinol 51(3):T23–T36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min J, Feng Q, Li Z, Zhang Y, Xu RM (2003) Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112(5):711–723

    Article  CAS  PubMed  Google Scholar 

  • Nagai Y, Yonemitsu S, Erion DM, Iwasaki T, Stark R, Weismann D, Dong J, Zhang D, Jurczak MJ, Loffler MG, Cresswell J, Yu XX, Murray SF, Bhanot S, Monia BP, Bogan JS, Samuel V, Shulman GI (2009) The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab 9(3):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen MT, Helin K (2010) Histone demethylases in development and disease. Trends Cell Biol 20(11):662–671

    Article  CAS  PubMed  Google Scholar 

  • Ponugoti B, Kim DH, Xiao Z, Smith Z, Miao J, Zang M, Wu SY, Chiang CM, Veenstra TD, Kemper JK (2010) SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J Biol Chem 285(44):33959–33970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powelka AM, Seth A, Virbasius JV, Kiskinis E, Nicoloro SM, Guilherme A, Tang X, Straubhaar J, Cherniack AD, Parker MG, Czech MP (2006) Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J Clin Invest 116(1):125–136

    Article  CAS  PubMed  Google Scholar 

  • Purushotham A, Xu Q, Lu J, Foley JF, Yan X, Kim DH, Kemper JK, Li X (2012) Hepatic deletion of SIRT1 decreases hepatocyte nuclear factor 1alpha/farnesoid X receptor signaling and induces formation of cholesterol gallstones in mice. Mol Cell Biol 32(7):1226–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang L, Lin HV, Kim-Muller JY, Welch CL, Gu W, Accili D (2011) Proatherogenic abnormalities of lipid metabolism in SirT1 transgenic mice are mediated through Creb deacetylation. Cell Metab 14(6):758–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 150(3):620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez J, Dege C, Kutateladze TG, Hagman J (2012) MBD2 and multiple domains of CHD4 are required for transcriptional repression by Mi-2/NuRD complexes. Mol Cell Biol 32(24):5078–5088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    Article  CAS  PubMed  Google Scholar 

  • Rohm M, Sommerfeld A, Strzoda D, Jones A, Sijmonsma TP, Rudofsky G, Wolfrum C, Sticht C, Gretz N, Zeyda M, Leitner L, Nawroth PP, Stulnig TM, Berriel Diaz M, Vegiopoulos A, Herzig S (2013) Transcriptional cofactor TBLR1 controls lipid mobilization in white adipose tissue. Cell Metab 17(4):575–585

    Article  CAS  PubMed  Google Scholar 

  • Sampley ML, Ozcan S (2012) Regulation of insulin gene transcription by multiple histone acetyltransferases. DNA Cell Biol 31(1):8–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyal S, Bavner A, Haroniti A, Nilsson LM, Lundasen T, Rehnmark S, Witt MR, Einarsson C, Talianidis I, Gustafsson JA, Treuter E (2007) Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Proc Natl Acad Sci U S A 104(40):15665–15670

    Article  PubMed  PubMed Central  Google Scholar 

  • Sareddy GR, Nair BC, Krishnan SK, Gonugunta VK, Zhang QG, Suzuki T, Miyata N, Brenner AJ, Brann DW, Vadlamudi RK (2013) KDM1 is a novel therapeutic target for the treatment of gliomas. Oncotarget 4(1):18–28

    Article  PubMed  Google Scholar 

  • Sheppard HM, Harries JC, Hussain S, Bevan C, Heery DM (2001) Analysis of the steroid receptor coactivator 1 (SRC1)-CREB binding protein interaction interface and its importance for the function of SRC1. Mol Cell Biol 21(1):39–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL (1998) The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95(7):927–937

    Article  CAS  PubMed  Google Scholar 

  • Stein S, Oosterveer MH, Mataki C, Xu P, Lemos V, Havinga R, Dittner C, Ryu D, Menzies KJ, Wang X, Perino A, Houten SM, Melchior F, Schoonjans K (2014) SUMOylation-dependent LRH-1/PROX1 interaction promotes atherosclerosis by decreasing hepatic reverse cholesterol transport. Cell Metab 20(4):603–613

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R (2010) Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol 21(12):2069–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Feng D, Fang B, Mullican SE, You SH, Lim HW, Everett LJ, Nabel CS, Li Y, Selvakumaran V, Won KJ, Lazar MA (2013) Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell 52(6):769–782

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Wang M, Liu X, Luo L, Li K, Zhang S, Wang Y, Yang Y, Ding F, Gu X (2014) PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC-1alpha. Cell Rep 9(6):2250–2262

    Article  CAS  PubMed  Google Scholar 

  • Teyssier C, Ma H, Emter R, Kralli A, Stallcup MR (2005) Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev 19(12):1466–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timinskas A, Butkus V, Janulaitis A (1995) Sequence motifs characteristic for DNA [cytosine-N4] and DNA [adenine-N6] methyltransferases. Classification of all DNA methyltransferases. Gene 157(1–2):3–11

    Article  CAS  PubMed  Google Scholar 

  • Toubal A, Clement K, Fan R, Ancel P, Pelloux V, Rouault C, Veyrie N, Hartemann A, Treuter E, Venteclef N (2013) SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. J Clin Invest 123(1):362–379

    Article  CAS  PubMed  Google Scholar 

  • Treuter E, Venteclef N (2011) Transcriptional control of metabolic and inflammatory pathways by nuclear receptor SUMOylation. Biochim Biophys Acta 1812(8):909–918

    Article  CAS  PubMed  Google Scholar 

  • Venteclef N, Jakobsson T, Ehrlund A, Damdimopoulos A, Mikkonen L, Ellis E, Nilsson LM, Parini P, Janne OA, Gustafsson JA, Steffensen KR, Treuter E (2010) GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response. Genes Dev 24(4):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva CJ, Vergnes L, Wang J, Drew BG, Hong C, Tu Y, Hu Y, Peng X, Xu F, Saez E, Wroblewski K, Hevener AL, Reue K, Fong LG, Young SG, Tontonoz P (2013) Adipose subtype-selective recruitment of TLE3 or Prdm16 by PPARγ specifies lipid storage versus thermogenic gene programs. Cell Metab 17(3):423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinogradova M, Gehling VS, Gustafson A, Arora S, Tindell CA, Wilson C, Williamson KE, Guler GD, Gangurde P, Manieri W, Busby J, Flynn EM, Lan F, Kim HJ, Odate S, Cochran AG, Liu Y, Wongchenko M, Yang Y, Cheung TK, Maile TM, Lau T, Costa M, Hegde GV, Jackson E, Pitti R, Arnott D, Bailey C, Bellon S, Cummings RT, Albrecht BK, Harmange JC, Kiefer JR, Trojer P, Classon M (2016) An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells. Nat Chem Biol 12(7):531–538

    Article  CAS  PubMed  Google Scholar 

  • Walsh CA, Bolger JC, Byrne C, Cocchiglia S, Hao Y, Fagan A, Qin L, Cahalin A, McCartan D, McIlroy M, O'Gaora P, Xu J, Hill AD, Young LS (2014) Global gene repression by the steroid receptor coactivator SRC-1 promotes oncogenesis. Cancer Res 74(9):2533–2544

    Article  CAS  PubMed  Google Scholar 

  • Wang GG, Allis CD, Chi P (2007) Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling. Trends Mol Med 13(9):373–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Powell MJ, Popov VM, Pestell RG (2008) Acetylation in nuclear receptor signaling and the role of sirtuins. Mol Endocrinol 22(3):539–545

    Article  CAS  PubMed  Google Scholar 

  • Warnmark A, Treuter E, Wright AP, Gustafsson JA (2003) Activation functions 1 and 2 of nuclear receptors: molecular strategies for transcriptional activation. Mol Endocrinol 17(10):1901–1909

    Article  CAS  PubMed  Google Scholar 

  • Weems JC, Griesel BA, Olson AL (2012) Class II histone deacetylases downregulate GLUT4 transcription in response to increased cAMP signaling in cultured adipocytes and fasting mice. Diabetes 61(6):1404–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, Tsai MJ, O’Malley BW (2002) Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) coactivator activity by I kappa B kinase. Mol Cell Biol 22(10):3549–3561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Wang E, Huang Y, Guo X, Yu Y, Du Q, Ding X, Sun Y (2016) Inhibition of lysine-specific Demethylase-1 (LSD1/KDM1A) promotes the adipogenic differentiation of hESCs through H3K4 methylation. Stem Cell Rev 12(3):298–304

    Article  CAS  PubMed Central  Google Scholar 

  • Xu Y, Zhang S, Lin S, Guo Y, Deng W, Zhang Y, Xue Y (2017) WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Res 45(D1):D264–D270

    CAS  PubMed  Google Scholar 

  • Yuan H, Reddy MA, Sun G, Lanting L, Wang M, Kato M, Natarajan R (2013) Involvement of p300/CBP and epigenetic histone acetylation in TGF-beta1-mediated gene transcription in mesangial cells. Am J Physiol Renal Physiol 304(5):F601–F613

    Article  CAS  PubMed  Google Scholar 

  • Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW, Collia D, Chen Z, Wozniak DF, Leone TC, Kelly DP (2010) Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab 12(6):633–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11(5):509–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zschiedrich I, Hardeland U, Krones-Herzig A, Berriel Diaz M, Vegiopoulos A, Muggenburg J, Sombroek D, Hofmann TG, Zawatzky R, Yu X, Gretz N, Christian M, White R, Parker MG, Herzig S (2008) Coactivator function of RIP140 for NFkappaB/RelA-dependent cytokine gene expression. Blood 112(2):264–276

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawaz Alzaïd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alzaïd, F., Jakobsson, T., Treuter, E., Venteclef, N. (2019). Epigenetic Aspects of Nuclear Receptor Coregulators: How Nutritional and Environmental Signals Change Gene Expression Patterns. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_116

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_116

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics