Skip to main content

Impact of Childhood Experience of Famine on Body Composition: DEX and Beyond

  • Reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation
  • 75 Accesses

Abstract

Evidence has shown that growth patterns in early life are associated with the diseases risk in adulthood. This reflects the concept of programming in which environmental factors generate long-lasting variability in phenotype for individual to adapt to an adverse environment. Low birth weight (BW) and poor growth rate are associated with obesity, diabetes, and cardiovascular disease in later life. Animal and epidemiological studies have linked BW and growth rate with the changes in body composition. Prenatal and early postnatal undernutrition can affect fat distribution, reduced bone mineral content, and muscle mass in later life in animals. Individuals who were exposed to the Dutch Famine, the Great Leap Famine in China, World War II, or Nazi occupation have a higher body weight, poor grip strength, and physical performance, and/or poor bone density and higher risk of osteoporosis. Epidemiological studies also show that infants with lower BW or poor growth rate were associated with changes in body composition. Recent animal studies, however, demonstrate that this developmental programming is potentially reversible. Nevertheless with the current evidence, appropriate dietary advice can be given to promote optimal fetal and infant growth and lower diseases risk in the offspring in later life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 869.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMC:

Bone mineral content

BMD:

Bone mineral density

BMI:

Body mass index

BW:

Birth weight

SD:

Standard deviation

SES:

Socioeconomic status

TBBMC:

Total body bone mineral content

References

  • Ashton B, Hill K, Piazza A, Zeitz R (1984) Famine in China, 1958–61. Popul Dev Rev 10:613–645

    Article  Google Scholar 

  • Barker DJ, Eriksson JG, Forsen T, Osmond C (2002) Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 31:1235–1239

    Article  CAS  Google Scholar 

  • Bleker LS, De Rooij SR, Painter RC, Van Der Velde N, Roseboom TJ (2016) Prenatal undernutrition and physical function and frailty at the age of 68 years: the Dutch famine birth cohort study. J Gerontol A Biol Sci Med Sci 71:1306–1314

    Article  Google Scholar 

  • Chan F, Wong S, Leung J, Leung P, Woo J (2007) Experience of famine and bone health in post-menopausal women. Int J Epidemiol 36:1143–1150

    Article  Google Scholar 

  • Chen J, Peng B, Que P, Wen X, Hu S (2016) The impact of early life exposure to famine on osteoporosis in adulthood. Chin J Osteoporosis 22:492–496 (in Chinese

    Google Scholar 

  • Chen Y, Zhou LA (2007) The long-term health and economic consequences of the 1959–1961 famine in China. J Health Econ 26:659–681

    Article  Google Scholar 

  • Cooper C, Cawley M, Bhalla A, Egger P, Ring F, Morton L, Barker D (1995) Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res 10:940–947

    Article  CAS  Google Scholar 

  • Cooper C, Eriksson JG, Forsen T, Osmond C, Tuomilehto J, Barker DJ (2001) Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int 12:623–629

    Article  CAS  Google Scholar 

  • Cooper C, Fall C, Egger P, Hobbs R, Eastell R, Barker D (1997) Growth in infancy and bone mass in later life. Ann Rheum Dis 56:17–21

    Article  CAS  Google Scholar 

  • Cooper C, Javaid MK, Taylor P, Walker-Bone K, Dennison E, Arden N (2002) The fetal origins of osteoporotic fracture. Calcif Tissue Int 70:391–394

    Article  CAS  Google Scholar 

  • DemirtaÅŸ B, Özcan M (2012) The effect of maternal undernutrition on muscle development in the ovine fetus. Turk J Vet Anim Sci 36:297–303

    Google Scholar 

  • Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C (2005) Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Pediatr Res 57:582–586

    Article  Google Scholar 

  • Dwyer CM, Madgwick A, Ward SS, Stickland NC (1995) Effect of maternal undernutrition in early gestation on the development of fetal myofibres in the guinea-pig. Reprod Fertil Dev 7:1285–1292

    Article  CAS  Google Scholar 

  • Dwyer CM, Stickland N, Fletcher J (1994) The influence of maternal nutrition on muscle fiber number development in the porcine fetus and on subsequent postnatal growth. J Anim Sci 72:911–917

    Article  CAS  Google Scholar 

  • Eleftheriades M, Vafaei H, Dontas I, Vaggos G, Marinou K, Pervanidou P, Sebire NJ, Chrousos GP, Nicolaides KH (2016) Assessment of body composition in Wistar rat offspring by Dxa in relation to prenatal and postnatal nutritional manipulation. Pediatr Res 80:319–325

    Article  CAS  Google Scholar 

  • Engelbregt MJ, Van Weissenbruch MM, Lips P, Van Lingen A, Roos JC, Delemarre-Van De Waal HA (2004) Body composition and bone measurements in intra-uterine growth retarded and early postnatally undernourished male and female rats at the age of 6 months: comparison with puberty. Bone 34:180–186

    Article  Google Scholar 

  • Fall C, Hindmarsh P, Dennison E, Kellingray S, Barker D, Cooper C (1998) Programming of growth hormone secretion and bone mineral density in elderly men: a hypothesis. J Clin Endocrinol Metab 83:135–139

    CAS  PubMed  Google Scholar 

  • Gale CR, Martyn CN, Kellingray S, Eastell R, Cooper C (2001) Intrauterine programming of adult body composition. J Clin Endocrinol Metab 86:267–272

    CAS  PubMed  Google Scholar 

  • Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    Article  CAS  Google Scholar 

  • Greenwood P, Hunt A, Hermanson J, Bell A (2000) Effects of birth weight and postnatal nutrition on neonatal sheep: II. Skeletal muscle growth and development. J Anim Sci 78:50–61

    Article  CAS  Google Scholar 

  • Guilloteau P, Zabielski R, Hammon HM, Metges CC (2009) Adverse effects of nutritional programming during prenatal and early postnatal life, some aspects of regulation and potential prevention and treatments. J Physiol Pharmacol 60(Suppl 3):17–35

    PubMed  Google Scholar 

  • Jensen CB, Storgaard H, Madsbad S, Richter EA, Vaag AA (2007) Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight. J Clin Endocrinol Metab 92:1530–1534

    Article  CAS  Google Scholar 

  • Jones AP, Friedman MI (1982) Obesity and adipocyte abnormalities in offspring of rats undernourished during pregnancy. Science 215:1518–1519

    Article  CAS  Google Scholar 

  • Kahn HS, Narayan KM, Williamson DF, Valdez R (2000) Relation of birth weight to lean and fat thigh tissue in young men. Int J Obes Relat Metab Disord 24:667–672

    Article  CAS  Google Scholar 

  • Kensara OA, Wootton SA, Phillips DI, Patel M, Jackson AA, Elia M (2005) Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr 82:980–987

    Article  CAS  Google Scholar 

  • Kueper J, Beyth S, Liebergall M, Kaplan L, Schroeder JE (2015) Evidence for the adverse effect of starvation on quality: a review of the literature. Int J Endocrinol 628740

    Google Scholar 

  • Kuh D, Bassey J, Hardy R, Aihie Sayer A, Wadsworth M, Cooper C (2002) Birth weight, childhood size, and muscle strength in adult life: evidence from a birth cohort study. Am J Epidemiol 156:627–633

    Article  Google Scholar 

  • Kulkarni B, Hills AP, Byrne NM (2014) Nutritional influences over the life course on lean body mass of individuals in developing countries. Nutr Rev 72:190–204

    Article  Google Scholar 

  • Luo Z, Mu R, Zhang X (2006) Famine and overweight in China*. Appl Econ Perspect Policy 28:296–304

    Google Scholar 

  • Marcus EL, Menczel J (2007) Higher prevalence of osteoporosis among female holocaust survivors. Osteoporos Int 18:1501–1506

    Article  Google Scholar 

  • Matinolli HM, Hovi P, Mannisto S, Sipola-Leppanen M, Eriksson JG, Makitie O, Jarvenpaa AL, Andersson S, Kajantie E (2015) Early protein intake is associated with body composition and resting energy expenditure in young adults born with very low birth weight. J Nutr 145:2084–2091

    Article  CAS  Google Scholar 

  • Mehta G, Roach HI, Langley-Evans S, Taylor P, Reading I, Oreffo RO, Aihie-Sayer A, Clarke NM, Cooper C (2002) Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcif Tissue Int 71:493–498

    Article  CAS  Google Scholar 

  • Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 20:345–352

    Article  CAS  Google Scholar 

  • Patel HP, Jameson KA, Syddall HE, Martin HJ, Stewart CE, Cooper C, Sayer AA (2011) Developmental influences, muscle morphology, and sarcopenia in community-dwelling older men. J Gerontol A Biol Sci Med Sci 67:82–87

    PubMed  Google Scholar 

  • Portrait F, Teeuwiszen E, Deeg D (2007) Early life undernutrition and chronic diseases at older ages: the effects of the Dutch famine on cardiovascular diseases and diabetes. Soc Sci Med 73:711–718

    Article  Google Scholar 

  • Romano T, Wark JD, Wlodek ME (2010) Calcium supplementation does not rescue the programmed adult bone deficits associated with perinatal growth restriction. Bone 47:1054–1063

    Article  CAS  Google Scholar 

  • Roseboom T, De Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485–491

    Article  Google Scholar 

  • Roseboom TJ, Painter RC, Van Abeelen AF, Veenendaal MV, De Rooij SR (2011) Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70:141–145

    Article  Google Scholar 

  • Roseboom TJ, Van Der Meulen JH, Osmond C, Barker DJ, Ravelli AC, Schroeder-Tanka JM, Van Montfrans GA, Michels RP, Bleker OP (2000) Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart 84:595–598

    Article  CAS  Google Scholar 

  • Roseboom TJ, Van Der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP (2001) Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Twin Res 4:293–298

    Article  CAS  Google Scholar 

  • Sayer AA, Cooper C (2005) Fetal programming of body composition and musculoskeletal development. Early Hum Dev 81:735–744

    Article  Google Scholar 

  • Sayer AA, Cooper C, Evans JR, Rauf A, Wormald RP, Osmond C, Barker DJ (1998) Are rates of ageing determined in utero? Age Ageing 27:579–583

    Article  CAS  Google Scholar 

  • Sayer AA, Syddall HE, Martin HJ, Dennison EM, Anderson FH, Cooper C (2006) Falls, sarcopenia, and growth in early life: findings from the Hertfordshire cohort study. Am J Epidemiol 164:665–671

    Article  Google Scholar 

  • UN News Service Section (2017) United Nations News Centre- When A Food Security Crisis Becomes A Famine. [Online] Available At Http://Www.Un.Org/Apps/News/Story.Asp?Newsid=39113#.Wjmnadj97ox. Accessed 07 Feb 2017

  • Van Abeelen AF, Elias SG, Roseboom TJ, Bossuyt PM, Van Der Schouw YT, Grobbee DE, Uiterwaal CS (2012) Postnatal acute famine and risk of overweight: the Dutch Hunger Winter Study. Int J Pediatr Volume 2012, Article ID 936509

    Google Scholar 

  • Vickers MH (2011) Developmental programming of the metabolic syndrome – critical windows for intervention. World J Diabetes 2:137–148

    Article  Google Scholar 

  • Wang Y, Wang X, Kong Y, Zhang JH, Zeng Q (2010) The great Chinese famine leads to shorter and overweight females in Chongqing Chinese population after 50 years. Obesity (Silver Spring) 18:588–592

    Article  CAS  Google Scholar 

  • Werner P (2003) Self-reported prevalence and correlates of osteoporosis: results from a representative study in Israel. Arch Gerontol Geriatr 37:277–292

    Article  Google Scholar 

  • Woo J, Leung JC, Wong SY (2010) Impact of childhood experience of famine on late life health. J Nutr Health Aging 14:91–95

    Article  CAS  Google Scholar 

  • World Hunger (2017) World Hunger [Online] Available at: http://www.worldhunger.org/. Accessed 07 Feb 2017

  • Wyrwoll CS, Mark PJ, Mori TA, Puddey IB, Waddell BJ (2006) Prevention of programmed hyperleptinemia and hypertension by postnatal dietary omega-3 fatty acids. Endocrinology 147:599–606

    Article  CAS  Google Scholar 

  • Yang Z, Zhao W, Zhang X, Mu R, Zhai Y, Kong L, Chen C (2008) Impact of famine during pregnancy and infancy on health in adulthood. Obes Rev 9(Suppl 1):95–99

    Article  Google Scholar 

  • Yoshimura T, Tohya T, Onoda C, Okamura H (2005) Poor nutrition in prepubertal Japanese children at the end of world war II suppressed bone development. Maturitas 52:32–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Woo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Woo, J., Cheung, B., Tong, C., Chan, R. (2019). Impact of Childhood Experience of Famine on Body Composition: DEX and Beyond. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-55387-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55387-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55386-3

  • Online ISBN: 978-3-319-55387-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics