Skip to main content

DNA Methylation in Anti-cancer Effects of Dietary Catechols and Stilbenoids: An Overview of Underlying Mechanisms

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 203 Accesses

Abstract

Carcinogenesis involves an accumulation of genetic mutations and epigenetic alterations. DNA methylation, a dynamic epigenetic modification, may underlie genomic instability, silencing of genes with tumor suppressor functions, and activation of genes associated with cancer progression. Therefore, reversing DNA methylation patterns established during carcinogenesis constitutes a promising anti-cancer strategy. Interestingly, studies have indicated that certain dietary polyphenols, such as those from catechol and stilbenoid classes present in grapes, blueberries, and green tea, exert anti-cancer effects through epigenetic regulation of gene expression. A basis of evidence demonstrating the importance of DNA methylation in cancer formation and progression as well as the impact of catechol and stilbenoid compounds on these events are presented in this review. In vitro and in vivo evidence for the chemopreventive and therapeutic potential of polyphenols through their influence on DNA methylation is discussed. Current mechanistic insights on the changes in DNA methylation machinery upon exposure to polyphenols are further emphasized. Such studies are ongoing and crucially needed for transition into application of polyphenols as agents in cancer prevention and/or treatment in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP-1:

Activator protein 1

APC:

Adenotamous polyposis coli

ATM:

Ataxia telangiectasia mutated

ATR:

Ataxia telangiectasia and rad3-related protein

BRCA1:

Breast cancer 1

CDK:

Cyclin-dependent kinase

CHK1/2:

Checkpoint kinase 1/2

COMT:

Catechol-O-methyltransferase

DNA:

Deoxyribonucleic acid

DNMT:

DNA methyltransferase

EGCG:

Epigallocatechin gallate

EMT:

Epithelial-to-mesenchymal transtion

ER:

Estrogen receptor

EXOSC4:

Exosome component 4

GSTP1:

Glutathione S-transferase pi 1

HCC:

Hepatocellular carcinoma

HDAC:

Histone deacetylase

IGF2:

Insulin-like growth factor 2

MAML2:

Mastermind-like transcriptional coactivator 2

MAPK:

Mitogen-activated protein kinase

MBD2:

Methyl-CpG-binding domain 2

MMP:

Matrix metalloproteinase

MTHFR:

Methylenetetrahydrofolate reductase

NENF:

Neuron-derived neurotrophic factor

NF-κB:

Nuclear factor kappa B

OCT1:

Octamer-binding transcription factor 1

PCNA:

Proliferating cell nuclear antigen

PI3K/Akt:

Phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B

PTEN:

Phosphatase and tensin homolog

RASAL2:

Ras-GTPase-activating protein 2

RASSF-1α:

Ras association domain family member 1

RNA:

Ribonucleic acid

RXRα:

Retinoid X receptor A

SAH:

S-adenosyl-L-homocysteine

SAM:

S-adenosyl-L-methionine

SENP6:

SUMO1/sentrin-specific peptidase 6

STAT3:

Signal transducer and activator 3

TNF:

Tumor necrosis factor

TRAMP:

Transgenic adenocarcinoma of the mouse prostate

TYMS:

Thymidylate synthase

VEGF:

Vascular endothelial growth factor

WBSCR22:

Williams-Beuren syndrome chromosome region 22

References

  • Aires V, Delmas D (2015) Common pathways in health benefit properties of RSV in cardiovascular diseases, cancers and degenerative pathologies. Curr Pharm Biotechnol 16(3):219–244

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Walters IB, Hanahan D (2011) Brivanib, a dual FGF/VEGF inhibitor, is active both first and second line against mouse pancreatic neuroendocrine tumors developing adaptive/evasive resistance to VEGF inhibition. Clin Cancer Res 17(16):5299–5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23(8):853–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardaens Y, Renan CA (1993) Modern imaging of ovarian cysts. Contracep Fertil Sex 21(4): 321–324

    CAS  Google Scholar 

  • Arts IC, Hollman PC (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81(1 Suppl):317S–325S

    Article  CAS  PubMed  Google Scholar 

  • Baylin S (2001) DNA methylation and epigenetic mechanisms of carcinogenesis. Dev Biol 106:85–87. discussion 143–160

    CAS  Google Scholar 

  • Berkyurek AC, Suetake I, Arita K et al (2014) The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA. J Biol Chem 289(1): 379–386

    Article  CAS  PubMed  Google Scholar 

  • Bigey P, Ramchandani S, Theberge J, Araujo FD, Szyf M (2000) Transcriptional regulation of the human DNA Methyltransferase (dnmt1) gene. Gene 242(1–2):407–418

    Article  CAS  PubMed  Google Scholar 

  • Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50(11):3337–3340

    Article  CAS  Google Scholar 

  • Carter LG, D’Orazio JA, Pearson KJ (2014) Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 21(3):R209–R225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Li E (2004) Structure and function of eukaryotic DNA methyltransferases. Curr Top Dev Biol 60:55–89

    Article  CAS  PubMed  Google Scholar 

  • Chiurillo MA (2015) Role of the Wnt/beta-catenin pathway in gastric cancer: an in-depth literature review. World J Exp Med 5(2):84–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277(5334):1996–2000

    Article  CAS  PubMed  Google Scholar 

  • Chung JH, Ostrowski MC, Romigh T, Minaguchi T, Waite KA, Eng C (2006) The ERK1/2 pathway modulates nuclear PTEN-mediated cell cycle arrest by cyclin D1 transcriptional regulation. Hum Mol Genet 15(17):2553–2559

    Article  CAS  PubMed  Google Scholar 

  • Collisson EA, Sadanandam A, Olson P et al (2011) Subtypes of pancreatic ductal adenocarcinoma and their differin5g responses to therapy. Nat Med 17(4):500–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar S, Kumar A, Zhang L et al (2016) Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget 7(14):18469–18484

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickinson D, Yu H, Ohno S et al (2014) Epigallocatechin-3-gallate prevents autoimmune-associated downregulation of p21 in salivary gland cells through a p53-independent pathway. Inflammation & allergy drug targets 13:15–24

    Article  CAS  Google Scholar 

  • Duan J, Yue W, JianYu E et al (2016) In vitro comparative studies of resveratrol and triacetylresveratrol on cell proliferation, apoptosis, and STAT3 and NFkappaB signaling in pancreatic cancer cells. Sci Rep 6:31672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Mowafy AM, El-Mesery ME, Salem HA, Al-Gayyar MM, Darweish MM (2010) Prominent chemopreventive and chemoenhancing effects for resveratrol: unraveling molecular targets and the role of C-reactive protein. Chemotherapy 56(1):60–65

    Article  CAS  PubMed  Google Scholar 

  • Esteller M, Fraga MF, Guo M et al (2001) DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet 10(26):3001–3007

    Article  CAS  PubMed  Google Scholar 

  • Fini L, Piazzi G, Daoud Y et al (2011) Chemoprevention of intestinal polyps in ApcMin/+ mice fed with western or balanced diets by drinking annurca apple polyphenol extract. Cancer Prev Res 4(6):907–915

    Article  CAS  Google Scholar 

  • Galamb O, Kalmar A, Peterfia B et al (2016) Aberrant DNA methylation of WNT pathway genes in the development and progression of CIMP-negative colorectal cancer. Epigenetics 11(8): 588–602

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallagher JC, Baylink DJ, Freeman R, McClung M (2001) Prevention of bone loss with tibolone in postmenopausal women: results of two randomized, double-blind, placebo-controlled, dose-finding studies. J Clin Endocrinol Metab 86(10):4717–4726

    Article  CAS  PubMed  Google Scholar 

  • Giacosa A (2004) The Mediterranean diet and its protective role against cancer. Eur J Cancer Prev 13(3):155–157

    Article  CAS  PubMed  Google Scholar 

  • Grosso G, Buscemi S, Galvano F et al (2013) Mediterranean diet and cancer: epidemiological evidence and mechanism of selected aspects. BMC Surg 13(Suppl 2):S14

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruenbaum Y, Stein R, Cedar H, Razin A (1981) Methylation of CpG sequences in eukaryotic DNA. FEBS Lett 124(1):67–71

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  • Hata K, Okano M, Lei H, Li E (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129(8):1983–1993

    CAS  PubMed  Google Scholar 

  • Hatada I, Fukasawa M, Kimura M et al (2006) Genome-wide profiling of promoter methylation in human. Oncogene 25(21):3059–3064

    Article  CAS  PubMed  Google Scholar 

  • Henning SM, Wang P, Carpenter CL, Heber D (2013) Epigenetic effects of green tea polyphenols in cancer. Epigenomics 5(6):729–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JG, Baylin SB (2001) Methylation-specific PCR. Curr Protoc Hum Genet. Chapter 10:Unit 10 16

    Google Scholar 

  • Howells LM, Berry DP, Elliott PJ et al (2011) Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases – safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res 4(9):1419–1425

    Article  CAS  Google Scholar 

  • Huderson AC, Myers JN, Niaz MS, Washington MK, Ramesh A (2013) Chemoprevention of benzo(a)pyrene-induced colon polyps in ApcMin mice by resveratrol. J Nutr Biochem 24(4):713–724

    Article  CAS  PubMed  Google Scholar 

  • Iida T, Suetake I, Tajima S et al (2002) PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 7(10):997–1007

    Article  CAS  PubMed  Google Scholar 

  • Imai K, Suga K, Nakachi K (1997) Cancer-preventive effects of drinking green tea among a Japanese population. Prev Med 26(6):769–775

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Chang TT, Hamilton JP et al (2011) Methylation of the CpG sites only on the sense strand of the APC gene is specific for hepatocellular carcinoma. PLoS One 6(11):e26799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James SJ, Pogribny IP, Pogribna M, Miller BJ, Jernigan S, Melnyk S (2003) Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-deficient rat model of hepatocarcinogenesis. J Nutr 133(11 Suppl 1):3740S–3747S

    Article  CAS  PubMed  Google Scholar 

  • Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293(5532):1068–1070

    Article  CAS  Google Scholar 

  • Kala R, Shah HN, Martin SL, Tollefsbol TO (2015) Epigenetic-based combinatorial resveratrol and pterostilbene alters DNA damage response by affecting SIRT1 and DNMT enzyme expression, including SIRT1-dependent gamma-H2AX and telomerase regulation in triple-negative breast cancer. BMC Cancer 15:672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Mukhtar H (2013) Modulation of signaling pathways in prostate cancer by green tea polyphenols. Biochem Pharmacol 85(5):667–672

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Hussain A, Sundaram MK et al (2015) (−)-Epigallocatechin-3-gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol Rep 33(4):1976–1984

    Article  CAS  PubMed  Google Scholar 

  • Lao VV, Grady WM (2011) Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 8(12):686–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WJ, Zhu BT (2006) Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcinogenesis 27(2):269–277

    Article  CAS  PubMed  Google Scholar 

  • Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68(4):1018–1030

    Article  CAS  PubMed  Google Scholar 

  • Lee HS, Ha AW, Kim WK (2012a) Effect of resveratrol on the metastasis of 4T1 mouse breast cancer cells in vitro and in vivo. Nutr Res Pract 6(4):294–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Zhang P, Herrmann A et al (2012b) Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proc Natl Acad Sci U S A 109(20):7765–7769

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H, Kim Y, Jeong JH, Ryu JH, Kim WY (2016) ATM/CHK/p53 pathway dependent chemopreventive and therapeutic activity on lung cancer by Pterostilbene. PLoS One 11(9):e0162335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Mohan S, Gu W, Wergedal J, Baylink DJ (2001) Quantitative assessment of forearm muscle size, forelimb grip strength, forearm bone mineral density, and forearm bone size in determining humerus breaking strength in 10 inbred strains of mice. Calcif Tissue Int 68(6):365–369

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yuan YY, Meeran SM, Tollefsbol TO (2010) Synergistic epigenetic reactivation of estrogen receptor-alpha (ERalpha) by combined green tea polyphenol and histone deacetylase inhibitor in ERalpha-negative breast cancer cells. Mol Cancer 9:274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li K, Dias SJ, Rimando AM et al (2013) Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS One 8(3):e57542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Wu L, Feng J et al (2016) In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci Rep 6:28479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HT, Gao P (2016) The roles of microRNAs related with progression and metastasis in human cancers. Tumour Biol 37:15383-15397

    Google Scholar 

  • Liu B, Song J, Luan J et al (2016) Promoter methylation status of tumor suppressor genes and inhibition of expression of DNA methyltransferase 1 in non-small cell lung cancer. Exp Biol Med (Maywood) 241(14):1531–1539

    Article  CAS  Google Scholar 

  • Lubecka K, Kurzava L, Flower K et al (2016) Stilbenoids remodel the DNA methylation patterns in breast cancer cells and inhibit oncogenic NOTCH signaling through epigenetic regulation of MAML2 transcriptional activity. Carcinogenesis 37(7):656–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandal S, Davie JR (2010) Estrogen regulated expression of the p21 Waf1/Cip1 gene in estrogen receptor positive human breast cancer cells. J Cell Physiol 224(1):28–32

    CAS  PubMed  Google Scholar 

  • Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164(12):6509–6519

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Quetglas I, Pinyol R, Dauch D et al (2016) IGF2 is Upregulated by epigenetic mechanisms in hepatocellular carcinomas and is an actionable oncogene product in experimental models. Gastroenterology 151:1192

    Article  CAS  PubMed  Google Scholar 

  • McCormack D, Schneider J, McDonald D, McFadden D (2011) The antiproliferative effects of pterostilbene on breast cancer in vitro are via inhibition of constitutive and leptin-induced Janus kinase/signal transducer and activator of transcription activation. Am J Surg 202(5):541–544

    Article  CAS  PubMed  Google Scholar 

  • Medina-Aguilar R, Perez-Plasencia C, Marchat LA et al (2016) Methylation landscape of human breast cancer cells in response to dietary compound resveratrol. PLoS One 11(6):e0157866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mialon MM, Camous S, Renand G, Martal J, Menissier F (1993) Peripheral concentrations of a 60-kDa pregnancy serum protein during gestation and after calving and in relationship to embryonic mortality in cattle. Reprod Nutr Dev 33(3):269–282

    Article  CAS  PubMed  Google Scholar 

  • Mittal A, Piyathilake C, Hara Y, Katiyar SK (2003) Exceptionally high protection of photocarcinogenesis by topical application of (−)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 5(6):555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myung SK, Bae WK, Oh SM et al (2009) Green tea consumption and risk of stomach cancer: a meta-analysis of epidemiologic studies. Int J Cancer 124(3):670–677

    Article  CAS  PubMed  Google Scholar 

  • Nguyen AV, Martinez M, Stamos MJ et al (2009) Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res 1:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niles RM, Cook CP, Meadows GG, Fu YM, McLaughlin JL, Rankin GO (2006) Resveratrol is rapidly metabolized in athymic (nu/nu) mice and does not inhibit human melanoma xenograft tumor growth. J Nutr 136(10):2542–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa T, Nakajima T, Moriguchi M et al (2006) A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J Hepatol 44(6):1074–1082

    Article  CAS  PubMed  Google Scholar 

  • Olthof MR, Hollman PC, Zock PL, Katan MB (2001) Consumption of high doses of chlorogenic acid, present in coffee, or of black tea increases plasma total homocysteine concentrations in humans. Am J Clin Nutr 73:532–538

    Article  CAS  PubMed  Google Scholar 

  • Pandey M, Shukla S, Gupta S (2010) Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer 126(11):2520–2533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pere H, Montier Y, Bayry J et al (2011) A CCR4 antagonist combined with vaccines induces antigen-specific CD8+ T cells and tumor immunity against self antigens. Blood 118(18): 4853–4862

    Article  CAS  PubMed  Google Scholar 

  • Pethe V, Shekhar PV (1999) Estrogen inducibility of c-Ha-ras transcription in breast cancer cells. Identification of functional estrogen-responsive transcriptional regulatory elements in exon 1/intron 1 of the c-Ha-ras gene. J Biol Chem 274(43):30969–30978

    Article  CAS  PubMed  Google Scholar 

  • Qin W, Zhang K, Clarke K, Weiland T, Sauter ER (2014) Methylation and miRNA effects of resveratrol on mammary tumors vs. normal tissue. Nutr Cancer 66(2):270–277

    Article  CAS  PubMed  Google Scholar 

  • Razin A (1998) CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J 17(17):4905–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renan MJ (1993) How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 7(3):139–146

    Article  CAS  PubMed  Google Scholar 

  • Renan R, Freire VN, Auto MM, Farias GA (1993) Transmission coefficient of electrons through a single graded barrier. Phy Rev B Condens Matter 48(11):8446–8449

    Article  CAS  Google Scholar 

  • Romagnolo DF, Papoutsis AJ, Laukaitis C, Selmin OI (2015) Constitutive expression of AhR and BRCA-1 promoter CpG hypermethylation as biomarkers of ERalpha-negative breast tumorigenesis. BMC Cancer 15:1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvesen HB, MacDonald N, Ryan A et al (2001) PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer 91(1):22–26

    Article  CAS  PubMed  Google Scholar 

  • Shariati-Kohbanani M, Zare-Bidaki M, Taghavi MM et al (2016) DNA methylation and microRNA patterns are in association with the expression of BRCA1 in ovarian cancer. Cell Mol Biol (Noisy-le-Grand, France) 62(1):16–23

    CAS  Google Scholar 

  • Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Shin YS, Kang SU, Park JK et al (2016) Anti-cancer effect of (−)-epigallocatechin-3-gallate (EGCG) in head and neck cancer through repression of transactivation and enhanced degradation of beta-catenin. Phytomedicine 23(12):1344–1355

    Article  CAS  PubMed  Google Scholar 

  • Shirakami Y, Shimizu M, Adachi S et al (2009) (−)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor-vascular endothelial growth factor receptor axis. Cancer Sci 100(10):1957–1962

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Shoulson R, Chatterjee A et al (2014) Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways. Carcinogenesis 35(8):1872–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha D, Sarkar N, Biswas J, Bishayee A (2016) Resveratrol for breast cancer prevention and therapy: preclinical evidence and molecular mechanisms. Semin Cancer Biol 40-41:209–232

    Article  CAS  PubMed  Google Scholar 

  • Sodir NM, Swigart LB, Karnezis AN, Hanahan D, Evan GI, Soucek L (2011) Endogenous Myc maintains the tumor microenvironment. Genes Dev 25(9):907–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava AK, MacFarlane G, Srivastava VP, Mohan S, Baylink DJ (2001a) A new monoclonal antibody ELISA for detection and characterization of C-telopeptide fragments of type I collagen in urine. Calcif Tissue Int 69(6):327–336

    Article  CAS  PubMed  Google Scholar 

  • Srivastava AK, Bhattacharyya S, Li X, Mohan S, Baylink DJ (2001b) Circadian and longitudinal variation of serum C-telopeptide, osteocalcin, and skeletal alkaline phosphatase in C3H/HeJ mice. Bone 29(4):361–367

    Article  CAS  PubMed  Google Scholar 

  • Stefanska B, Rudnicka K, Bednarek A, Fabianowska-Majewska K (2010) Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells. Eur J Pharmacol 638(1–3):47–53

    Article  CAS  PubMed  Google Scholar 

  • Stefanska B, Huang J, Bhattacharyya B et al (2011) Definition of the landscape of promoter DNA hypomethylation in liver cancer. Cancer Res 71(17):5891–5903

    Article  CAS  PubMed  Google Scholar 

  • Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A (2012) Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention. Br J Pharmacol 167(2):279–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanska B, Suderman M, Machnes Z, Bhattacharyya B, Hallett M, Szyf M (2013) Transcription onset of genes critical in liver carcinogenesis is epigenetically regulated by methylated DNA-binding protein MBD2. Carcinogenesis 34(12):2738–2749

    Article  CAS  PubMed  Google Scholar 

  • Stefanska B, Cheishvili D, Suderman M et al (2014) Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets. Clin Cancer Res 20(12):3118–3132

    Article  CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765): 41–45

    Article  CAS  Google Scholar 

  • Sun CL, Yuan JM, Koh WP, Yu MC (2006) Green tea, black tea and colorectal cancer risk: a meta-analysis of epidemiologic studies. Carcinogenesis 27(7):1301–1309

    Article  CAS  PubMed  Google Scholar 

  • Szyf M, Pakneshan P, Rabbani SA (2004) DNA methylation and breast cancer. Biochem Pharmacol 68(6):1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Tsai CL, Li HP, Lu YJ et al (2006) Activation of DNA methyltransferase 1 by EBV LMP1 involves c-Jun NH(2)-terminal kinase signaling. Cancer Res 66(24):11668–11676

    Article  CAS  PubMed  Google Scholar 

  • Tsuchida N, Murugan AK, Grieco M (2016) Kirsten Ras* oncogene: significance of its discovery in human cancer research. Oncotarget 7:46717

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuveson D, Hanahan D (2011) Translational medicine: cancer lessons from mice to humans. Nature 471(7338):316–317

    Article  CAS  PubMed  Google Scholar 

  • Umemura T, Kai S, Hasegawa R et al (2003) Prevention of dual promoting effects of pentachlorophenol, an environmental pollutant, on diethylnitrosamine-induced hepato- and cholangiocarcinogenesis in mice by green tea infusion. Carcinogenesis 24(6):1105–1109

    Article  PubMed  Google Scholar 

  • Van Emburgh BO, Robertson KD (2011) Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res 39(12):4984–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volate SR, Muga SJ, Issa AY, Nitcheva D, Smith T, Wargovich MJ (2009) Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog 48(10):920–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams GH, Stoeber K (2012) The cell cycle and cancer. J Pathol 226(2):352–364

    Article  CAS  PubMed  Google Scholar 

  • Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81(1 Suppl):243S–255S

    Article  CAS  PubMed  Google Scholar 

  • Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162

    CAS  PubMed  Google Scholar 

  • Xiang LP, Wang A, Ye JH et al (2016) Suppressive effects of tea catechins on breast cancer. Forum Nutr 8(8):458

    Google Scholar 

  • Yan T, Wergedal J, Zhou Y, Mohan S, Baylink DJ, Strong DD (2001) Inhibition of human osteoblast marker gene expression by retinoids is mediated in part by insulin-like growth factor binding protein-6. Growth Horm IGF Res 11(6):368–377

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Wang H, Li GX, Yang Z, Guan F, Jin H (2011) Cancer prevention by tea: evidence from laboratory studies. Pharmacol Res 64(2):113–122

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Du W, Yang D (2016) Inhibition of green tea polyphenol EGCG((−)-epigallocatechin-3-gallate) on the proliferation of gastric cancer cells by suppressing canonical wnt/beta-catenin signalling pathway. Int J Food Sci Nutr 67(7):818–827

    Article  CAS  PubMed  Google Scholar 

  • Yong WS, Hsu FM, Chen PY (2016) Profiling genome-wide DNA methylation. Epigenetics Chromatin 9:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan JM (2013) Cancer prevention by green tea: evidence from epidemiologic studies. Am J Clin Nutr 98(6 Suppl):1676S–1681S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan JM, Sun C, Butler LM (2011) Tea and cancer prevention: epidemiological studies. Pharmacol Res 64(2):123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamora-Ros R, Touillaud M, Rothwell JA, Romieu I, Scalbert A (2014) Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: current tools and applications and their limits. Am J Clin Nutr 100(1):11–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Lei Z, Huang Z et al (2016) Epigallocatechin-3-gallate(EGCG) suppresses melanoma cell growth and metastasis by targeting TRAF6 activity. Oncotarget 7:79557

    PubMed  PubMed Central  Google Scholar 

  • Zhong L, Goldberg MS, Gao YT, Hanley JA, Parent ME, Jin F (2001) A population-based case-control study of lung cancer and green tea consumption among women living in shanghai. China Epidemiol 12(6):695–700

    Article  CAS  Google Scholar 

  • Zhong LX, Li H, Wu ML et al (2015) Inhibition of STAT3 signaling as critical molecular event in resveratrol-suppressed ovarian cancer cells. J Ovarian Res 8:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Qin W, Zhang K et al (2012) Trans-resveratrol alters mammary promoter hypermethylation in women at increased risk for breast cancer. Nutr Cancer 64(3):393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler CC, Rainwater L, Whelan J, McEntee MF (2004) Dietary resveratrol does not affect intestinal tumorigenesis in Apc(Min/+) mice. J Nutr 134(1):5–10

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Stefanska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Beetch, M., Stefanska, B. (2019). DNA Methylation in Anti-cancer Effects of Dietary Catechols and Stilbenoids: An Overview of Underlying Mechanisms. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_104

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_104

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics