Skip to main content

Brain Hypothalamic Proopiomelanocortin and High-Fat Diet on Methylation in Offspring as Epigenetic Modifications

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 126 Accesses

Abstract

Generally, it is believed that genotype and adult lifestyle factors are primary risks of metabolic diseases in life, such as obesity, insulin resistance, and diabetes mellitus. Currently, substantial epidemiological studies and animal experiments indicated maternal overnutrition, such high-fat diet during the critical periods of early life development can significantly increase the predisposition to developing metabolic diseases in later life. However, the underlying mechanism is still not very clear. Recently, epigenetics is hypothesized to be the important molecular basis of the early life overnutrition and abnormal glucose metabolism in adulthood. The fundamental mechanism is that early developmental nutrition can regulate epigenetic modifications of some genes associated with development and metabolism. DNA methylation is the first discovered and an important epigenetic modification. Recent studies suggest that DNA methylation may be the crucial modulators of fetal epigenetic programming in nutrition and metabolic disorders. Furthermore, emerging studies show that brain plays a central role in glucose homeostasis. And the central role of neuropeptides expressed in neurons within nuclei located in the hypothalamus, which can keep balance between food intake and energy expenditure. Most peripheral organs including liver, pancreas, skeletal muscle, and adipose tissue appear to be imprinted by this early imbalanced nutrition. However, investigations into the effects of maternal diet on epigenetic modification of the brain like hypothalamus in the offspring are limited. Therefore, this chapter will focus on brain hypothalamic proopiomelanocortin and high-fat diet on methylation in offspring as epigenetic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AgRP:

Agouti-related protein

α-MSH:

α-melanocyte-stimulating hormone

CART:

Cocaine amphetamine–related transcript

CVD:

Cardiovascular diseases

DOHaD:

Developmental Origin of Health and Diseases

GDM:

Gestational diabetes mellitus

IDF:

International Diabetes Federation

MC4R:

Melanocortin-4 receptor

MeCP2:

Methyl CpG-binding protein 2

MOR:

μ-opioid receptor

NPY:

Neuropeptide Y

POMC:

Proopiomelanocortin

SAM:

S-adenosylmethionine

T2DM:

Type 2 diabetes mellitus

5mC:

5-methylcytosine

5hmC:

5-hydroxymethylcytosine

References

  • Aguilera O, Fernandez AF, Munoz A, Fraga MF (2010) Epigenetics and environment: a complex relationship. J Appl Physiol 109:243–251

    Article  CAS  Google Scholar 

  • Berglund ED, Liu T, Kong X, Sohn JW, Vong L, Deng Z, Lee CE, Lee S, Williams KW, Olson DP et al (2014) Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat Neurosci 17:911–913

    Article  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  Google Scholar 

  • Butler AA, Marks DL, Fan W, Kuhn CM, Bartolome M, Cone RD (2001) Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci 4:605–611

    Article  CAS  Google Scholar 

  • Ceriello A, Testa R, Genovese S (2016) Clinical implications of oxidative stress and potential role of natural antioxidants in diabetic vascular complications. Nutr Metab Cardiovasc Dis 26:285–292

    Article  CAS  Google Scholar 

  • Chawla A, Chawla R, Jaggi S (2016) Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J Endocrinol Metab 20:546–551

    Article  CAS  Google Scholar 

  • Chen H, Morris MJ (2009) Differential responses of orexigenic neuropeptides to fasting in offspring of obese mothers. Obesity (Silver Spring) 17:1356–1362

    CAS  Google Scholar 

  • Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571–578

    Article  CAS  Google Scholar 

  • Davidowa H, Li Y, Plagemann A (2003) Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci 18:613–621

    Article  Google Scholar 

  • Federation. I.D (2015) IDF Diabetes Atlas, 7th edn

    Google Scholar 

  • Fraga MF (2009) Genetic and epigenetic regulation of aging. Curr Opin Immunol 21:446–453

    Article  CAS  Google Scholar 

  • Gallou-Kabani C, Gabory A, Tost J, Karimi M, Mayeur S, Lesage J, Boudadi E, Gross MS, Taurelle J, Vige A et al (2010) Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 5:e14398

    Article  CAS  Google Scholar 

  • Gardinergarden M, Frommer M (1987) Cpg islands in vertebrate genomes. J Mol Biol 196:261–282

    Article  CAS  Google Scholar 

  • Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS (2009) Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol 5:401–408

    Article  CAS  Google Scholar 

  • Holliday R (2006) Epigenetics a historical overview. Epigenetics 1:76–80

    Article  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  Google Scholar 

  • Ibrahim N, Bosch MA, Smart JL, Qiu J, Rubinstein M, Ronnekleiv OK, Low MJ, Kelly MJ (2003) Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology 144:1331–1340

    Article  CAS  Google Scholar 

  • Ikenasio-Thorpe BA, Breier BH, Vickers MH, Fraser M (2007) Prenatal influences on susceptibility to diet-induced obesity are mediated by altered neuroendocrine gene expression. J Endocrinol 193:31–37

    Article  CAS  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  Google Scholar 

  • Jang H, Serra C (2014) Nutrition, epigenetics, and diseases. Clin Nutr Res 3:1–8

    Article  Google Scholar 

  • Kacem S, Feil R (2009) Chromatin mechanisms in genomic imprinting. Mamm Genome 20:544–556

