Advertisement

Brown Dwarfs and Free-Floating Planets in Young Stellar Clusters

  • V. J. S. BéjarEmail author
  • Eduardo L. Martín
Reference work entry

Abstract

Brown dwarfs are substellar objects unable to stably fuse hydrogen in their interior. Since the discovery of the first brown dwarf in an open cluster, namely, Teide 1 (Rebolo et al. Nature 377:129–131, 1995), many searches for substellar objects have been carried out in young stellar clusters and associations, such as Pleiades, Orion, Upper Scorpius, Taurus, Chamaeleon, α Persei, Hyades, or Praesepe. The lithium test has proven to be a very useful tool to distinguish between brown dwarfs and stars and to determine the ages of young open clusters. Young substellar objects show spectral features that are sensitive to surface gravity, which is expected to be lower than in older field counterparts of similar effective temperature. The studies of the substellar mass function indicate that brown dwarfs are very numerous, about one-third of the total number of stars, but their contribution in mass is lower than 10%. The formation of substellar objects extends below the deuterium-burning mass limit, which is the realm of the so-called free-floating or isolated planetary-mass objects that overlap with the masses of exoplanets.

Keywords

Brown dwarfs Free-floating planets Open clusters Extrasolar planets 

Notes

Acknowledgments

ELM and VJSB are supported by grants AyA2015-69350-C3-1-P and AyA2015-69350-C3-2-P from the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER).

References

  1. Aller KM, Liu MC, Magnier EA et al (2016) Brown dwarfs in young moving groups from pan- STARRS1. I. AB Doradus. Astrophys J 821:120.  https://doi.org/10.3847/0004-637X/821/2/120, 1604.04284ADSCrossRefGoogle Scholar
  2. Allers KN, Liu MC (2013) A near-infrared spectroscopic study of young field ultracool dwarfs. Astrophys J 772:79.  https://doi.org/10.1088/0004-637X/772/2/79, 1305.4418ADSCrossRefGoogle Scholar
  3. Alves de Oliveira C, Moraux E, Bouvier J et al (2010) The low-mass population of the ρ Ophiuchi molecular cloud. Astron Astrophys 515:A75.  https://doi.org/10.1051/0004-6361/200913900, 1003.2205ADSCrossRefGoogle Scholar
  4. Alves de Oliveira C, Moraux E, Bouvier J, Bouy H (2012) Spectroscopy of new brown dwarf members of ρ Ophiuchi and an updated initial mass function. Astron Astrophys 539:A151.  https://doi.org/10.1051/0004-6361/201118230, 1201.1912ADSCrossRefGoogle Scholar
  5. Alves de Oliveira C, Moraux E, Bouvier J et al (2013) Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses. Astron Astrophys 549:A123.  https://doi.org/10.1051/0004-6361/201220229, 1211.4029CrossRefGoogle Scholar
  6. Ardila D, Martín E, Basri G (2000) A survey for low-mass stars and Brown dwarfs in the Upper Scorpius OB association. Astron J 120:479–487.  https://doi.org/10.1086/301443astro-ph/0003316ADSCrossRefGoogle Scholar
  7. Baker DEA, Jameson RF, Casewell SL et al (2010) Low-mass stars and brown dwarfs in Praesepe. Mon Not R Astron Soc 408:2457–2475.  https://doi.org/10.1111/j.1365-2966.2010.17302.x1007.0751ADSCrossRefGoogle Scholar
  8. Baraffe I, Chabrier G, Allard F, Hauschildt PH (1998) Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams. Astron Astrophys 337:403–412, astro-ph/9805009ADSGoogle Scholar
  9. Baraffe I, Chabrier G, Barman TS, Allard F, Hauschildt PH (2003) Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. Astron Astrophys 402:701–712.  https://doi.org/10.1051/0004-6361:20030252, astro-ph/0302293ADSCrossRefGoogle Scholar
  10. Barman TS, Macintosh B, Konopacky QM, Marois C (2011) Clouds and chemistry in the atmosphere of extrasolar planet HR8799b. Astrophys J 733:65.  https://doi.org/10.1088/0004-637X/733/1/65, 1103.3895ADSCrossRefGoogle Scholar
  11. Barrado y Navascués D, Martín EL (2003) An empirical criterion to classify T Tauri stars and substellar analogs using low-resolution optical spectroscopy. Astron J 126:2997–3006.  https://doi.org/10.1086/379673, astro-ph/0309284ADSCrossRefGoogle Scholar
  12. Barrado y Navascués D, Zapatero Osorio MR, VJS B et al (2001) Optical spectroscopy of isolated planetary mass objects in the σ Orionis cluster. Astron Astrophys 377:L9–L13.  https://doi.org/10.1051/0004-6361:20011152, astro-ph/0108249ADSCrossRefGoogle Scholar
  13. Barrado y Navascués D, Bouvier J, Stauffer JR, Lodieu N, McCaughrean MJ (2002a) A substellar mass function for Alpha Persei. Astron Astrophys 395:813–821.  https://doi.org/10.1051/0004-6361:20021262, astro- ph/0209032ADSCrossRefGoogle Scholar
  14. Barrado y Navascués D, Zapatero Osorio MR, Martín EL et al (2002b) Discovery of a very cool object with extraordinarily strong Hα emission. Astron Astrophys 393:L85–L88.  https://doi.org/10.1051/0004-6361:20021251, astro-ph/0208497ADSCrossRefGoogle Scholar
  15. Barrado y Navascués D, VJS B, Mundt R et al (2003) The sigma Orionis substellar population. VLT/FORS spectroscopy and 2MASS photometry. Astron Astrophys 404:171–185.  https://doi.org/10.1051/0004-6361:20030407ADSCrossRefGoogle Scholar
  16. Barrado y Navascués D, Stauffer JR, Bouvier J, Jayawardhana R, Cuillandre JC (2004a) The substellar population of the young cluster λ orionis. Astrophys J 610:1064–1078.  https://doi.org/10.1086/421762, astro- ph/0404072ADSCrossRefGoogle Scholar
  17. Barrado y Navascués D, Stauffer JR, Jayawardhana R (2004b) Spectroscopy of very low mass stars and Brown dwarfs in IC 2391: lithium depletion and Hα emission. Astrophys J 614:386–397.  https://doi.org/10.1086/423485, astro-ph/0406436ADSCrossRefGoogle Scholar
  18. Barrado D, Morales-Calderón M, Palau A et al (2009) A proto brown dwarf candidate in Taurus. Astron Astrophys 508:859–867.  https://doi.org/10.1051/0004-6361/200912276ADSCrossRefGoogle Scholar
  19. Basri G, Martín EL (1999) PPL 15: the first Brown dwarf spectroscopic binary. Astron J 118:2460–2465.  https://doi.org/10.1086/301079, astro-ph/9908015ADSCrossRefGoogle Scholar
  20. Basri G, Marcy GW, Graham JR (1996) Lithium in Brown dwarf candidates: the mass and age of the faintest Pleiades stars. Astrophys J 458:600.  https://doi.org/10.1086/176842ADSCrossRefGoogle Scholar
  21. Bayo A, Barrado D, Stauffer J et al (2011) Spectroscopy of very low mass stars and brown dwarfs in the lambda Orionis star forming region. I. Enlarging the census down to the planetary mass domain in Collinder 69. Astron Astrophys 536:A63.  https://doi.org/10.1051/0004-6361/201116617, 1109.4917CrossRefGoogle Scholar
  22. Béjar VJS, Osorio MRZ, Rebolo R (1999) A search for very low mass stars and Brown dwarfs in the young σ Orionis cluster. Astrophys J 521:671–681.  https://doi.org/10.1086/307583, astro-ph/9903217ADSCrossRefGoogle Scholar
  23. Béjar VJS, Martín EL, Zapatero Osorio MR et al (2001) The substellar mass function in σ Orionis. Astrophys J 556:830–836.  https://doi.org/10.1086/321621, astro-ph/0104097ADSCrossRefGoogle Scholar
  24. Béjar VJS, Zapatero Osorio MR, Rebolo R (2004) Optical and infrared photometry of new very low-mass stars and brown dwarfs in the\sigma Orionis cluster. Astronomische Nachr 325:705–713.  https://doi.org/10.1002/asna.200310247, astro-ph/0404125ADSCrossRefGoogle Scholar
  25. Béjar VJS, Zapatero Osorio MR, Pérez-Garrido A et al (2008) Discovery of a wide companion near the deuterium-burning mass limit in the Upper Scorpius association. Astrophys J 673:L185.  https://doi.org/10.1086/527557, 0712.3482ADSCrossRefGoogle Scholar
  26. Béjar VJS, Zapatero Osorio MR, Rebolo R et al (2011) The substellar population of σ Orionis: a deep wide survey. Astrophys J 743:64.  https://doi.org/10.1088/0004-637X/743/1/64, 1109.1210ADSCrossRefGoogle Scholar
  27. Best WMJ, Liu MC, Magnier EA et al (2015) A search for L/T transition dwarfs with pan- STARRS1 and WISE. II. L/T transition atmospheres and young discoveries. Astrophys J 814:118.  https://doi.org/10.1088/0004-637X/814/2/118, 1612.02824ADSCrossRefGoogle Scholar
  28. Bihain G, Rebolo R, Béjar VJS et al (2006) Pleiades low-mass brown dwarfs: the cluster L dwarf sequence. Astron Astrophys 458:805–816.  https://doi.org/10.1051/0004-6361:20065124, astro-ph/0608255ADSCrossRefGoogle Scholar
  29. Bihain G, Rebolo R, Zapatero Osorio MR et al (2009) Candidate free-floating super-Jupiters in the young σ Orionis open cluster. Astron Astrophys 506:1169–1182.  https://doi.org/10.1051/0004-6361/200912210, 0909.0802ADSCrossRefGoogle Scholar
  30. Bihain G, Rebolo R, Zapatero Osorio MR, Béjar VJS, Caballero JA (2010) Near-infrared low- resolution spectroscopy of Pleiades L-type brown dwarfs. Astron Astrophys 519:A93.  https://doi.org/10.1051/0004-6361/200913676, 1005.3249ADSCrossRefGoogle Scholar
  31. Binks AS, Jeffries RD (2014) A lithium depletion boundary age of 21 Myr for the Beta Pictoris moving group. Mon Not R Astron Soc 438:L11–L15.  https://doi.org/10.1093/mnrasl/slt141, 1310.2613ADSCrossRefGoogle Scholar
  32. Boss AP (2011) Formation of Giant planets by disk instability on wide orbits around Protostars with varied masses. Astrophys J 731:74.  https://doi.org/10.1088/0004-637X/731/1/74, 1102.4555ADSCrossRefGoogle Scholar
  33. Boss AP, Basri G, Kumar SS et al (2003) Nomenclature: brown dwarfs, gas giant planets, and ? In: Martín E (ed) Brown dwarfs, IAU Symposium, vol 211, p 529ADSCrossRefGoogle Scholar
  34. Boudreault S, Lodieu N (2013) The first spectroscopically identified L dwarf in Praesepe. Mon Not R Astron Soc 434:142–147.  https://doi.org/10.1093/mnras/stt1009, 1306.1065ADSCrossRefGoogle Scholar
  35. Boudreault S, Bailer-Jones CAL (2009) A constraint on brown dwarf formation via ejection: radial variation of the stellar and substellar mass function of the young open cluster IC 2391. ApJ 706:1484–1503. https://doi.org/10.1088/0004-637X/706/2/1484, 0909.0842ADSCrossRefGoogle Scholar
  36. Boudreault S, Bailer-Jones CAL, Goldman B, Henning T, Caballero JA (2010) Brown dwarfs and very low mass stars in the Praesepe open cluster: a dynamically unevolved mass function? Astron Astrophys 510:A27.  https://doi.org/10.1051/0004-6361/200913011, 0910.4529ADSCrossRefGoogle Scholar
  37. Boudreault S, Lodieu N, Deacon NR, Hambly NC (2012) Astrometric and photometric initial mass functions from the UKIDSS galactic clusters survey – III. Praesepe. Mon Not R Astron Soc 426:3419–3434.  https://doi.org/10.1111/j.1365-2966.2012.21854.x, 1208.0466ADSCrossRefGoogle Scholar
  38. Bouvier J, Stauffer JR, Martín EL et al (1998) Brown dwarfs and very low-mass stars in the Pleiades cluster: a deep wide-field imaging survey. Astron Astrophys 336:490–502ADSGoogle Scholar
  39. Bouvier J, Kendall T, Meeus G et al (2008) Brown dwarfs and very low mass stars in the Hyades cluster: a dynamically evolved mass function. Astron Astrophys 481:661–672.  https://doi.org/10.1051/0004-6361:20079303, 0801.0670ADSCrossRefGoogle Scholar
  40. Bouy H, Huélamo N, Pinte C et al (2008) Structural and compositional properties of brown dwarf disks: the case of 2MASS J04442713+2512164. Astron Astrophys 486:877–890.  https://doi.org/10.1051/0004-6361:20078866, 0803.2051ADSCrossRefGoogle Scholar
  41. Bowler BP, Liu MC, Shkolnik EL, Dupuy TJ (2013) Planets around low-mass stars. III. A young dusty L dwarf companion at the deuterium-burning limit. Astrophys J 774:55.  https://doi.org/10.1088/0004-637X/774/1/55, 1307.2237ADSCrossRefGoogle Scholar
  42. Bowler BP, Liu MC, Mawet D et al (2017) Planets around low-mass stars (PALMS). VI. Discovery of a remarkably red planetary-mass companion to the AB dor moving group candidate 2MASS J22362452+4751425*. Astron J 153:18.  https://doi.org/10.3847/1538-3881/153/1/18, 1611.00364ADSCrossRefGoogle Scholar
  43. Briceño C, Hartmann L, Stauffer J, Martín E (1998) A search for very low mass pre-main-sequence stars in Taurus. Astron J 115:2074–2091.  https://doi.org/10.1086/300338ADSCrossRefGoogle Scholar
  44. Briceño C, Luhman KL, Hartmann L, Stauffer JR Kirkpatrick JD (2002) The initial mass function in the Taurus star-forming region. ApJ 580:317–335.  https://doi.org/10.1086/343127ADSCrossRefGoogle Scholar
  45. Bryja C, Jones TJ, Humphreys RM et al (1992) Candidate brown dwarfs in the Hyades. Astrophys J 388:L23–L26.  https://doi.org/10.1086/186321ADSCrossRefGoogle Scholar
  46. Bryja C, Humphreys RM, Jones TJ (1994) The lowest mass stars in the Hyades. Astron J 107:246–253.  https://doi.org/10.1086/116848ADSCrossRefGoogle Scholar
  47. Burgess ASM, Moraux E, Bouvier J et al (2009) Young T-dwarf candidates in IC 348. Astron Astrophys 508:823–831.  https://doi.org/10.1051/0004-6361/200912444, 0909.0917ADSCrossRefGoogle Scholar
  48. Burke CJ, Pinsonneault MH, Sills A (2004) Theoretical examination of the lithium depletion boundary. Astrophys J 604:272–283.  https://doi.org/10.1086/381242, astro-ph/0309461ADSCrossRefGoogle Scholar
  49. Burningham B, Naylor T, Littlefair SP, Jeffries RD (2005) Contamination and exclusion in the σ Orionis young group. Mon Not R Astron Soc 356:1583–1591.  https://doi.org/10.1111/j.1365-2966.2005.08631.x, astro- ph/0411418ADSCrossRefGoogle Scholar
  50. Caballero JA (2008) Stars and brown dwarfs in the σ Orionis cluster: the Mayrit catalogue. Astron Astrophys 478:667–674.  https://doi.org/10.1051/0004-6361:20077885, 0710.5882ADSCrossRefGoogle Scholar
  51. Caballero JA (2017) A TGAS/Gaia DR1 parallactic distance to the σ Orionis cluster. Astronomis- che Nachr 338:629–634.  https://doi.org/10.1002/asna.201713312, 1702.06046ADSCrossRefGoogle Scholar
  52. Caballero JA, Béjar VJS, Rebolo R et al (2007) The substellar mass function in σ Orionis. II. Optical, near-infrared and IRAC/Spitzer photometry of young cluster brown dwarfs and planetary- mass objects. Astron Astrophys 470:903–918.  https://doi.org/10.1051/0004-6361:20066993, 0705.0922ADSCrossRefGoogle Scholar
  53. Cargile PA, James DJ, Jeffries RD (2010) Identification of the lithium depletion boundary and age of the southern open cluster Blanco 1. Astrophys J 725:L111–L116.  https://doi.org/10.1088/2041-8205/725/2/L111, 1010.6100ADSCrossRefGoogle Scholar
  54. Carson J, Thalmann C, Janson M et al (2013) Direct imaging discovery of a “Super-Jupiter” around the late B-type star κ and. Astrophys J 763:L32.  https://doi.org/10.1088/2041-8205/763/2/L32, 1211.3744ADSCrossRefGoogle Scholar
  55. Casewell SL, Dobbie PD, Hodgkin ST et al (2007) Proper motion L and T dwarf candidate members of the Pleiades. Mon Not R Astron Soc 378:1131–1140.  https://doi.org/10.1111/j.1365-2966.2007.11848.x, 0704.1578ADSCrossRefGoogle Scholar
  56. Casewell SL, Jameson RF, Burleigh MR et al (2011) Methane band and Spitzer mid-IR imaging of L and T dwarf candidates in the Pleiades. Mon Not R Astron Soc 412:2071–2078.  https://doi.org/10.1111/j.1365-2966.2010.18044.x, 1011.4218ADSCrossRefGoogle Scholar
  57. Chabrier G (2001) The galactic disk mass budget. I. Stellar mass function and density. Astrophys J 554:1274–1281.  https://doi.org/10.1086/321401, astro-ph/0107018ADSCrossRefGoogle Scholar
  58. Chabrier G, Baraffe I (2000) Theory of low-mass stars and substellar objects. Annu Rev Astron Astrophys 38:337–377.  https://doi.org/10.1146/annurev.astro.38.1.337, astro-ph/0006383ADSCrossRefGoogle Scholar
  59. Chabrier G, Baraffe I, Allard F, Hauschildt P (2000) Evolutionary models for very low-mass stars and Brown dwarfs with dusty atmospheres. Astrophys J 542:464–472.  https://doi.org/10.1086/309513, astro- ph/0005557ADSCrossRefGoogle Scholar
  60. Chappelle RJ, Pinfield DJ, Steele IA, Dobbie PD, Magazù A (2005) Crossing into the substellar regime in Praesepe. Mon Not R Astron Soc 361:1323–1336.  https://doi.org/10.1111/j.1365-2966.2005.09285.x, astro- ph/0506493ADSCrossRefGoogle Scholar
  61. Chauvin G, Lagrange AM, Dumas C et al (2004) A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing. Astron Astrophys 425:L29–L32.  https://doi.org/10.1051/0004-6361:200400056, astro-ph/0409323ADSCrossRefGoogle Scholar
  62. Chauvin G, Lagrange AM, Zuckerman B et al (2005) A companion to AB pic at the planet/brown dwarf boundary. Astron Astrophys 438:L29–L32.  https://doi.org/10.1051/0004-6361:200500111, astro-ph/0504658ADSCrossRefGoogle Scholar
  63. Chiang P, Chen WP, Albert L, Liu M, Magnier EA (2015) Searching for T dwarfs in the ρ Oph dark cloud L 1688. Mon Not R Astron Soc 448:522–540.  https://doi.org/10.1093/mnras/stu2701ADSCrossRefGoogle Scholar
  64. Comeron F, Rieke GH, Burrows A, Rieke MJ (1993) The stellar population in the rho Ophiuchi cluster. Astrophys J 416:185.  https://doi.org/10.1086/173225ADSCrossRefGoogle Scholar
  65. Comerón F, Rieke GH, Neuhaüser R (1999) Faint members of the Chamaeleon I cloud. Astron Astrophys 343:477–495ADSGoogle Scholar
  66. Cossburn MR, Hodgkin ST, Jameson RF, Pinfield DJ (1997) Discovery of the lowest mass brown dwarf in the Pleiades. Mon Not R Astron Soc 288:L23–L27.  https://doi.org/10.1093/mnras/288.1.L23ADSCrossRefGoogle Scholar
  67. Cruz KL, Kirkpatrick JD, Burgasser AJ (2009) Young L dwarfs identified in the field: a preliminary low-gravity, optical spectral sequence from L0 to L5. Astron J 137:3345–3357.  https://doi.org/10.1088/0004-6256/137/2/3345, 0812.0364ADSCrossRefGoogle Scholar
  68. Cummings JD, Deliyannis CP, Maderak RM, Steinhauer A (2017) WIYN open cluster study. LXXV. Testing the metallicity dependence of stellar lithium depletion using Hyades-aged clusters. I. Hyades and Praesepe. Astron J 153:128.  https://doi.org/10.3847/1538-3881/aa5b86, 1702.03936ADSCrossRefGoogle Scholar
  69. Da Rio N, Robberto M, Hillenbrand LA, Henning T, Stassun KG (2012) The initial mass function of the Orion nebula cluster across the H-burning limit. Astrophys J 748:14.  https://doi.org/10.1088/0004-637X/748/1/14, 1112.2711ADSCrossRefGoogle Scholar
  70. Dahm SE (2015) Reexamining the lithium depletion boundary in the Pleiades and the inferred age of the cluster. Astrophys J 813:108.  https://doi.org/10.1088/0004-637X/813/2/108ADSCrossRefGoogle Scholar
  71. Dawson P, Scholz A, Ray TP (2011) New brown dwarfs in the south part of the Upper Scorpius association. Mon Not R Astron Soc 418:1231–1237.  https://doi.org/10.1111/j.1365-2966.2011.19573.x, 1108.1309ADSCrossRefGoogle Scholar
  72. Dawson P, Scholz A, Ray TP et al (2013) New brown dwarf discs in Upper Scorpius observed with WISE. Mon Not R Astron Soc 429:903–914.  https://doi.org/10.1093/mnras/sts386ADSCrossRefGoogle Scholar
  73. Dawson P, Scholz A, Ray TP et al (2014) Near-infrared spectroscopy of young brown dwarfs in Upper Scorpius. Mon Not R Astron Soc 442:1586–1596.  https://doi.org/10.1093/mnras/stu973, 1405.3842ADSCrossRefGoogle Scholar
  74. de Bruijne JHJ (1999) Structure and colour-magnitude diagrams of Scorpius OB2 based on kinematic modelling of Hipparcos data. Mon Not R Astron Soc 310:585–617.  https://doi.org/10.1046/j.1365-8711.1999.02953.xADSCrossRefGoogle Scholar
  75. de Wit WJ, Bouvier J, Palla F et al (2006) Exploring the lower mass function in the young open cluster IC 4665. Astron Astrophys 448:189–202.  https://doi.org/10.1051/0004-6361:20054102, astro-ph/0511175ADSCrossRefGoogle Scholar
  76. de Zeeuw PT, Hoogerwerf R, de Bruijne JHJ, Brown AGA, Blaauw A (1999) A HIPPARCOS census of the nearby OB associations. Astron J 117:354–399.  https://doi.org/10.1086/300682, astro-ph/9809227ADSCrossRefGoogle Scholar
  77. Deacon NR, Hambly NC (2004) Proper motion surveys of the young open clusters alpha Persei and the Pleiades. Astron Astrophys 416:125–136.  https://doi.org/10.1051/0004-6361:20034238, astro-ph/0311565ADSCrossRefGoogle Scholar
  78. Delorme P, Gagné J, Malo L et al (2012) CFBDSIR2149-0403: a 4-7 Jupiter-mass free-floating planet in the young moving group AB Doradus? Astron Astrophys 548:A26.  https://doi.org/10.1051/0004-6361/201219984, 1210.0305CrossRefGoogle Scholar
  79. Delorme P, Gagné J, Girard JH et al (2013) Direct-imaging discovery of a 12-14 Jupiter-mass object orbiting a young binary system of very low-mass stars. Astron Astrophys 553:L5.  https://doi.org/10.1051/0004-6361/201321169, 1303.4525ADSCrossRefGoogle Scholar
  80. Delorme P, Dupuy T, Gagné J et al (2017) CFBDSIR 2149-0403: young isolated planetary-mass object or high-metallicity low-mass brown dwarf?? ArXiv e-prints 1703.00843Google Scholar
  81. Dobbie PD, Kenyon F, Jameson RF et al (2002a) A deep large-area search for very low-mass members of the Hyades open cluster. Mon Not R Astron Soc 329:543–555.  https://doi.org/10.1046/j.1365-8711.2002.05002.xADSCrossRefGoogle Scholar
  82. Dobbie PD, Kenyon F, Jameson RF et al (2002b) A deep IZ survey of 1.1 deg2 of the Pleiades cluster: three candidate members with M < 0.04 M. Mon Not R Astron Soc 335:687–697.  https://doi.org/10.1046/j.1365-8711.2002.05650.xADSCrossRefGoogle Scholar
  83. Dobbie PD, Lodieu N, Sharp RG (2010) IC 2602: a lithium depletion boundary age and new can- didate low-mass stellar members. Mon Not R Astron Soc 409:1002–1012.  https://doi.org/10.1111/j.1365-2966.2010.17355.xADSCrossRefGoogle Scholar
  84. Faherty JK, Burgasser AJ, Walter FM et al (2012) The Brown dwarf kinematics project (BDKP). III. Parallaxes for 70 ultracool dwarfs. Astrophys J 752:56.  https://doi.org/10.1088/0004-637X/752/1/56, 1203.5543ADSCrossRefGoogle Scholar
  85. Faherty JK, Riedel AR, Cruz KL et al (2016) Population properties of Brown dwarf analogs to exoplanets. Astrophys J Suppl Ser 225:10.  https://doi.org/10.3847/0067-0049/225/1/10, 1605.07927ADSCrossRefGoogle Scholar
  86. Fan X, Knapp GR, Strauss MA et al (2000) L dwarfs found in Sloan digital sky survey commissioning imaging data. Astron J 119:928–935.  https://doi.org/10.1086/301224, astro-ph/9909263ADSCrossRefGoogle Scholar
  87. Fernández M, Comerón F (2001) Intense accretion and mass loss of a very low mass young stellar object. Astron Astrophys 380:264–276.  https://doi.org/10.1051/0004-6361:20011443ADSCrossRefGoogle Scholar
  88. Festin L (1997) Brown dwarfs in the Pleiades. A deep IJK survey. Astron Astrophys 322:455–459, astro- ph/9701205ADSGoogle Scholar
  89. Festin L (1998) Brown dwarfs in the Pleiades. II. A deep optical and near infrared survey. Astron Astrophys 333:497–504, astro-ph/9802292ADSGoogle Scholar
  90. Gagné J, Lafrenière D, Doyon R, Malo L, Artigau É (2014) BANYAN. II. Very low mass and substellar candidate members to nearby, young kinematic groups with previously known signs of youth. Astrophys J 783:121.  https://doi.org/10.1088/0004-637X/783/2/121, 1312.5864ADSCrossRefGoogle Scholar
  91. Gagné J, Burgasser AJ, Faherty JK et al (2015a) SDSS J111010.01+011613.1: a new planetary- mass T dwarf member of the AB Doradus moving group. Astrophys J 808:L20.  https://doi.org/10.1088/2041-8205/808/1/L20, 1506.04195ADSCrossRefGoogle Scholar
  92. Gagné J, Lafreniére D, Doyon R, Malo L, Artigau É (2015b) BANYAN. V. A systematic all-sky survey for new very late-type low-mass stars and Brown dwarfs in nearby young moving groups. Astrophys J 798:73.  https://doi.org/10.1088/0004-637X/798/2/73, 1410.4864ADSCrossRefGoogle Scholar
  93. Garrison RF (1967) The σ Orionis clustering. Publ Astron Soc Pac 79:433.  https://doi.org/10.1086/128517ADSCrossRefGoogle Scholar
  94. Gauza B, Béjar VJS, Pérez-Garrido A et al (2015) Discovery of a young planetary mass Companion to the nearby M dwarf VHS J125601.92-125723.9. Astrophys J 804:96.  https://doi.org/10.1088/0004-637X/804/2/96, 1505.00806ADSCrossRefGoogle Scholar
  95. Gauza (2016) A direct imaging search and characterization of brown dwarfs and massive planets around stars. PhD thesis, Univ. de La Laguna, TenerifeGoogle Scholar
  96. Geers V, Scholz A, Jayawardhana R et al (2011) Substellar objects in nearby young clusters (SONYC). II. The Brown dwarf population of ρ Ophiuchi. Astrophys J 726:23.  https://doi.org/10.1088/0004-637X/726/1/23, 1010.5801ADSCrossRefGoogle Scholar
  97. Gizis JE, Reid IN, Monet DG (1999) A 2MASS survey for Brown dwarfs toward the Hyades. Astron J 118:997–1004.  https://doi.org/10.1086/300982, astro-ph/9905168ADSCrossRefGoogle Scholar
  98. Goldman B, Marsat S, Henning T, Clemens C, Greiner J (2010) A new benchmark T8-9 brown dwarf and a couple of new mid-T dwarfs from the UKIDSS DR5+ LAS. Mon Not R Astron Soc 405:1140–1152.  https://doi.org/10.1111/j.1365-2966.2010.16524.x, 1002.2637ADSCrossRefGoogle Scholar
  99. González Hernández JI, Caballero JA, Rebolo R et al (2008) Chemical abundances of late-type pre-main sequence stars in the σ Orionis cluster. Astron Astrophys 490:1135–1142.  https://doi.org/10.1051/0004-6361:200810398, 0809.0090ADSCrossRefGoogle Scholar
  100. González-García BM, Zapatero Osorio MR, Béjar VJS et al (2006) A search for substellar members in the Praesepe and σ Orionis clusters. Astron Astrophys 460:799–810.  https://doi.org/10.1051/0004-6361:20065909, astro-ph/0609283ADSCrossRefGoogle Scholar
  101. Gorlova NI, Meyer MR, Rieke GH, Liebert J (2003) Gravity indicators in the near-infrared spectra of Brown dwarfs. Astrophys J 593:1074–1092.  https://doi.org/10.1086/376730, astro-ph/0305147ADSCrossRefGoogle Scholar
  102. Guieu S, Dougados C, Monin JL, Magnier E, Martín EL (2006) Seventeen new very low-mass members in Taurus. The brown dwarf deficit revisited. Astron Astrophys 446:485–500.  https://doi.org/10.1051/0004-6361:20053493, astro-ph/0509317ADSCrossRefGoogle Scholar
  103. Haisch KE Jr, Barsony M, Tinney C (2010) A methane imaging survey for T dwarf candidates in ρ Ophiuchi. Astrophys J 719:L90–L94.  https://doi.org/10.1088/2041-8205/719/1/L90, 1007.2406ADSCrossRefGoogle Scholar
  104. Hambly NC, Jameson RF, Hawkins MRS (1991) A deep proper motion survey of the Pleiades for low-mass stars and brown dwarfs. Mon Not R Astron Soc 253:1–8.  https://doi.org/10.1093/mnras/253.1.1ADSCrossRefGoogle Scholar
  105. Hayashi C, Nakano T (1963) Evolution of stars of small masses in the pre-main-sequence stages. Prog Theor Phys 30:460–474.  https://doi.org/10.1143/PTP.30.460ADSCrossRefGoogle Scholar
  106. Hillenbrand LA (1997) On the stellar population and star-forming history of the Orion nebula cluster. Astron J 113:1733–1768.  https://doi.org/10.1086/118389ADSCrossRefGoogle Scholar
  107. Hillenbrand LA, Carpenter JM (2000) Constraints on the stellar/substellar mass function in the inner Orion nebula cluster. Astrophys J 540:236–254.  https://doi.org/10.1086/309309, astro-ph/0003293ADSCrossRefGoogle Scholar
  108. Hogan E, Jameson RF, Casewell SL, Osbourne SL, Hambly NC (2008) L dwarfs in the Hyades. Mon Not R Astron Soc 388:495–499.  https://doi.org/10.1111/j.1365-2966.2008.13437.x, 0805.1189ADSCrossRefGoogle Scholar
  109. Ireland MJ, Kraus A, Martinache F, Law N, Hillenbrand LA (2011) Two wide planetary-mass companions to solar-type stars in Upper Scorpius. Astrophys J 726:113.  https://doi.org/10.1088/0004-637X/726/2/113, 1011.2201ADSCrossRefGoogle Scholar
  110. Itoh Y, Hayashi M, Tamura M et al (2005) A young Brown dwarf companion to DH Tauri. Astrophys J 620:984–993.  https://doi.org/10.1086/427086, astro-ph/0411177ADSCrossRefGoogle Scholar
  111. Jameson RF, Skillen I (1989) A search for low-mass stars and brown dwarfs in the Pleiades. Mon Not R Astron Soc 239:247–253.  https://doi.org/10.1093/mnras/239.1.247ADSCrossRefGoogle Scholar
  112. Jeffries RD, Oliveira JM (2005) The lithium depletion boundary in NGC 2547 as a test of pre-main- sequence evolutionary models. Mon Not R Astron Soc 358:13–29.  https://doi.org/10.1111/j.1365-2966.2005.08820.x, astro- ph/0411112ADSCrossRefGoogle Scholar
  113. Jeffries RD, Naylor T, Mayne NJ, Bell CPM, Littlefair SP (2013) A lithium depletion boundary age of 22 Myr for NGC 1960. Mon Not R Astron Soc 434:2438–2450.  https://doi.org/10.1093/mnras/stt1180, 1306.6339ADSCrossRefGoogle Scholar
  114. Kalas P, Graham JR, Chiang E et al (2008) Optical images of an exosolar planet 25 light-years from earth. Science 322:1345.  https://doi.org/10.1126/science.1166609, 0811.1994ADSCrossRefGoogle Scholar
  115. Kenyon MJ, Jeffries RD, Naylor T, Oliveira JM, Maxted PFL (2005) Membership, binarity and accretion among very low-mass stars and brown dwarfs of the σ Orionis cluster. Mon Not R Astron Soc 356:89–106.  https://doi.org/10.1111/j.1365-2966.2004.08455.x, astro-ph/0409749ADSCrossRefGoogle Scholar
  116. Kirkpatrick JD (2005) New spectral types L and T. Annu Rev Astron Astrophys 43:195–245.  https://doi.org/10.1146/annurev.astro.42.053102.134017ADSCrossRefGoogle Scholar
  117. Kirkpatrick JD, Barman TS, Burgasser AJ et al (2006) Discovery of a very young field L dwarf, 2MASS J01415823-4633574. Astrophys J 639:1120–1128.  https://doi.org/10.1086/499622, astro- ph/0511462ADSCrossRefGoogle Scholar
  118. Kraus AL, Hillenbrand LA (2007) The stellar populations of Praesepe and Coma Berenices. Astron J 134:2340–2352.  https://doi.org/10.1086/522831, 0708.2719ADSCrossRefGoogle Scholar
  119. Kraus AL, Shkolnik EL, Allers KN, Liu MC (2014) A stellar census of the Tucana-Horologium moving group. Astron J 147:146.  https://doi.org/10.1088/0004-6256/147/6/146, 1403.0050ADSCrossRefGoogle Scholar
  120. Kroupa P (2001) On the variation of the initial mass function. Mon Not R Astron Soc 322:231–246.  https://doi.org/10.1046/j.1365-8711.2001.04022.x, astro-ph/0009005ADSCrossRefGoogle Scholar
  121. Kumar SS (1963) The structure of stars of very low mass. Astrophys J 137:1121.  https://doi.org/10.1086/147589ADSCrossRefGoogle Scholar
  122. Kuzuhara M, Tamura M, Ishii M et al (2011) The widest-separation substellar companion candidate to a binary T Tauri star. Astron J 141:119.  https://doi.org/10.1088/0004-6256/141/4/119ADSCrossRefGoogle Scholar
  123. Kuzuhara M, Tamura M, Kudo T et al (2013) Direct imaging of a cold Jovian exoplanet in orbit around the sun-like star GJ 504. Astrophys J 774:11.  https://doi.org/10.1088/0004-637X/774/1/11, 1307.2886ADSCrossRefGoogle Scholar
  124. Lafrenière D, Jayawardhana R, van Kerkwijk MH (2008) Direct imaging and spectroscopy of a planetary-mass candidate companion to a young solar analog. Astrophys J 689:L153.  https://doi.org/10.1086/595870, 0809.1424ADSCrossRefGoogle Scholar
  125. Lagrange AM, Bonnefoy M, Chauvin G et al (2010) A giant planet imaged in the disk of the young star β Pictoris. Science 329:57.  https://doi.org/10.1126/science.1187187, 1006.3314ADSCrossRefGoogle Scholar
  126. Lee TA (1968) Interstellar extinction in the Orion association. Astrophys J 152:913.  https://doi.org/10.1086/149607ADSCrossRefGoogle Scholar
  127. Liu MC, Magnier EA, Deacon NR et al (2013) The extremely red, young L dwarf PSO J318.5338-22.8603: a free-floating planetary-mass analog to directly imaged young gas-giant planets. Astrophys J 777:L20.  https://doi.org/10.1088/2041-8205/777/2/L20, 1310.0457ADSCrossRefGoogle Scholar
  128. Liu MC, Dupuy TJ, Allers KN (2016) The Hawaii infrared parallax program. II. Young ultracool field dwarfs. Astrophys J 833:96.  https://doi.org/10.3847/1538-4357/833/1/96, 1612.02426ADSCrossRefGoogle Scholar
  129. Lodieu N (2013) Astrometric and photometric initial mass functions from the UKIDSS galactic clusters survey – IV. Upper Sco. Mon Not R Astron Soc 431:3222–3235.  https://doi.org/10.1093/mnras/stt402, 1303.1351ADSCrossRefGoogle Scholar
  130. Lodieu N, McCaughrean MJ, Barrado Y, Navascués D, Bouvier J, Stauffer JR (2005) A near- infrared survey for new low-mass members in α Per. Astron Astrophys 436:853–865.  https://doi.org/10.1051/0004-6361:20042048, astro-ph/0502446ADSCrossRefGoogle Scholar
  131. Lodieu N, Hambly NC, Jameson RF (2006) New members in the Upper Scorpius association from the UKIRT infrared deep sky survey early data release. Mon Not R Astron Soc 373:95–104.  https://doi.org/10.1111/j.1365-2966.2006.10958.x, astro-ph/0609532ADSCrossRefGoogle Scholar
  132. Lodieu N, Dobbie PD, Deacon NR et al (2007a) A wide deep infrared look at the Pleiades with UKIDSS: new constraints on the substellar binary fraction and the low-mass initial mass func- tion. Mon Not R Astron Soc 380:712–732.  https://doi.org/10.1111/j.1365-2966.2007.12106.x, 0706.2234ADSCrossRefGoogle Scholar
  133. Lodieu N, Hambly NC, Jameson RF et al (2007b) New brown dwarfs in Upper Sco using UKIDSS galactic cluster survey science verification data. Mon Not R Astron Soc 374:372–384.  https://doi.org/10.1111/j.1365-2966.2006.11151.x, astro-ph/0610140ADSCrossRefGoogle Scholar
  134. Lodieu N, Hambly NC, Jameson RF, Hodgkin ST (2008) Near-infrared cross-dispersed spec- troscopy of brown dwarf candidates in the UpperSco association. Mon Not R Astron Soc 383:1385–1396.  https://doi.org/10.1111/j.1365-2966.2007.12676.x, 0711.1109ADSCrossRefGoogle Scholar
  135. Lodieu N, Zapatero Osorio MR, Rebolo R, Martín EL, Hambly NC (2009) A census of very-low- mass stars and brown dwarfs in the σ Orionis cluster. Astron Astrophys 505:1115–1127.  https://doi.org/10.1051/0004-6361/200911966, 0907.2185ADSCrossRefGoogle Scholar
  136. Lodieu N, de Wit WJ, Carraro G et al (2011a) The mass function of IC 4665 revisited by the UKIDSS galactic clusters survey. Astron Astrophys 532:A103.  https://doi.org/10.1051/0004-6361/201116883, 1106.3957CrossRefGoogle Scholar
  137. Lodieu N, Dobbie PD, Hambly NC (2011b) Multi-fibre optical spectroscopy of low-mass stars and brown dwarfs in Upper Scorpius. Astron Astrophys 527:A24.  https://doi.org/10.1051/0004-6361/201014992, 1101.0919ADSCrossRefGoogle Scholar
  138. Lodieu N, Hambly NC, Dobbie PD et al (2011c) Testing the fragmentation limit in the Upper Sco association. Mon Not R Astron Soc 418:2604–2617.  https://doi.org/10.1111/j.1365-2966.2011.19651.x, 1108.4783ADSCrossRefGoogle Scholar
  139. Lodieu N, Deacon NR, Hambly NC (2012a) Astrometric and photometric initial mass functions from the UKIDSS galactic clusters survey – I. The Pleiades. Mon Not R Astron Soc 422:1495–1511.  https://doi.org/10.1111/j.1365-2966.2012.20723.x, 1204.2659ADSCrossRefGoogle Scholar
  140. Lodieu N, Deacon NR, Hambly NC, Boudreault S (2012b) Astrometric and photometric initial mass functions from the UKIDSS Galactic Clusters Survey – II. The Alpha Persei open cluster. Mon Not R Astron Soc 426:3403–3418.  https://doi.org/10.1111/j.1365-2966.2012.21811.x, 1207.6978ADSCrossRefGoogle Scholar
  141. Lodieu N, Dobbie PD, Cross NJG et al (2013a) Probing the Upper Scorpius mass function in the planetary-mass regime. Mon Not R Astron Soc 435:2474–2482.  https://doi.org/10.1093/mnras/stt1460, 1308.1310ADSCrossRefGoogle Scholar
  142. Lodieu N, Ivanov VD, Dobbie PD (2013b) Proper motions of USco T-type candidates. Mon Not R Astron Soc 430:1784–1789.  https://doi.org/10.1093/mnras/sts726, 1303.1985ADSCrossRefGoogle Scholar
  143. Lodieu N, Boudreault S, Béjar VJS (2014) Spectroscopy of Hyades L dwarf candidates. Mon Not R Astron Soc 445:3908–3918.  https://doi.org/10.1093/mnras/stu2059, 1410.0192ADSCrossRefGoogle Scholar
  144. Lodieu N, Zapatero Osorio MR, Béjar VJS, Peña-Ramírez K (2018) The optical+infrared L dwarf spectral sequence of young planetary-mass objects in the Upper Scorpius association. ArXiv e-prints 1709.02139Google Scholar
  145. López Martí B, Eislöffel J, Scholz A, Mundt R (2004) The brown dwarf population in the Chamaeleon I cloud. Astron Astrophys 416:555–576.  https://doi.org/10.1051/0004-6361:20031720, astro-ph/0312026ADSCrossRefGoogle Scholar
  146. Low C, Lynden-Bell D (1976) The minimum Jeans mass or when fragmentation must stop. Mon Not R Astron Soc 176:367–390.  https://doi.org/10.1093/mnras/176.2.367ADSCrossRefGoogle Scholar
  147. Lucas PW, Roche PF (2000) A population of very young brown dwarfs and free-floating planets in Orion. Mon Not R Astron Soc 314:858–864.,  https://doi.org/10.1046/j.1365-8711.2000.03515.x astro-ph/0003061ADSCrossRefGoogle Scholar
  148. Lucas PW, Roche PF, Allard F, Hauschildt PH (2001) Infrared spectroscopy of substellar objects in Orion. Mon Not R Astron Soc 326:695–721.  https://doi.org/10.1046/j.1365-8711.2001.04666.x, astro-ph/0105154ADSCrossRefGoogle Scholar
  149. Lucas PW, Roche PF, Tamura M (2005) A deep survey of brown dwarfs in Orion with Gemini. Mon Not R Astron Soc 361:211–232.  https://doi.org/10.1111/j.1365-2966.2005.09156.x, astro-ph/0504570ADSCrossRefGoogle Scholar
  150. Lucas PW, Weights DJ, Roche PF, Riddick FC (2006) Spectroscopy of planetary mass brown dwarfs in Orion. MNRAS 373:L60–L64.  https://doi.org/10.1111/j.1745-3933.2006.00244.x, astroph/0609086ADSCrossRefGoogle Scholar
  151. Luhman KL (1999) Young low-mass stars and Brown dwarfs in IC 348. Astrophys J 525:466–481.  https://doi.org/10.1086/307902, astro-ph/9905287ADSCrossRefGoogle Scholar
  152. Luhman KL (2000) The initial mass function of low-mass stars and Brown dwarfs in Taurus. Astrophys J 544:1044–1055.  https://doi.org/10.1086/317232ADSCrossRefGoogle Scholar
  153. Luhman KL (2004a) A survey for low-mass stars and Brown dwarfs in the η Chamaeleon- tis and ε Chamaeleontis young associations. Astrophys J 616:1033–1041.  https://doi.org/10.1086/424963, astro- ph/0411444ADSCrossRefGoogle Scholar
  154. Luhman KL (2004b) New Brown dwarfs and an updated initial mass function in Taurus. Astrophys J 617:1216–1232.  https://doi.org/10.1086/425647, astro-ph/0411447ADSCrossRefGoogle Scholar
  155. Luhman KL (2007) The stellar population of the Chamaeleon I star-forming region. Astrophys J Suppl Ser 173:104–136.  https://doi.org/10.1086/520114, 0710.3037ADSCrossRefGoogle Scholar
  156. Luhman KL, Muench AA (2008) New low-mass stars and Brown dwarfs with disks in the Chamaeleon I star-forming region. Astrophys J 684:654–662.  https://doi.org/10.1086/590364, 0805.3722ADSCrossRefGoogle Scholar
  157. Luhman KL, Liebert J, Rieke GH (1997) Spectroscopy of a young Brown dwarf in the rho Ophiuchi cluster 1. Astrophys J 489:L165.  https://doi.org/10.1086/316784ADSCrossRefGoogle Scholar
  158. Luhman KL, Rieke GH, Young ET et al (2000) The initial mass function of low-mass stars and Brown dwarfs in young clusters. Astrophys J 540:1016–1040.  https://doi.org/10.1086/309365, astro-ph/0004386ADSCrossRefGoogle Scholar
  159. Luhman KL, Briceño C, Stauffer JR et al (2003a) New low-mass members of the Taurus star- forming region. Astrophys J 590:348–356.  https://doi.org/10.1086/374983, astro-ph/{\break}0304414ADSCrossRefGoogle Scholar
  160. Luhman KL, Stauffer JR, Muench AA et al (2003b) A census of the young cluster IC 348. Astrophys J 593:1093–1115.  https://doi.org/10.1086/376594, astro-ph/0304409ADSCrossRefGoogle Scholar
  161. Luhman KL, Whitney BA, Meade MR et al (2006a) A survey for new members of Taurus with the Spitzer space telescope. Astrophys J 647:1180–1191.  https://doi.org/10.1086/505572, astro-ph/0608548ADSCrossRefGoogle Scholar
  162. Luhman KL, Wilson JC, Brandner W et al (2006b) Discovery of a young substellar companion in Chamaeleon. Astrophys J 649:894–899.  https://doi.org/10.1086/506517, astro-ph/0609187ADSCrossRefGoogle Scholar
  163. Luhman KL, Allen LE, Allen PR et al (2008) The disk population of the Chamaeleon I star- forming region. Astrophys J 675:1375–1406.  https://doi.org/10.1086/527347, 0803.1019ADSCrossRefGoogle Scholar
  164. Luhman KL, Mamajek EE, Allen PR, Cruz KL (2009a) An infrared/X-ray survey for new mem- bers of the Taurus star-forming region. Astrophys J 703:399–419.  https://doi.org/10.1088/0004-637X/703/1/399, 0911.5451ADSCrossRefGoogle Scholar
  165. Luhman KL, Mamajek EE, Allen PR, Muench AA, Finkbeiner DP (2009b) Discovery of a wide binary Brown dwarf born in isolation. Astrophys J 691:1265–1275.  https://doi.org/10.1088/0004-637X/691/2/1265, 0902.0425ADSCrossRefGoogle Scholar
  166. Luhman KL, Burgasser AJ, Bochanski JJ (2011) Discovery of a candidate for the coolest known Brown dwarf. Astrophys J 730:L9.  https://doi.org/10.1088/2041-8205/730/1/L9, 1102.5411ADSCrossRefGoogle Scholar
  167. Lynga G (1982) Open clusters in our galaxy. Astron Astrophys 109:213–222ADSGoogle Scholar
  168. Lynga G (1983) The Lund catalogue of open cluster parameters. In: Ruprecht J Palous J (eds) Star clusters and associations and their relation to the evolution of the galaxy, Ceskoslovenska Akademie VedGoogle Scholar
  169. Lyo AR, Song I, Lawson WA, Bessell MS, Zuckerman B (2006) A deep photometric survey of the η Chamaeleontis cluster down to the brown dwarf – planet boundary. Mon Not R Astron Soc 368:1451–1455.  https://doi.org/10.1111/j.1365-2966.2006.10232.x, astro-ph/0604054ADSCrossRefGoogle Scholar
  170. Magazzù A, Martín EL, Rebolo R (1993) A spectroscopic test for substellar objects. Astrophys J 404:L17–L20.  https://doi.org/10.1086/186733ADSCrossRefGoogle Scholar
  171. Magazzù A, Rebolo R, Zapatero Osorio MR, Martín EL, Hodgkin ST (1998) A Brown dwarf candidate in the Praesepe open cluster. Astrophys J 497:L47–L50.  https://doi.org/10.1086/311273, astro-ph/9802178ADSCrossRefGoogle Scholar
  172. Mainzer AK, McLean IS (2003) Using narrowband photometry to detect young Brown dwarfs in IC 348. Astrophys J 597:555–565.  https://doi.org/10.1086/378197, astro-ph/0306631ADSCrossRefGoogle Scholar
  173. Malo L, Doyon R, Lafrenière D et al (2013) Bayesian analysis to identify new star candidates in nearby young stellar kinematic groups. Astrophys J 762:88.  https://doi.org/10.1088/0004-637X/762/2/88, 1209.2077ADSCrossRefGoogle Scholar
  174. Manzi S, Randich S, de Wit WJ, Palla F (2008) Detection of the lithium depletion boundary in the young open cluster IC 4665. Astron Astrophys 479:141–148.  https://doi.org/10.1051/0004-6361:20078226, 0712.0226ADSCrossRefGoogle Scholar
  175. Marley MS, Saumon D, Cushing M et al (2012) Masses, radii, and cloud properties of the HR 8799 planets. Astrophys J 754:135.  https://doi.org/10.1088/0004-637X/754/2/135, 1205.6488ADSCrossRefGoogle Scholar
  176. Marois C, Macintosh B, Barman T et al (2008) Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348.  https://doi.org/10.1126/science.1166585, 0811.2606ADSCrossRefGoogle Scholar
  177. Marsh KA, Kirkpatrick JD, Plavchan P (2010a) A young planetary-mass object in the ρ Oph cloud Core. Astrophys J 709:L158–L162.  https://doi.org/10.1088/2041-8205/709/2/L158,{\break} 0912.3774ADSCrossRefGoogle Scholar
  178. Marsh KA, Plavchan P, Kirkpatrick JD et al (2010b) Deep near-infrared imaging of the ρ Oph cloud core: clues to the origin of the lowest-mass Brown dwarfs. Astrophys J 719:550–560.  https://doi.org/10.1088/0004-637X/719/1/550, 1006.2506ADSCrossRefGoogle Scholar
  179. Martín EL, Rebolo R, Zapatero-Osorio MR (1996) Spectroscopy of new substellar candidates in the Pleiades: toward a spectral sequence for young Brown dwarfs. Astrophys J 469:706.  https://doi.org/10.1086/177817, astro-ph/9604080ADSCrossRefGoogle Scholar
  180. Martín EL, Basri G, Gallegos JE et al (1998a) A new Pleiades member at the lithium substellar boundary. Astrophys J 499:L61–L64.  https://doi.org/10.1086/311350, physics/9803026ADSCrossRefGoogle Scholar
  181. Martín EL, Basri G, Zapatero-Osorio MR, Rebolo R, López RJG (1998b) The first L-type Brown dwarf in the Pleiades. Astrophys J 507:L41–L44.  https://doi.org/10.1086/311675, astro-ph/9809031ADSCrossRefGoogle Scholar
  182. Martín EL, Dougados C, Magnier E et al (2001a) Four Brown dwarfs in the Taurus star-forming region. Astrophys J 561:L195–L198.  https://doi.org/10.1086/324754, astro-ph/0110100ADSCrossRefGoogle Scholar
  183. Martín EL, Zapatero Osorio MR, Barradoy Navascués D, VJS B, Rebolo R (2001b) Keck NIRC observations of planetary-mass candidate members in the σ Orionis open cluster. Astrophys J 558:L117–L121.  https://doi.org/10.1086/323633, astro-ph/0108066ADSCrossRefGoogle Scholar
  184. Martín EL, Delfosse X, Guieu S (2004) Spectroscopic identification of DENIS-selected Brown dwarf candidates in the Upper Scorpius OB association. Astron J 127:449–454.  https://doi.org/10.1086/380226r, astro-ph/0310819ADSCrossRefGoogle Scholar
  185. Martín EL, Phan-Bao N, Bessell M et al (2010) Spectroscopic characterization of 78 DENIS ultracool dwarf candidates in the solar neighborhood and the upper Scorpii OB association. Astron Astrophys 517:A53.  https://doi.org/10.1051/0004-6361/201014202r, 1004.1775CrossRefGoogle Scholar
  186. Mayne NJ, Harries TJ, Rowe J, Acreman DM (2012) Bayesian fitting of Taurus brown dwarf spectral energy distributions. Mon Not R Astron Soc 423:1775–1804.  https://doi.org/10.1111/j.1365-2966.2012.20999.x, 1203.6657ADSCrossRefGoogle Scholar
  187. McCaughrean M, Zinnecker H, Rayner J, Stauffer J (1995) Low-mass stars and Brown dwarfs in the trapezium cluster. In: Tinney CG (ed) The bottom of the main sequence – and beyond, Springer-Verlag, Berlin/Heidelberg, p 209CrossRefGoogle Scholar
  188. Melis C, Reid MJ, Mioduszewski AJ, Stauffer JR, Bower GC (2014) A VLBI resolution of the Pleiades distance controversy. Science 345:1029–1032.  https://doi.org/10.1126/science.1256101, 1408.6544ADSCrossRefGoogle Scholar
  189. Miller GE, Scalo JM (1979) The initial mass function and stellar birthrate in the solar neighborhood. Astrophys J Suppl Ser 41:513–547.  https://doi.org/10.1086/190629ADSCrossRefGoogle Scholar
  190. Moraux E, Bouvier J, Stauffer JR, Cuillandre JC (2003) Brown dwarfs in the Pleiades cluster: clues to the substellar mass function. Astron Astrophys 400:891–902.  https://doi.org/10.1051/0004-6361:20021903, astro- ph/0212571ADSCrossRefGoogle Scholar
  191. Moraux E, Bouvier J, Stauffer JR, Barradoy Navascués D, Cuillandre JC (2007) The lower mass function of the young open cluster Blanco 1: from 30 MJup to 3 M. Astron Astrophys 471:499–513.  https://doi.org/10.1051/0004-6361:20066308, 0706.2102ADSCrossRefGoogle Scholar
  192. Muench AA, Lada EA, Lada CJ (2000) Modeling the near-infrared luminosity functions of young stellar clusters. Astrophys J 533:358–371.  https://doi.org/10.1086/308638, astro-ph/9912384ADSCrossRefGoogle Scholar
  193. Muzˇic K, Scholz A, Geers VC, Jayawardhana R, López Martí B (2014) Substellar objects in nearby young clusters (SONYC). VIII. Substellar population in lupus 3. Astrophys J 785:159.  https://doi.org/10.1088/0004-637X/785/2/159, 1403.0813ADSCrossRefGoogle Scholar
  194. Muzˇic K, Scholz A, Geers VC, Jayawardhana R (2015) Substellar objects in nearby young clusters (SONYC) IX: the planetary-mass domain of Chamaeleon-I and updated mass function in Lupus-3. Astrophys J 810:159.  https://doi.org/10.1088/0004-637X/810/2/159, 1507.07780ADSCrossRefGoogle Scholar
  195. Najita JR, Tiede GP, Carr JS (2000) From stars to Superplanets: the low-mass initial mass function in the young cluster IC 348. Astrophys J 541:977–1003.  https://doi.org/10.1086/309477, astro-ph/0005290ADSCrossRefGoogle Scholar
  196. Nakajima T, Oppenheimer BR, Kulkarni SR et al (1995) Discovery of a cool brown dwarf. Nature 378:463–465.  https://doi.org/10.1038/378463a0ADSCrossRefGoogle Scholar
  197. Naud ME, Artigau É, Malo L et al (2014) Discovery of a wide planetary-mass companion to the young M3 star GU Psc. Astrophys J 787:5.  https://doi.org/10.1088/0004-637X/787/1/5, 1405.2932ADSCrossRefGoogle Scholar
  198. Oliveira JM, Jeffries RD, van Loon JT (2009) The low-mass initial mass function in the young cluster NGC6611. Mon Not R Astron Soc 392:1034–1050.  https://doi.org/10.1111/j.1365-2966.2008.14140.x, 0810.4444ADSCrossRefGoogle Scholar
  199. Pascucci I, Apai D, Luhman K et al (2009) The different evolution of gas and dust in disks around sun-like and cool stars. Astrophys J 696:143–159.  https://doi.org/10.1088/0004-637X/696/1/143, 0810.2552ADSCrossRefGoogle Scholar
  200. Pecaut MJ, Mamajek EE, Bubar EJ (2012) A revised age for Upper Scorpius and the star formation history among the F-type members of the Scorpius-Centaurus OB association. Astrophys J 746:154.  https://doi.org/10.1088/0004-637X/746/2/154, 1112.1695ADSCrossRefGoogle Scholar
  201. Peña-Ramírez K, Zapatero Osorio MR, Béjar VJS, Rebolo R, Bihain G (2011) Search and characterization of T-type planetary mass candidates in the σ Orionis cluster. Astron Astrophys 532:A42.  https://doi.org/10.1051/0004-6361/201116812, 1105.4043ADSCrossRefGoogle Scholar
  202. Peña-Ramírez K, Béjar VJS, Zapatero Osorio MR, Petr-Gotzens MG Martín EL (2012) New isolated planetary-mass objects and the stellar and substellar mass function of the σ Orionis cluster. ApJ 754:30.  https://doi.org/10.1088/0004-637X/754/1/30, 1205.4950ADSCrossRefGoogle Scholar
  203. Peña-Ramírez K, Zapatero Osorio MR, Béjar VJS (2015) Characterization of the known T-type dwarfs towards the σ Orionis cluster. Astron Astrophys 574:A118.  https://doi.org/10.1051/0004-6361/201424816, 1411.3370ADSCrossRefGoogle Scholar
  204. Peña-Ramírez K, Béjar VJS, Zapatero Osorio MR (2016) A new free-floating planet in the Upper Scorpius association. Astron Astrophys 586:A157.  https://doi.org/10.1051/0004-6361/201527425, 1511.05586ADSCrossRefGoogle Scholar
  205. Pérez-Garrido A, Lodieu N, Rebolo R (2017) A new L5 brown dwarf member of the Hyades cluster with chromospheric activity. Astron Astrophys 599:A78.  https://doi.org/10.1051/0004-6361/201628778, 1701.03398ADSCrossRefGoogle Scholar
  206. Perryman MAC, Lindegren L, Kovalevsky J et al (1997) The HIPPARCOS catalogue. Astron Astrophys 323:L49–L52ADSGoogle Scholar
  207. Pinfield DJ, Hodgkin ST, Jameson RF, Cossburn MR, von Hippel T (1997) Brown dwarf candidates in Praesepe. Mon Not R Astron Soc 287:180–188.  https://doi.org/10.1093/mnras/287.1.180ADSCrossRefGoogle Scholar
  208. Pinfield DJ, Hodgkin ST, Jameson RF et al (2000) A six-square-degree survey for Pleiades low- mass stars and brown dwarfs. Mon Not R Astron Soc 313:347–363.  https://doi.org/10.1046/j.1365-8711.2000.03238.xADSCrossRefGoogle Scholar
  209. Preibisch T, Zinnecker H (1999) The history of low-mass star formation in the Upper Scorpius OB association. Astron J 117:2381–2397.  https://doi.org/10.1086/300842ADSCrossRefGoogle Scholar
  210. Preibisch T, Guenther E, Zinnecker H et al (1998) A lithium-survey for pre-main sequence stars in the Upper Scorpius OB association. Astron Astrophys 333:619–628ADSGoogle Scholar
  211. Preibisch T, Brown AGA, Bridges T, Guenther E, Zinnecker H (2002) Exploring the full stellar population of the Upper Scorpius OB association. Astron J 124:404–416.  https://doi.org/10.1086/341174ADSCrossRefGoogle Scholar
  212. Quanz SP, Goldman B, Henning T et al (2010) Search for very low-mass Brown dwarfs and free-floating planetary-mass objects in Taurus. Astrophys J 708:770–784.  https://doi.org/10.1088/0004-637X/708/1/770, 0911.1925ADSCrossRefGoogle Scholar
  213. Rameau J, Chauvin G, Lagrange AM et al (2013) Discovery of a probable 4-5 Jupiter-mass exoplanet to HD 95086 by direct imaging. Astrophys J 772:L15.  https://doi.org/10.1088/2041-8205/772/2/L15, 1305.7428ADSCrossRefGoogle Scholar
  214. Rebolo R, Martín EL, Magazzù A (1992) Spectroscopy of a brown dwarf candidate in the alpha Persei open cluster. Astrophys J 389:L83–L86.  https://doi.org/10.1086/186354ADSCrossRefGoogle Scholar
  215. Rebolo R, Zapatero Osorio MR, Martín EL (1995) Discovery of a brown dwarf in the Pleiades star cluster. Nature 377:129–131.  https://doi.org/10.1038/377129a0ADSCrossRefGoogle Scholar
  216. Rebolo R, Martín EL, Basri G, Marcy GW, Zapatero-Osorio MR (1996) Brown dwarfs in the Pleiades cluster confirmed by the lithium test. Astrophys J 469:L53.  https://doi.org/10.1086/310263, astro- ph/9607002ADSCrossRefGoogle Scholar
  217. Rebolo R, Zapatero Osorio MR, Madruga S et al (1998) Discovery of a low-mass Brown dwarf companion of the young nearby star G 196-3. Science 282:1309.  https://doi.org/10.1126/science.282.5392.1309, astro-ph/9811413ADSCrossRefGoogle Scholar
  218. Reid IN, Kirkpatrick JD, Liebert J et al (1999) L dwarfs and the substellar mass function. Astrophys J 521:613–629.  https://doi.org/10.1086/307589, astro-ph/9905170ADSCrossRefGoogle Scholar
  219. Reipurth B (2002) The formation of Brown dwarfs. In: Alves JF McCaughrean MJ (eds) The origin of stars and planets: the VLT view, Springer-Verlag, p 114,  https://doi.org/10.1007/1085651814
  220. Riaz B, Honda M, Campins H et al (2012) The radial distribution of dust species in young brown dwarf discs. Mon Not R Astron Soc 420:2603–2624.  https://doi.org/10.1111/j.1365-2966.2011.20233.x, 1111.4480ADSCrossRefGoogle Scholar
  221. Rieke GH, Rieke MJ (1990) Possible substellar objects in the rho Ophiuchi cloud. Astrophys J 362:L21–L24.  https://doi.org/10.1086/185838ADSCrossRefGoogle Scholar
  222. Rodriguez DR, Bessell MS, Zuckerman B, Kastner JH (2011) A new method to identify nearby, young, low-mass stars. Astrophys J 727:62.  https://doi.org/10.1088/0004-637X/727/2/62, 1010.2493ADSCrossRefGoogle Scholar
  223. Salpeter EE (1955) The luminosity function and stellar evolution. Astrophys J 121:161.  https://doi.org/10.1086/145971ADSCrossRefGoogle Scholar
  224. Saumon D, Hubbard WB, Burrows A et al (1996) A theory of extrasolar Giant planets. Astrophys J 460:993.  https://doi.org/10.1086/177027, astro-ph/9510046ADSCrossRefGoogle Scholar
  225. Scalo JM (1986) The stellar initial mass function. Fund Cosm Phys 11:1–278ADSGoogle Scholar
  226. Schlieder JE, Lépine S, Simon M (2012) Cool young stars in the northern hemisphere: β Pictoris and AB Doradus moving group candidates. Astron J 143:80.  https://doi.org/10.1088/0004-6256/143/4/80, 1201.4047ADSCrossRefGoogle Scholar
  227. Schneider AC, Cushing MC, Kirkpatrick JD et al (2014) Discovery of the young L dwarf WISE J174102.78-464225.5. Astrophys J 147:34.  https://doi.org/10.1088/0004-6256/147/2/34, 1311.5941CrossRefGoogle Scholar
  228. Schneider AC, Windsor J, Cushing MC, Kirkpatrick JD, Shkolnik EL (2017) A 2MASS/AllWISE search for extremely red L dwarfs: the discovery of several likely L type members of β pic, AB dor, Tuc-hor, Argus, and the Hyades. Astron J 153:196.  https://doi.org/10.3847/1538-3881/aa6624, 1703.03774ADSCrossRefGoogle Scholar
  229. Scholz A, Geers V, Jayawardhana R et al (2009) Substellar objects in nearby young clusters (SONYC): the bottom of the initial mass function in NGC 1333. Astrophys J 702:805–822.  https://doi.org/10.1088/0004-637X/702/1/805, 0907.2243ADSCrossRefGoogle Scholar
  230. Sherry WH, Walter FM, Wolk SJ (2004) Photometric identification of the low-mass population of Orion OB1b. I. The σ Orionis cluster. Astron J 128:2316–2330.  https://doi.org/10.1086/424863, astro-ph/0410244ADSCrossRefGoogle Scholar
  231. Shkolnik E, Liu MC, Reid IN (2009) Identifying the young low-mass stars within 25 pc. I. Spectroscopic observations. Astrophys J 699:649–666.  https://doi.org/10.1088/0004-637X/699/1/649, 0904.3323ADSCrossRefGoogle Scholar
  232. Shkolnik EL, Liu MC, Reid IN, Dupuy T, Weinberger AJ (2011) Searching for young M dwarfs with GALEX. Astrophys J 727:6.  https://doi.org/10.1088/0004-637X/727/1/6, 1011.2708ADSCrossRefGoogle Scholar
  233. Shkolnik EL, Anglada-Escudé G, Liu MC et al (2012) Identifying the young low-mass stars within 25 pc. II. Distances, kinematics, and group membership. Astrophys J 758:56.  https://doi.org/10.1088/0004-637X/758/1/56, 1207.5074ADSCrossRefGoogle Scholar
  234. Siess L, Dufour E, Forestini M (2000) An internet server for pre-main sequence tracks of low- and intermediate-mass stars. Astron Astrophys 358:593–599, astro-ph/0003477ADSGoogle Scholar
  235. Silk J (1977) On the fragmentation of cosmic gas clouds. II – opacity-limited star formation. Astrophys J 214:152–160.  https://doi.org/10.1086/155240ADSCrossRefGoogle Scholar
  236. Simón-Díaz S, Caballero JA, Lorenzo J et al (2015) Orbital and physical properties of the σ Ori Aa, Ab, B triple system. Astrophys J 799:169.  https://doi.org/10.1088/0004-637X/799/2/169, 1412.3469ADSCrossRefGoogle Scholar
  237. Slesnick CL, Carpenter JM, Hillenbrand LA (2006) A large-area search for low-mass objects in Upper Scorpius. I. The photometric campaign and new Brown dwarfs. Astron J 131:3016–3027.  https://doi.org/10.1086/503560, astro-ph/0602298ADSCrossRefGoogle Scholar
  238. Slesnick CL, Hillenbrand LA, Carpenter JM (2008) A large-area search for low-mass objects in Upper Scorpius. II. Age and mass distributions. Astrophys J 688:377–397.  https://doi.org/10.1086/592265, 0809.1436ADSCrossRefGoogle Scholar
  239. Soderblom DR, Nelan E, Benedict GF et al (2005) Confirmation of errors in Hipparcos parallaxes from Hubble space telescope fine guidance sensor astrometry of the Pleiades. Astron J 129:1616–1624.  https://doi.org/10.1086/427860, astro-ph/0412093\ADSCrossRefGoogle Scholar
  240. Spezzi L, Alves de Oliveira C, Moraux E et al (2012) Searching for planetary-mass T-dwarfs in the core of Serpens. Astron Astrophys 545:A105.  https://doi.org/10.1051/0004-6361/201219559, 1208.0702CrossRefGoogle Scholar
  241. Stamatellos D, Hubber DA, Whitworth AP (2007) Brown dwarf formation by gravitational frag- mentation of massive, extended protostellar discs. Mon Not R Astron Soc 382:L30–L34.  https://doi.org/10.1111/j.1745-3933.2007.00383.x, 0708.2827ADSCrossRefGoogle Scholar
  242. Stauffer J, Hamilton D, Probst R, Rieke G, Mateo M (1989) Possible Pleiades members with M of about 0.07 solar mass – identification of brown dwarf candidates of known age, distance, and metallicity. Astrophys J 344:L21–L24.  https://doi.org/10.1086/185521ADSCrossRefGoogle Scholar
  243. Stauffer JR, Hamilton D Probst RG (1994) A CCD-based search for very low mass members of the Pleiades cluster. AJ108:155–159,  https://doi.org/10.1086/117053ADSCrossRefGoogle Scholar
  244. Stauffer JR, Balachandran SC, Krishnamurthi A et al (1997) Rotational velocities and chromospheric activity of M dwarfs in the Hyades. Astrophys J 475:604–622.  https://doi.org/10.1086/303567ADSCrossRefGoogle Scholar
  245. Stauffer JR, Schultz G, Kirkpatrick JD (1998) Keck spectra of Pleiades Brown dwarf candidates and a precise determination of the lithium depletion edge in the Pleiades. Astrophys J 499:L199–L203.  https://doi.org/10.1086/311379, astro-ph/9804005ADSCrossRefGoogle Scholar
  246. Stauffer JR, Barrado y Navascués D, Bouvier J et al (1999) Keck spectra of Brown dwarf can- didates and a precise determination of the lithium depletion boundary in the α Persei open cluster. Astrophys J 527:219–229.  https://doi.org/10.1086/308069, astro-ph/9909207ADSCrossRefGoogle Scholar
  247. Steele IA, Jameson RF (1995) Optical spectroscopy of low-mass stars and brown dwarfs in the Pleiades. Mon Not R Astron Soc 272:630–646.  https://doi.org/10.1093/mnras/272.3.630ADSCrossRefGoogle Scholar
  248. Strom KM, Kepner J, Strom SE (1995) The evolutionary status of the stellar population in the rho Ophiuchi cloud core. Astrophys J 438:813–829.  https://doi.org/10.1086/175125ADSCrossRefGoogle Scholar
  249. Thalmann C, Carson J, Janson M et al (2009) Discovery of the coldest imaged companion of a sun-like star. Astrophys J 707:L123–L127.  https://doi.org/10.1088/0004-637X/707/2/L123, 0911.1127ADSCrossRefGoogle Scholar
  250. Todorov K, Luhman KL, McLeod KK (2010) Discovery of a planetary-mass companion to a Brown dwarf in Taurus. Astrophys J 714:L84–L88.  https://doi.org/10.1088/2041-8205/714/1/L84, 1004.0539ADSCrossRefGoogle Scholar
  251. Tognelli E, Prada Moroni PG, Degl’ Innocenti S (2015) Cumulative theoretical uncertainties in lithium depletion boundary age. Mon Not R Astron Soc 449:3741–3754.  https://doi.org/10.1093/mnras/stv577, 1504.02698ADSCrossRefGoogle Scholar
  252. van der Plas G, Ménard F, Ward-Duong K et al (2016) Dust masses of disks around 8 Brown dwarfs and very low-mass stars in upper Sco OB1 and Ophiuchus. Astrophys J 819:102.  https://doi.org/10.3847/0004-637X/819/2/102, 1602.01724ADSCrossRefGoogle Scholar
  253. van Leeuwen F (2009) Parallaxes and proper motions for 20 open clusters as based on the new Hipparcos catalogue. Astron Astrophys 497:209–242.  https://doi.org/10.1051/0004-6361/200811382, 0902.1039ADSCrossRefGoogle Scholar
  254. Walter FM, Vrba FJ, Mathieu RD, Brown A, Myers PC (1994) X-ray sources in regions of star formation. 5: the low mass stars of the Upper Scorpius association. Astron J 107:692–719.  https://doi.org/10.1086/116889ADSCrossRefGoogle Scholar
  255. Walter FM, Wolk SJ, Freyberg M, Schmitt JHMM (1997) Discovery of the σ Orionis cluster. Mem Soc Astron Ital 68:1081ADSGoogle Scholar
  256. Wang W, Boudreault S, Goldman B et al (2011) The substellar mass function in the central region of the open cluster Praesepe from deep LBT observations. Astron Astrophys 531:A164.  https://doi.org/10.1051/0004-6361/201015598, 1105.5682CrossRefGoogle Scholar
  257. Wagner K, Apai D, Kasper M et al (2016) Direct imaging discovery of a Jovian exoplanet within a triple-star system. Science 353:673–678.  https://doi.org/10.1126/science.aaf9671, 1607.02525ADSCrossRefGoogle Scholar
  258. Weights DJ, Lucas PW, Roche PF, Pinfield DJ, Riddick F (2009) Infrared spectroscopy and analysis of brown dwarf and planetary mass objects in the Orion nebula cluster. Mon Not R Astron Soc 392:817–846.  https://doi.org/10.1111/j.1365-2966.2008.14096.x, 0810.3584ADSCrossRefGoogle Scholar
  259. Whelan ET, Ray TP, Bacciotti F et al (2005) A resolved outflow of matter from a brown dwarf. Nature 435:652–654.  https://doi.org/10.1038/nature03598, astro-ph/0506485ADSCrossRefGoogle Scholar
  260. White RJ, Basri G (2003) Very low mass stars and Brown dwarfs in Taurus-Auriga. Astrophys J 582:1109–1122.  https://doi.org/10.1086/344673, astro-ph/0209164ADSCrossRefGoogle Scholar
  261. Whitworth AP, Stamatellos D (2006) The minimum mass for star formation, and the origin of binary brown dwarfs. Astron Astrophys 458:817–829.  https://doi.org/10.1051/0004-6361:20065806, astro-ph/0610039ADSCrossRefzbMATHGoogle Scholar
  262. Wolk SJ, Walter FM (2000) Very low mass stars and brown dwarfs in the belt of orion. In: Rebolo R Zapatero-Osorio MR (eds) Very low-mass stars and Brown dwarfs, Cambridge University Press, p 38Google Scholar
  263. Zakhozhay OV, Zapatero Osorio MR, Béjar VJS, Boehler Y (2017) Spectral energy distribution simulations of a possible ring structure around the young, red brown dwarf G 196-3 B. Mon Not R Astron Soc 464:1108–1118.  https://doi.org/10.1093/mnras/stw2308, 1609.02859ADSCrossRefGoogle Scholar
  264. Zapatero Osorio MR, Rebolo R, Martín EL (1997a) Brown dwarfs in the Pleiades cluster: a CCD- based R, I survey. Astron Astrophys 317:164–170, astro-ph/9604079ADSGoogle Scholar
  265. Zapatero Osorio MR, Rebolo R, Martín EL et al (1997b) New Brown dwarfs in the Pleiades cluster. Astrophys J 491:L81–L84.  https://doi.org/10.1086/311073, astro-ph/9710300ADSCrossRefGoogle Scholar
  266. Zapatero Osorio MR, Rebolo R, Martín EL et al (1999) Brown dwarfs in the Pleiades cluster. III. A deep IZ survey. A&AS 134:537–543.  https://doi.org/10.1051/aas:1999443, astro-ph/9810051ADSCrossRefGoogle Scholar
  267. Zapatero Osorio MR, Béjar VJS, Martín EL et al (2000) Discovery of young, isolated planetary mass objects in the σ Orionis star cluster. Science 290:103–107.  https://doi.org/10.1126/science.290.5489.103ADSCrossRefGoogle Scholar
  268. Zapatero Osorio MR, Béjar VJS, Martín EL, Barradoy Navascués D, Rebolo R (2002a) Activity at the deuterium-burning mass limit in Orion. Astrophys J 569:L99–L102.  https://doi.org/10.1086/340690, astro-ph/0203283ADSCrossRefGoogle Scholar
  269. Zapatero Osorio MR, Béjar VJS, Martín EL et al (2002b) A methane, isolated, planetary-mass object in Orion. Astrophys J 578:536–542.  https://doi.org/10.1086/342474, astro-ph/0206353ADSCrossRefGoogle Scholar
  270. Zapatero Osorio MR, Béjar VJS, Pavlenko Y et al (2002c) Lithium and Hα in stars and brown dwarfs of sigma Orionis. Astron Astrophys 384:937–953.  https://doi.org/10.1051/0004-6361:20020046, astro- ph/0202147ADSCrossRefGoogle Scholar
  271. Zapatero Osorio MR, Béjar VJS, Martín EL et al (2014a) Spectroscopic follow-up of L- and T-type proper-motion member candidates in the Pleiades. Astron Astrophys 572:A67.  https://doi.org/10.1051/0004-6361/201424634, 1410.2383CrossRefGoogle Scholar
  272. Zapatero Osorio MR, Béjar VJS, Miles-Páez PA et al (2014b) Trigonometric parallaxes of young field L dwarfs. Astron Astrophys 568:A6.  https://doi.org/10.1051/0004-6361/201321340, 1406.1345ADSCrossRefGoogle Scholar
  273. Zapatero Osorio MR, Gálvez Ortiz MC, Bihain G et al (2014c) Search for free-floating planetary- mass objects in the Pleiades. Astron Astrophys 568:A77.  https://doi.org/10.1051/0004-6361/201423848, 1407.2849CrossRefGoogle Scholar
  274. Zapatero Osorio MR, Béjar VJS, Peña-Ramírez K (2017) Optical and near-infrared spectra of σ Orionis isolated planetary-mass objects. Astrophys J 842:65.  https://doi.org/10.3847/1538-4357/aa70ec, 1705.01336ADSCrossRefGoogle Scholar
  275. Zuckerman B, Becklin EE (1987) A search for brown dwarfs and late M dwarfs in the Hyades and the Pleiades. Astrophys J 319:L99–L102.  https://doi.org/10.1086/184962ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Astrofísica de Canarias, C. Vía Láctea S/NTenerifeSpain
  2. 2.CSIC-INTA Centro de AstrobiologíaMadridSpain

Section editors and affiliations

  • María Rosa Zapatero-Osorio
    • 1
  1. 1.Centro de AstrobiologíaMadridSpain

Personalised recommendations