Advertisement

Transit-Timing and Duration Variations for the Discovery and Characterization of Exoplanets

  • Eric AgolEmail author
  • Daniel C. Fabrycky
Reference work entry

Abstract

Transiting exoplanets in multi-planet systems have non-Keplerian orbits which can cause the times and durations of transits to vary. The theory and observations of transit-timing variations (TTVs) and transit duration variations (TDVs) are reviewed. Since the last review, the Kepler spacecraft has detected several hundred perturbed planets. In a few cases, these data have been used to discover additional planets, similar to the historical discovery of Neptune in our own solar system. However, the more impactful aspect of TTV and TDV studies has been characterization of planetary systems in which multiple planets transit. After addressing the equations of motion and parameter scalings, the main dynamical mechanisms for TTV and TDV are described, with citations to the observational literature for real examples. We describe parameter constraints, particularly the origin of the mass/eccentricity degeneracy and how it is overcome by the high-frequency component of the signal. On the observational side, derivation of timing precision and introduction to the timing diagram are given. Science results are reviewed, with an emphasis on mass measurements of transiting sub-Neptunes and super-Earths, from which bulk compositions may be inferred.

Notes

Acknowledgements

EA acknowledges support from NASA Grants NNX13AF20G, NNX13A124G, and NNX13AF62G, from National Science Foundation (NSF) grant AST-1615315, and from NASA Astrobiology Institute’s Virtual Planetary Laboratory, supported by NASA under cooperative agreement NNH05ZDA001C. DCF acknowledges support from NASA under Grant No. NNX14AB87G issued through the Kepler Participating Scientist Program and from the Alfred P. Sloan Foundation. We thank Sam Hadden, Jack Lissauer, Kento Masuda, Mahmoudreza Oshagh, and Jason Steffen for feedback, and we thank the Other Worlds Laboratory at UC Santa Cruz for hospitality while revising this paper.

References

  1. Adams JC (1847) An explanation of the observed irregularities in the motion of Uranus, on the hypothesis of disturbances caused by a more distant planet; with a determination of the mass, orbit, and position of the disturbing body. MmRAS 16:427ADSGoogle Scholar
  2. Agol E, Deck K (2016) Transit timing to first order in eccentricity. ApJ 818:177ADSCrossRefGoogle Scholar
  3. Agol E, Steffen J, Sari R, Clarkson W (2005) On detecting terrestrial planets with timing of giant planet transits. MNRAS 359:567–579ADSCrossRefGoogle Scholar
  4. Almenara JM, Díaz RF, Mardling R et al (2015) Absolute masses and radii determination in multiplanetary systems without stellar models. MNRAS 453:2644–2652ADSCrossRefGoogle Scholar
  5. Almenara JM, Díaz RF, Bonfils X, Udry S (2016) Absolute densities, masses, and radii of the WASP-47 system determined dynamically. A&A 595:L5ADSCrossRefGoogle Scholar
  6. Ballard S, Fabrycky D, Fressin F et al (2011) The Kepler-19 system: a transiting 2.2 R planet and a second planet detected via transit timing variations. ApJ 743:200ADSCrossRefGoogle Scholar
  7. Barnes JW, van Eyken JC, Jackson BK, Ciardi DR, Fortney JJ (2013) Measurement of spin-orbit misalignment and nodal precession for the planet around pre-main-sequence star PTFO 8-8695 from gravity darkening. ApJ 774:53ADSCrossRefGoogle Scholar
  8. Barros SCC, Boué G, Gibson NP et al (2013) Transit timing variations in WASP-10b induced by stellar activity. MNRAS 430:3032–3047ADSCrossRefGoogle Scholar
  9. Becker JC, Vanderburg A, Adams FC, Rappaport SA, Schwengeler HM (2015) WASP-47: a hot Jupiter system with two additional planets discovered by K2. ApJ 812:L18ADSCrossRefGoogle Scholar
  10. Beichman C, Benneke B, Knutson H et al (2014) Observations of transiting exoplanets with the James webb space telescope (JWST). PASP 126:1134–1173ADSGoogle Scholar
  11. Borkovits T, Érdi B, Forgács-Dajka E, Kovács T (2003) On the detectability of long period perturbations in close hierarchical triple stellar systems. A&A 398:1091–1102ADSCrossRefGoogle Scholar
  12. Carter JA, Winn JN (2009) Parameter estimation from time-series data with correlated errors: a wavelet-based method and its application to transit light curves. ApJ 704:51–67ADSCrossRefGoogle Scholar
  13. Carter JA, Yee JC, Eastman J, Gaudi BS, Winn JN (2008) Analytic approximations for transit light-curve observables, uncertainties, and covariances. ApJ 689:499-512ADSCrossRefGoogle Scholar
  14. Carter JA, Agol E, Chaplin WJ et al (2012) Kepler-36: a pair of planets with neighboring orbits and dissimilar densities. Science 337:556ADSCrossRefGoogle Scholar
  15. Cochran WD, Fabrycky DC, Torres G et al (2011) Kepler-18b, c, and d: a system of three planets confirmed by transit timing variations, light curve validation, warm-spitzer photometry, and radial velocity measurements. ApJS 197:7ADSCrossRefGoogle Scholar
  16. Dawson RI, Johnson JA, Fabrycky DC et al (2014) Large eccentricity, low mutual inclination: the three-dimensional architecture of a hierarchical system of giant planets. ApJ 791:89ADSCrossRefGoogle Scholar
  17. Deck KM, Agol E (2015) Measurement of planet masses with transit timing variations due to synodic “chopping” effects. ApJ 802:116ADSCrossRefGoogle Scholar
  18. Deck KM, Agol E (2016) Transit timing variations for planets near eccentricity-type mean motion resonances. ApJ 821:96ADSCrossRefGoogle Scholar
  19. Dobrovolskis AR, Borucki WJ (1996a) Influence of Jovian extrasolar planets on transits of inner planets. In: AAS/Division for planetary sciences meeting abstracts #28. Bulletin of the American astronomical society, vol 28, p 1112Google Scholar
  20. Dobrovolskis AR, Borucki WJ (1996b) Influence of Jovian extrasolar planets on transits of inner planets. In: Bulletin of the American astronomical society, BAAS, vol 28, p 1112ADSGoogle Scholar
  21. Doyle LR, Carter JA, Fabrycky DC et al (2011) Kepler-16: a transiting circumbinary planet. Science 333:1602ADSCrossRefGoogle Scholar
  22. Eastman J, Siverd R, Gaudi BS (2010) Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates. PASP 122:935–946ADSCrossRefGoogle Scholar
  23. Fabrycky DC, Ford EB, Steffen JH et al (2012) Transit timing observations from Kepler. IV. Confirmation of four multiple-planet systems by simple physical models. ApJ 750:114ADSCrossRefGoogle Scholar
  24. Ford EB, Fabrycky DC, Steffen JH et al (2012a) Transit timing observations from Kepler. II. Confirmation of two multiplanet systems via a non-parametric correlation analysis. ApJ 750:113Google Scholar
  25. Ford EB, Ragozzine D, Rowe JF et al (2012b) Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. ApJ 756:185ADSCrossRefGoogle Scholar
  26. Foreman-Mackey D, Agol E, Angus R, Ambikasaran S (2017) Fast and scalable Gaussian process modeling with applications to astronomical time series. ArXiv e-prints https://arxiv.org/abs/1703.09710ADSCrossRefGoogle Scholar
  27. Gibson NP, Aigrain S, Roberts S et al (2012) A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy. MNRAS 419:2683–2694ADSCrossRefGoogle Scholar
  28. Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460ADSCrossRefGoogle Scholar
  29. Ginzburg S, Schlichting HE, Sari R (2016) Super-Earth atmospheres: self-consistent gas accretion and retention. ApJ 825:29ADSCrossRefGoogle Scholar
  30. Hadden S, Lithwick Y (2014) Densities and eccentricities of 139 Kepler planets from transit time variations. ApJ 787:80ADSCrossRefGoogle Scholar
  31. Hadden S, Lithwick Y (2016) Numerical and analytical modeling of transit timing variations. ApJ 828:44ADSCrossRefGoogle Scholar
  32. Hadden S, Lithwick Y (2017) Kepler planet masses and eccentricities from TTV analysis. Astron J 154(1):5.  https://doi.org/10.3847/1538-3881/aa71efADSCrossRefGoogle Scholar
  33. Heyl JS, Gladman BJ (2007) Using long-term transit timing to detect terrestrial planets. MNRAS 377:1511–1519ADSCrossRefGoogle Scholar
  34. Holczer T, Mazeh T, Nachmani G et al (2016) Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. ApJS 225:9ADSCrossRefGoogle Scholar
  35. Holman MJ, Murray NW (2005) The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307:1288–1291ADSCrossRefGoogle Scholar
  36. Holman MJ, Fabrycky DC, Ragozzine D et al (2010) Kepler-9: a system of multiple planets transiting a sun-like star, confirmed by timing variations. Science 330:51ADSCrossRefGoogle Scholar
  37. Ioannidis P, Huber KF, Schmitt JHMM (2016) How do starspots influence the transit timing variations of exoplanets? Simulations of individual and consecutive transits. A&A 585:A72ADSCrossRefGoogle Scholar
  38. Jontof-Hutter D, Ford EB, Rowe JF et al (2016) Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 M with diverse densities and incident fluxes. ApJ 820:39ADSCrossRefGoogle Scholar
  39. Kipping DM (2014) Characterizing distant worlds with asterodensity profiling. MNRAS 440:2164–2184ADSCrossRefGoogle Scholar
  40. Kostov VB, McCullough PR, Hinse TC et al (2013) A gas giant circumbinary planet transiting the F star primary of the eclipsing binary star KIC 4862625 and the independent discovery and characterization of the two transiting planets in the Kepler-47 system. ApJ 770:52ADSCrossRefGoogle Scholar
  41. Kostov VB, McCullough PR, Carter JA et al (2014) Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet. ApJ 784:14ADSCrossRefGoogle Scholar
  42. Laughlin G, Chambers JE (2001) Short-term dynamical interactions among extrasolar planets. ApJ 551:L109–L113ADSCrossRefGoogle Scholar
  43. Le Verrier UJ (1877) Tables du mouvement de Neptune fondees sur la comparaison de la theorie avec les observations. Annales de l’Observatoire de Paris 14:1ADSGoogle Scholar
  44. Lee EJ, Chiang E (2016) Breeding super-earths and birthing super-puffs in transitional disks. ApJ 817:90ADSCrossRefGoogle Scholar
  45. Lissauer JJ, Fabrycky DC, Ford EB et al (2011) A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470:53–58ADSCrossRefGoogle Scholar
  46. Lithwick Y, Xie J, Wu Y (2012) Extracting planet mass and eccentricity from TTV data. ApJ 761:122ADSCrossRefGoogle Scholar
  47. Martin DV (2017) Circumbinary planets – II. When transits come and go. MNRAS 465:3235–3253Google Scholar
  48. Masuda K (2014) Very low density planets around Kepler-51 revealed with transit timing variations and an anomaly similar to a planet-planet eclipse event. ApJ 783:53ADSCrossRefGoogle Scholar
  49. Mayer P (1971) Eclipsing variable IU Aurigae. Bull Astron Inst Czech 22:168ADSGoogle Scholar
  50. Mazeh T, Nachmani G, Holczer T et al (2013) Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. ApJS 208:16ADSCrossRefGoogle Scholar
  51. Meschiari S, Laughlin GP (2010) Systemic: a testbed for characterizing the detection of extrasolar planets. II. Numerical approaches to the transit timing inverse problem. ApJ 718: 543–550Google Scholar
  52. Mills SM, Fabrycky DC (2017) Kepler-108: a mutually inclined giant planet system. Astron J 153(1):45. http://stacks.iop.org/1538-3881/153/i=1/a=45ADSCrossRefGoogle Scholar
  53. Mills SM, Mazeh T (2017) The planetary mass-radius relation and its dependence on orbital period as measured by transit timing variations and radial velocities. ApJ 839:L8ADSCrossRefGoogle Scholar
  54. Mills SM, Fabrycky DC, Migaszewski C et al (2016) A resonant chain of four transiting, sub-Neptune planets. Nature 533:509–512ADSCrossRefGoogle Scholar
  55. Miralda-Escudé J (2002) Orbital perturbations of transiting planets: a possible method to measure stellar quadrupoles and to detect earth-mass planets. ApJ 564:1019–1023ADSCrossRefGoogle Scholar
  56. Montet BT, Johnson JA (2013) Model-independent stellar and planetary masses from multi-transiting exoplanetary systems. ApJ 762:112ADSCrossRefGoogle Scholar
  57. Montet BT, Yee JC, Penny MT (2017) Measuring the galactic distribution of transiting planets with WFIRST. PASP 129(4):044,401CrossRefGoogle Scholar
  58. Nesvorný D (2009) Transit timing variations for eccentric and inclined exoplanets. ApJ 701:1116–1122ADSCrossRefGoogle Scholar
  59. Nesvorný D, Beaugé C (2010) Fast inversion method for determination of planetary parameters from transit timing variations. ApJ 709:L44–L48ADSCrossRefGoogle Scholar