    Article  CAS  Google Scholar 

  • Khalyfa A, Carreras A, Hakim F, Cunningham JM, Wang Y, Gozal D (2013) Effects of late gestational high-fat diet on body weight, metabolic regulation and adipokine expression in offspring. Int J Obes 37:1481–1489

    Article  CAS  Google Scholar 

  • Kulkarni A, Dangat K, Kale A, Sable P, Chavan-Gautam P, Joshi S (2011) Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS One 6:e17706

    Article  CAS  Google Scholar 

  • Lee HS (2015) Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Forum Nutr 7:9492–9507

    CAS  Google Scholar 

  • Marco A, Kisliouk T, Weller A, Meiri N (2013) High fat diet induces hypermethylation of the hypothalamic Pomc promoter and obesity in post-weaning rats. Psychoneuroendocrinology 38:2844–2853

    Article  CAS  Google Scholar 

  • Marco A, Kisliouk T, Tabachnik T, Weller A, Meiri N (2016) DNA CpG methylation (5-Methylcytosine) and its derivative (5-Hydroxymethylcytosine) alter histone posttranslational modifications at the Pomc promoter, affecting the impact of perinatal diet on leanness and obesity of the offspring. Diabetes 65:2258–2267

    Article  CAS  Google Scholar 

  • Muhlhausler BS, Adam CL, Findlay PA, Duffield JA, McMillen IC (2006) Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J 20:1257–1259

    Article  CAS  Google Scholar 

  • Page KC, Malik RE, Ripple JA, Anday EK (2009) Maternal and postweaning diet interaction alters hypothalamic gene expression and modulates response to a high-fat diet in male offspring. Am J Physiol Regul Integr Comp Physiol 297:R1049–R1057

    Article  CAS  Google Scholar 

  • Patel N, Pasupathy D, Poston L (2015) Determining the consequences of maternal obesity for offspring health. Exp Physiol 100:1421–1428

    Article  Google Scholar 

  • Pinhas-Hamiel O, Zeitler P (2005) The global spread of type 2 diabetes mellitus in children and adolescents. J Pediatr 146:693–700

    Article  Google Scholar 

  • Pirola L, Balcerczyk A, Okabe J, El-Osta A (2010) Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol 6:665–675

    Article  CAS  Google Scholar 

  • Plagemann A (2005) Perinatal programming and functional teratogenesis: impact on body weight regulation and obesity. Physiol Behav 86:661–668

    Article  CAS  Google Scholar 

  • Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M, Ziska T, Schellong K, Rodekamp E, Melchior K et al (2009) Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol 587:4963–4976

    Article  CAS  Google Scholar 

  • Rando OJ, Simmons RA (2015) I’m eating for two: parental dietary effects on offspring metabolism. Cell 161:93–105

    Article  CAS  Google Scholar 

  • Reik W, Dean W (2001) DNA methylation and mammalian epigenetics. Electrophoresis 22:2838–2843

    Article  CAS  Google Scholar 

  • Roth TL (2012) Epigenetics of neurobiology and behavior during development and adulthood. Dev Psychobiol 54:590–597

    Article  CAS  Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    Article  CAS  Google Scholar 

  • Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 21:214–222

    Article  CAS  Google Scholar 

  • Slatkin M (2009) Epigenetic inheritance and the missing heritability problem. Genetics 182:845–850

    Article  Google Scholar 

  • Stevens A, Begum G, Cook A, Connor K, Rumball C, Oliver M, Challis J, Bloomfield F, White A (2010) Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology 151:3652–3664

    Article  CAS  Google Scholar 

  • Turner BM (1998) Histone acetylation as an epigenetic determinant of long-term transcriptional competence. Cell Mol Life Sci 54:21–31

    Article  CAS  Google Scholar 

  • Vogt MC, Bruning JC (2013) CNS insulin signaling in the control of energy homeostasis and glucose metabolism - from embryo to old age. Trends Endocrinol Metab 24:76–84

    Article  CAS  Google Scholar 

  • Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM (2010) Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 151:4756–4764

    Article  CAS  Google Scholar 

  • Vucetic Z, Kimmel J, Reyes TM (2011) Chronic high-fat diet drives postnatal epigenetic regulation of mu-opioid receptor in the brain. Neuropsychopharmacology 36:1199–1206

    Article  CAS  Google Scholar 

  • Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41:10–13

    Article  CAS  Google Scholar 

  • Warner MJ, Ozanne SE (2010) Mechanisms involved in the developmental programming of adulthood disease. Biochem J 427:333–347

    Article  CAS  Google Scholar 

  • Watson SJ, Akil H, Richard CW 3rd, Barchas JD (1978) Evidence for two separate opiate peptide neuronal systems. Nature 275:226–228

    Article  CAS  Google Scholar 

  • Wattez JS, Delahaye F, Lukaszewski MA, Risold PY, Eberle D, Vieau D, Breton C (2013) Perinatal nutrition programs the hypothalamic melanocortin system in offspring. Horm Metab Res 45:980–990

    Article  CAS  Google Scholar 

  • Zheng J, Xiao X, Zhang Q, Yu M, Xu J, Wang Z, Qi C, Wang T (2015) Maternal and post-weaning high-fat, high-sucrose diet modulates glucose homeostasis and hypothalamic POMC promoter methylation in mouse offspring. Metab Brain Dis 30:1129–1137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zheng, J., Xiao, X. (2019). Brain Hypothalamic Proopiomelanocortin and High-Fat Diet on Methylation in Offspring as Epigenetic Modifications. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_110

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_110

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics