Skip to main content

Design for Impact Loads

  • Reference work entry
  • First Online:
  • 4560 Accesses

Abstract

Design methods of adhesively bonded joints subjected to impact loading are discussed in this chapter. Methodologies to treat the dynamic responses of structures are shown. In these cases, it is necessary to analyze the stress distribution considering stress wave propagation because inertia effects of the structures are more significant than those in quasi static conditions. Constitutive relations of materials are discussed. The relations are highly dependent to the stress and strain rates. Thus, the dependence should be considered for the dynamic analysis of materials. Some examples of stress analysis are shown, where closed-form approaches and dynamic finite element analyses are explained. In addition, an actual application, a crash problem of car structures, is explained because adhesively bonded joints have been recently introduced to car structures and the design of the joints subjected to impact loads has become very important.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams RD, Peppiatt NA (1974) Stress analysis of adhesive-bonded lap joints. J Strain Anal 9:185

    Article  Google Scholar 

  • Akiba H, Ohyama T et al (2006) Large scale drop impact analysis of mobile phone using ADVC on blue gene/L. Proceedings of SC06, Tampa, pp 1–26

    Google Scholar 

  • Belingardi G, Goglio L et al (2005) Impact behaviour of bonded built-up beams: experimental results. Int J Adhes Adhes 25:173

    Article  Google Scholar 

  • Cowper GR, Symonds PS (1952) Brown Univ Div of Appl Math, Report 28

    Google Scholar 

  • Fay PA, Suthurst GD (1990) Redesign of adhesively bonded box beam sections for improved impact performance. Int J Adhes Adhes 10:128

    Article  Google Scholar 

  • Goglio L, Peroni L et al (2008) High strain-rate compression and tension behaviour of an epoxy bi-component adhesive. Int J Adhes Adhes 28:329

    Article  Google Scholar 

  • Goldsmith W (2001) Impact, the theory and physical behaviour of colliding solids. Dover, New York, p 25

    MATH  Google Scholar 

  • Harris JA, Adams RD (1985) An assessment of the impact performance of bonded joints for use in high energy absorbing structures. Proc Inst Mech Eng 199:121

    Article  Google Scholar 

  • Hattori T, Sakata S et al (1988) A stress singularity parameter approach for evaluating adhesive strength. JSME Int J Ser 1 31:718

    Google Scholar 

  • Higuchi I, Sawa T et al (2002a) Three-dimensional finite element analysis of single-lap adhesive joints subjected to impact bending moments. J Adhes Sci Technol 16:1327

    Article  Google Scholar 

  • Higuchi I, Sawa T et al (2002b) Three-dimensional finite element analysis of single-lap adhesive joints under impact loads. J Adhes Sci Technol 16:1585

    Article  Google Scholar 

  • Higuchi I, Sawa T et al (2003) Three-dimensional finite element analysis of stress response in adhesive butt joints subjected to impact bending moments. J Adhes 79:1017

    Article  Google Scholar 

  • Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of 7th symposium on ballistics 541, The Hague, pp 541–547

    Google Scholar 

  • Johnson W, Mellor PB (1973) Engineering plasticity. Van Nostrand Reinhold 54, London

    Google Scholar 

  • Marzi S, Ramon-Villalonga L et al (2008) Usage of cohesive elements in crash analysis of large, bonded vehicle structures – experimental tests and simulation. In: Proceedings of German LS-DYNA forum, Bamberg, pp B.I.1–B.I.19

    Google Scholar 

  • Marzi S, Hesebeck O et al (2009a) A rate-dependent cohesive zone model for adhesively bonded joints loaded in mode I. J Adhes Sci Technol 23:881

    Article  Google Scholar 

  • Marzi S, Hesebeck O et al (2009b) An end-loaded shear joint (ELSJ) specimen to measure the critical energy release rate in mode II of tough, structural adhesive joints. J Adhes Sci Technol 23:1883

    Article  Google Scholar 

  • Marzi S, Hesebeck O et al (2009c) A rate-dependent, elasto-plastic cohesive zone mixed-mode model for crash analysis of adhesively bonded joints. In: Proceedings of the 7th European LS-DYNA conference, Salzburg

    Google Scholar 

  • Mayer MA (1990) Dynamic behavior of materials. Wiley, Hoboken, p 210

    Google Scholar 

  • Nossek M, Marzi S (2009) Cohesive zone modeling for adhesives. In: Hiermaier S (ed) Predictive modeling of dynamic processes: a tribute to klaus thoma. Springer, New York, pp 89–105

    Chapter  Google Scholar 

  • Parks DM (1977) The virtual crack extension method for nonlinear material behavior. Comput Methods Appl Mech Eng 12:353

    Article  MathSciNet  Google Scholar 

  • Sato C (2008) Impact. In: da Silva LFM, Öchsner A (eds) Modeling of adhesively bonded joints. Springer, Berlin, p 279

    Chapter  Google Scholar 

  • Sato C (2009) Dynamic stress responses at the edges of adhesive layers in lap strap joints of half-infinite length subjected to impact loads. Int J Adhes Adhes 29:670

    Article  Google Scholar 

  • Sato C, Ikegami K (1999) Strength of adhesively-bonded butt joints of tubes subjected to combined high-rate loads. J Adhes 70:57

    Article  Google Scholar 

  • Sato C, Ikegami K (2000) Dynamic deformation of lap joints and scarf joints under impact loads. Int J Adhes Adhes 20:17

    Article  Google Scholar 

  • Sawa T, Senoo Y et al (1996) Interface stress response of laminated plates subjected to static and impact loads. J Adhes 59:1

    Article  Google Scholar 

  • Sawa T, Higuchi I et al (2002) FEM stress analysis and strength of adhesive butt joints of similar hollow cylinders under static and impact tensile loadings. J Adhes Sci Technol 16:1449

    Article  Google Scholar 

  • Sawa T, Suzuki Y et al (2003a) Stress analysis and strength estimation of butt adhesive joints of dissimilar hollow cylinders under impact tensile loadings. J Adhes Sci Technol 17:943

    Article  Google Scholar 

  • Sawa T, Higuchi I et al (2003b) Three-dimensional finite element stress analysis of single-lap adhesive joints of dissimilar adherends subjected to impact tensile loads. J Adhes Sci Technol 17:2157

    Article  Google Scholar 

  • Tresca HE (1869) Memoire sur l’ecoulement des corps solides. Mém Presentés par divers savants 20:733

    Google Scholar 

  • Vaidya UK, Gautam ARS et al (2006) Experimental–numerical studies of transverse impact response of adhesively bonded lap joints in composite structures. Int J Adhes Adhes 26:184

    Article  Google Scholar 

  • Volkersen O (1938) Die nietkraftverteilung in zugbeanspruchten nietverbindungen mit konstanten laschen querschnitten. Luftfahrtforschung 15:41

    Google Scholar 

  • von Mises R (1913) Mechanik der festen korper im plastisch deformablen zustand. Göttin Nachr Math Phys 1:582

    MATH  Google Scholar 

  • Zienkiewicz OC (1971) The finite element method in engineering science, 2nd edn. McGraw Hill, London, p 16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiaki Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sato, C. (2018). Design for Impact Loads. In: da Silva, L., Öchsner, A., Adams, R. (eds) Handbook of Adhesion Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-55411-2_29

Download citation

Publish with us

Policies and ethics