  60. Nesvorný D, Morbidelli A (2008) Mass and orbit determination from transit timing variations of exoplanets. ApJ 688:636–646ADSCrossRefGoogle Scholar
  61. Nesvorný D, Vokrouhlický D (2014) The effect of conjunctions on the transit timing variations of exoplanets. ApJ 790:58ADSCrossRefGoogle Scholar
  62. Nesvorný D, Vokrouhlický D (2016) Dynamics and transit variations of resonant exoplanets. ApJ 823:72ADSCrossRefGoogle Scholar
  63. Nesvorný D, Kipping DM, Buchhave LA et al (2012) The detection and characterization of a nontransiting planet by transit timing variations. Science 336:1133ADSCrossRefGoogle Scholar
  64. Nesvorný D, Kipping D, Terrell D et al (2013) KOI-142, the king of transit variations, is a pair of planets near the 2:1 resonance. ApJ 777:3ADSCrossRefGoogle Scholar
  65. Oshagh M, Santos NC, Boisse I et al (2013) Effect of stellar spots on high-precision transit light-curve. A&A 556:A19ADSCrossRefGoogle Scholar
  66. Pál A, Kocsis B (2008) Periastron precession measurements in transiting extrasolar planetary systems at the level of general relativity. MNRAS 389:191–198ADSCrossRefGoogle Scholar
  67. Price EM, Rogers LA (2014) Transit light curves with finite integration time: fisher information analysis. ApJ 794:92ADSCrossRefGoogle Scholar
  68. Ragozzine D, Wolf AS (2009) Probing the interiors of very hot Jupiters using transit light curves. ApJ 698:1778–1794ADSCrossRefGoogle Scholar
  69. Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330ADSCrossRefGoogle Scholar
  70. Ricker GR, Winn JN, Vanderspek R et al (2015) Transiting exoplanet survey satellite (TESS). J Astron Telesc Instrum Syst 1(1):014003CrossRefGoogle Scholar
  71. Rowe JF, Coughlin JL, Antoci V et al (2015) Planetary candidates observed by Kepler. V. Planet sample from q1–q12 (36 months). Astrophys J Suppl Ser 217(1):16.  https://doi.org/10.1088/0067-0049/217/1/16ADSCrossRefGoogle Scholar
  72. Schmitt JR, Agol E, Deck KM et al (2014) Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D). ApJ 795:167ADSCrossRefGoogle Scholar
  73. Schneider J (2003) Multi-planet system detection by transits. In: Combes F, Barret D, Contini T, Pagani L (eds) SF2A-2003: semaine de l’Astrophysique Francaise, p 149. http://adsabs.harvard.edu/abs/2003sf2a.conf..149S
  74. Schneider J (2004) Multi-planet system detection with Eddington. In: Favata F, Aigrain S, Wilson A (eds) Stellar structure and habitable planet finding, vol 538. ESA Special Publication, Noordwijk, p 407–410Google Scholar
  75. Seager S, Mallén-Ornelas G (2003) A unique solution of planet and star parameters from an extrasolar planet transit light curve. ApJ 585:1038–1055ADSCrossRefGoogle Scholar
  76. Steffen J (2006) Detecting new planets in transiting systems. PhD thesis, University of WashingtonGoogle Scholar
  77. Steffen JH (2016) Sensitivity bias in the mass–radius distribution from transit timing variations and radial velocity measurements. Mon Not R Astron Soc 457(4):4384–4392.  https://doi.org/10.1093/mnras/stw241ADSCrossRefGoogle Scholar
  78. Steffen JH, Agol E (2005) An analysis of the transit times of TrES-1b. MNRAS 364: L96–L100ADSCrossRefGoogle Scholar
  79. Steffen JH, Fabrycky DC, Ford EB et al (2012) Transit timing observations from Kepler – III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations. MNRAS 421:2342–2354Google Scholar
  80. Sterken C (2005) The O-C diagram: basic procedures. In: Sterken C (ed) The light-time effect in astrophysics: causes and cures of the O-C diagram. Astronomical society of the pacific conference series, vol 335. Astronomical Society of the Pacific, San Francisco, p 3Google Scholar
  81. Szabó GM, Pál A, Derekas A et al (2012) Spin-orbit resonance, transit duration variation and possible secular perturbations in KOI-13. Mon Not R Astron Soc Lett 421(1):L122–L126.  https://doi.org/10.1111/j.1745-3933.2012.01219.xADSCrossRefGoogle Scholar
  82. Ulrich RK (1986) Determination of stellar ages from asteroseismology. ApJ 306:L37–L40ADSCrossRefGoogle Scholar
  83. Welsh WF, Orosz JA, Carter JA et al (2012) Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481:475–479ADSCrossRefGoogle Scholar
  84. Wilson C (1985) The great inequality of Jupiter and Saturn: from Kepler to laplace. Arch Hist Exact Sci 33:15–290ADSMathSciNetCrossRefGoogle Scholar
  85. Wolszczan A (1994) Confirmation of earth-mass planets orbiting the millisecond pulsar PSR B1257+12. Science 264:538–542ADSCrossRefGoogle Scholar
  86. Xie JW (2013) Transit timing variation of near-resonance planetary pairs: confirmation of 12 multiple-planet systems. ApJS 208:22ADSCrossRefGoogle Scholar
  87. Xie JW (2014) Transit timing variation of near-resonance planetary pairs. II. Confirmation of 30 planets in 15 multiple-planet systems. ApJS 210:25ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AstronomyUniversity of WashingtonSeattleUSA
  2. 2.Department of Astronomy and AstrophysicsUniversity of ChicagoChicagoUSA

Personalised recommendations