Skip to main content

Transit-Timing and Duration Variations for the Discovery and Characterization of Exoplanets

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Transiting exoplanets in multi-planet systems have non-Keplerian orbits which can cause the times and durations of transits to vary. The theory and observations of transit-timing variations (TTVs) and transit duration variations (TDVs) are reviewed. Since the last review, the Kepler spacecraft has detected several hundred perturbed planets. In a few cases, these data have been used to discover additional planets, similar to the historical discovery of Neptune in our own solar system. However, the more impactful aspect of TTV and TDV studies has been characterization of planetary systems in which multiple planets transit. After addressing the equations of motion and parameter scalings, the main dynamical mechanisms for TTV and TDV are described, with citations to the observational literature for real examples. We describe parameter constraints, particularly the origin of the mass/eccentricity degeneracy and how it is overcome by the high-frequency component of the signal. On the observational side, derivation of timing precision and introduction to the timing diagram are given. Science results are reviewed, with an emphasis on mass measurements of transiting sub-Neptunes and super-Earths, from which bulk compositions may be inferred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JC (1847) An explanation of the observed irregularities in the motion of Uranus, on the hypothesis of disturbances caused by a more distant planet; with a determination of the mass, orbit, and position of the disturbing body. MmRAS 16:427

    ADS  Google Scholar 

  • Agol E, Deck K (2016) Transit timing to first order in eccentricity. ApJ 818:177

    Article  ADS  Google Scholar 

  • Agol E, Steffen J, Sari R, Clarkson W (2005) On detecting terrestrial planets with timing of giant planet transits. MNRAS 359:567–579

    Article  ADS  Google Scholar 

  • Almenara JM, Díaz RF, Mardling R et al (2015) Absolute masses and radii determination in multiplanetary systems without stellar models. MNRAS 453:2644–2652

    Article  ADS  Google Scholar 

  • Almenara JM, Díaz RF, Bonfils X, Udry S (2016) Absolute densities, masses, and radii of the WASP-47 system determined dynamically. A&A 595:L5

    Article  ADS  Google Scholar 

  • Ballard S, Fabrycky D, Fressin F et al (2011) The Kepler-19 system: a transiting 2.2 R planet and a second planet detected via transit timing variations. ApJ 743:200

    Article  ADS  Google Scholar 

  • Barnes JW, van Eyken JC, Jackson BK, Ciardi DR, Fortney JJ (2013) Measurement of spin-orbit misalignment and nodal precession for the planet around pre-main-sequence star PTFO 8-8695 from gravity darkening. ApJ 774:53

    Article  ADS  Google Scholar 

  • Barros SCC, Boué G, Gibson NP et al (2013) Transit timing variations in WASP-10b induced by stellar activity. MNRAS 430:3032–3047

    Article  ADS  Google Scholar 

  • Becker JC, Vanderburg A, Adams FC, Rappaport SA, Schwengeler HM (2015) WASP-47: a hot Jupiter system with two additional planets discovered by K2. ApJ 812:L18

    Article  ADS  Google Scholar 

  • Beichman C, Benneke B, Knutson H et al (2014) Observations of transiting exoplanets with the James webb space telescope (JWST). PASP 126:1134–1173

    ADS  Google Scholar 

  • Borkovits T, Érdi B, Forgács-Dajka E, Kovács T (2003) On the detectability of long period perturbations in close hierarchical triple stellar systems. A&A 398:1091–1102

    Article  ADS  Google Scholar 

  • Carter JA, Winn JN (2009) Parameter estimation from time-series data with correlated errors: a wavelet-based method and its application to transit light curves. ApJ 704:51–67

    Article  ADS  Google Scholar 

  • Carter JA, Yee JC, Eastman J, Gaudi BS, Winn JN (2008) Analytic approximations for transit light-curve observables, uncertainties, and covariances. ApJ 689:499-512

    Article  ADS  Google Scholar 

  • Carter JA, Agol E, Chaplin WJ et al (2012) Kepler-36: a pair of planets with neighboring orbits and dissimilar densities. Science 337:556

    Article  ADS  Google Scholar 

  • Cochran WD, Fabrycky DC, Torres G et al (2011) Kepler-18b, c, and d: a system of three planets confirmed by transit timing variations, light curve validation, warm-spitzer photometry, and radial velocity measurements. ApJS 197:7

    Article  ADS  Google Scholar 

  • Dawson RI, Johnson JA, Fabrycky DC et al (2014) Large eccentricity, low mutual inclination: the three-dimensional architecture of a hierarchical system of giant planets. ApJ 791:89

    Article  ADS  Google Scholar 

  • Deck KM, Agol E (2015) Measurement of planet masses with transit timing variations due to synodic “chopping” effects. ApJ 802:116

    Article  ADS  Google Scholar 

  • Deck KM, Agol E (2016) Transit timing variations for planets near eccentricity-type mean motion resonances. ApJ 821:96

    Article  ADS  Google Scholar 

  • Dobrovolskis AR, Borucki WJ (1996a) Influence of Jovian extrasolar planets on transits of inner planets. In: AAS/Division for planetary sciences meeting abstracts #28. Bulletin of the American astronomical society, vol 28, p 1112

    Google Scholar 

  • Dobrovolskis AR, Borucki WJ (1996b) Influence of Jovian extrasolar planets on transits of inner planets. In: Bulletin of the American astronomical society, BAAS, vol 28, p 1112

    ADS  Google Scholar 

  • Doyle LR, Carter JA, Fabrycky DC et al (2011) Kepler-16: a transiting circumbinary planet. Science 333:1602

    Article  ADS  Google Scholar 

  • Eastman J, Siverd R, Gaudi BS (2010) Achieving better than 1 minute accuracy in the heliocentric and barycentric Julian dates. PASP 122:935–946

    Article  ADS  Google Scholar 

  • Fabrycky DC, Ford EB, Steffen JH et al (2012) Transit timing observations from Kepler. IV. Confirmation of four multiple-planet systems by simple physical models. ApJ 750:114

    Article  ADS  Google Scholar 

  • Ford EB, Fabrycky DC, Steffen JH et al (2012a) Transit timing observations from Kepler. II. Confirmation of two multiplanet systems via a non-parametric correlation analysis. ApJ 750:113

    Google Scholar 

  • Ford EB, Ragozzine D, Rowe JF et al (2012b) Transit timing observations from Kepler. V. Transit timing variation candidates in the first sixteen months from polynomial models. ApJ 756:185

    Article  ADS  Google Scholar 

  • Foreman-Mackey D, Agol E, Angus R, Ambikasaran S (2017) Fast and scalable Gaussian process modeling with applications to astronomical time series. ArXiv e-prints https://arxiv.org/abs/1703.09710

    Article  ADS  Google Scholar 

  • Gibson NP, Aigrain S, Roberts S et al (2012) A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy. MNRAS 419:2683–2694

    Article  ADS  Google Scholar 

  • Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460

    Article  ADS  Google Scholar 

  • Ginzburg S, Schlichting HE, Sari R (2016) Super-Earth atmospheres: self-consistent gas accretion and retention. ApJ 825:29

    Article  ADS  Google Scholar 

  • Hadden S, Lithwick Y (2014) Densities and eccentricities of 139 Kepler planets from transit time variations. ApJ 787:80

    Article  ADS  Google Scholar 

  • Hadden S, Lithwick Y (2016) Numerical and analytical modeling of transit timing variations. ApJ 828:44

    Article  ADS  Google Scholar 

  • Hadden S, Lithwick Y (2017) Kepler planet masses and eccentricities from TTV analysis. Astron J 154(1):5. https://doi.org/10.3847/1538-3881/aa71ef

    Article  ADS  Google Scholar 

  • Heyl JS, Gladman BJ (2007) Using long-term transit timing to detect terrestrial planets. MNRAS 377:1511–1519

    Article  ADS  Google Scholar 

  • Holczer T, Mazeh T, Nachmani G et al (2016) Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. ApJS 225:9

    Article  ADS  Google Scholar 

  • Holman MJ, Murray NW (2005) The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307:1288–1291

    Article  ADS  Google Scholar 

  • Holman MJ, Fabrycky DC, Ragozzine D et al (2010) Kepler-9: a system of multiple planets transiting a sun-like star, confirmed by timing variations. Science 330:51

    Article  ADS  Google Scholar 

  • Ioannidis P, Huber KF, Schmitt JHMM (2016) How do starspots influence the transit timing variations of exoplanets? Simulations of individual and consecutive transits. A&A 585:A72

    Article  ADS  Google Scholar 

  • Jontof-Hutter D, Ford EB, Rowe JF et al (2016) Secure mass measurements from transit timing: 10 Kepler exoplanets between 3 and 8 M with diverse densities and incident fluxes. ApJ 820:39

    Article  ADS  Google Scholar 

  • Kipping DM (2014) Characterizing distant worlds with asterodensity profiling. MNRAS 440:2164–2184

    Article  ADS  Google Scholar 

  • Kostov VB, McCullough PR, Hinse TC et al (2013) A gas giant circumbinary planet transiting the F star primary of the eclipsing binary star KIC 4862625 and the independent discovery and characterization of the two transiting planets in the Kepler-47 system. ApJ 770:52

    Article  ADS  Google Scholar 

  • Kostov VB, McCullough PR, Carter JA et al (2014) Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet. ApJ 784:14

    Article  ADS  Google Scholar 

  • Laughlin G, Chambers JE (2001) Short-term dynamical interactions among extrasolar planets. ApJ 551:L109–L113

    Article  ADS  Google Scholar 

  • Le Verrier UJ (1877) Tables du mouvement de Neptune fondees sur la comparaison de la theorie avec les observations. Annales de l’Observatoire de Paris 14:1

    ADS  Google Scholar 

  • Lee EJ, Chiang E (2016) Breeding super-earths and birthing super-puffs in transitional disks. ApJ 817:90

    Article  ADS  Google Scholar 

  • Lissauer JJ, Fabrycky DC, Ford EB et al (2011) A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470:53–58

    Article  ADS  Google Scholar 

  • Lithwick Y, Xie J, Wu Y (2012) Extracting planet mass and eccentricity from TTV data. ApJ 761:122

    Article  ADS  Google Scholar 

  • Martin DV (2017) Circumbinary planets – II. When transits come and go. MNRAS 465:3235–3253

    Google Scholar 

  • Masuda K (2014) Very low density planets around Kepler-51 revealed with transit timing variations and an anomaly similar to a planet-planet eclipse event. ApJ 783:53

    Article  ADS  Google Scholar 

  • Mayer P (1971) Eclipsing variable IU Aurigae. Bull Astron Inst Czech 22:168

    ADS  Google Scholar 

  • Mazeh T, Nachmani G, Holczer T et al (2013) Transit timing observations from Kepler. VIII. Catalog of transit timing measurements of the first twelve quarters. ApJS 208:16

    Article  ADS  Google Scholar 

  • Meschiari S, Laughlin GP (2010) Systemic: a testbed for characterizing the detection of extrasolar planets. II. Numerical approaches to the transit timing inverse problem. ApJ 718: 543–550

    Google Scholar 

  • Mills SM, Fabrycky DC (2017) Kepler-108: a mutually inclined giant planet system. Astron J 153(1):45. http://stacks.iop.org/1538-3881/153/i=1/a=45

    Article  ADS  Google Scholar 

  • Mills SM, Mazeh T (2017) The planetary mass-radius relation and its dependence on orbital period as measured by transit timing variations and radial velocities. ApJ 839:L8

    Article  ADS  Google Scholar 

  • Mills SM, Fabrycky DC, Migaszewski C et al (2016) A resonant chain of four transiting, sub-Neptune planets. Nature 533:509–512

    Article  ADS  Google Scholar 

  • Miralda-Escudé J (2002) Orbital perturbations of transiting planets: a possible method to measure stellar quadrupoles and to detect earth-mass planets. ApJ 564:1019–1023

    Article  ADS  Google Scholar 

  • Montet BT, Johnson JA (2013) Model-independent stellar and planetary masses from multi-transiting exoplanetary systems. ApJ 762:112

    Article  ADS  Google Scholar 

  • Montet BT, Yee JC, Penny MT (2017) Measuring the galactic distribution of transiting planets with WFIRST. PASP 129(4):044,401

    Article  Google Scholar 

  • Nesvorný D (2009) Transit timing variations for eccentric and inclined exoplanets. ApJ 701:1116–1122

    Article  ADS  Google Scholar 

  • Nesvorný D, Beaugé C (2010) Fast inversion method for determination of planetary parameters from transit timing variations. ApJ 709:L44–L48

    Article  ADS  Google Scholar 

  • Nesvorný D, Morbidelli A (2008) Mass and orbit determination from transit timing variations of exoplanets. ApJ 688:636–646

    Article  ADS  Google Scholar 

  • Nesvorný D, Vokrouhlický D (2014) The effect of conjunctions on the transit timing variations of exoplanets. ApJ 790:58

    Article  ADS  Google Scholar 

  • Nesvorný D, Vokrouhlický D (2016) Dynamics and transit variations of resonant exoplanets. ApJ 823:72

    Article  ADS  Google Scholar 

  • Nesvorný D, Kipping DM, Buchhave LA et al (2012) The detection and characterization of a nontransiting planet by transit timing variations. Science 336:1133

    Article  ADS  Google Scholar 

  • Nesvorný D, Kipping D, Terrell D et al (2013) KOI-142, the king of transit variations, is a pair of planets near the 2:1 resonance. ApJ 777:3

    Article  ADS  Google Scholar 

  • Oshagh M, Santos NC, Boisse I et al (2013) Effect of stellar spots on high-precision transit light-curve. A&A 556:A19

    Article  ADS  Google Scholar 

  • Pál A, Kocsis B (2008) Periastron precession measurements in transiting extrasolar planetary systems at the level of general relativity. MNRAS 389:191–198

    Article  ADS  Google Scholar 

  • Price EM, Rogers LA (2014) Transit light curves with finite integration time: fisher information analysis. ApJ 794:92

    Article  ADS  Google Scholar 

  • Ragozzine D, Wolf AS (2009) Probing the interiors of very hot Jupiters using transit light curves. ApJ 698:1778–1794

    Article  ADS  Google Scholar 

  • Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330

    Article  ADS  Google Scholar 

  • Ricker GR, Winn JN, Vanderspek R et al (2015) Transiting exoplanet survey satellite (TESS). J Astron Telesc Instrum Syst 1(1):014003

    Article  Google Scholar 

  • Rowe JF, Coughlin JL, Antoci V et al (2015) Planetary candidates observed by Kepler. V. Planet sample from q1–q12 (36 months). Astrophys J Suppl Ser 217(1):16. https://doi.org/10.1088/0067-0049/217/1/16

    Article  ADS  Google Scholar 

  • Schmitt JR, Agol E, Deck KM et al (2014) Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D). ApJ 795:167

    Article  ADS  Google Scholar 

  • Schneider J (2003) Multi-planet system detection by transits. In: Combes F, Barret D, Contini T, Pagani L (eds) SF2A-2003: semaine de l’Astrophysique Francaise, p 149. http://adsabs.harvard.edu/abs/2003sf2a.conf..149S

  • Schneider J (2004) Multi-planet system detection with Eddington. In: Favata F, Aigrain S, Wilson A (eds) Stellar structure and habitable planet finding, vol 538. ESA Special Publication, Noordwijk, p 407–410

    Google Scholar 

  • Seager S, Mallén-Ornelas G (2003) A unique solution of planet and star parameters from an extrasolar planet transit light curve. ApJ 585:1038–1055

    Article  ADS  Google Scholar 

  • Steffen J (2006) Detecting new planets in transiting systems. PhD thesis, University of Washington

    Google Scholar 

  • Steffen JH (2016) Sensitivity bias in the mass–radius distribution from transit timing variations and radial velocity measurements. Mon Not R Astron Soc 457(4):4384–4392. https://doi.org/10.1093/mnras/stw241

    Article  ADS  Google Scholar 

  • Steffen JH, Agol E (2005) An analysis of the transit times of TrES-1b. MNRAS 364: L96–L100

    Article  ADS  Google Scholar 

  • Steffen JH, Fabrycky DC, Ford EB et al (2012) Transit timing observations from Kepler – III. Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations. MNRAS 421:2342–2354

    Google Scholar 

  • Sterken C (2005) The O-C diagram: basic procedures. In: Sterken C (ed) The light-time effect in astrophysics: causes and cures of the O-C diagram. Astronomical society of the pacific conference series, vol 335. Astronomical Society of the Pacific, San Francisco, p 3

    Google Scholar 

  • Szabó GM, Pál A, Derekas A et al (2012) Spin-orbit resonance, transit duration variation and possible secular perturbations in KOI-13. Mon Not R Astron Soc Lett 421(1):L122–L126. https://doi.org/10.1111/j.1745-3933.2012.01219.x

    Article  ADS  Google Scholar 

  • Ulrich RK (1986) Determination of stellar ages from asteroseismology. ApJ 306:L37–L40

    Article  ADS  Google Scholar 

  • Welsh WF, Orosz JA, Carter JA et al (2012) Transiting circumbinary planets Kepler-34 b and Kepler-35 b. Nature 481:475–479

    Article  ADS  Google Scholar 

  • Wilson C (1985) The great inequality of Jupiter and Saturn: from Kepler to laplace. Arch Hist Exact Sci 33:15–290

    Article  ADS  MathSciNet  Google Scholar 

  • Wolszczan A (1994) Confirmation of earth-mass planets orbiting the millisecond pulsar PSR B1257+12. Science 264:538–542

    Article  ADS  Google Scholar 

  • Xie JW (2013) Transit timing variation of near-resonance planetary pairs: confirmation of 12 multiple-planet systems. ApJS 208:22

    Article  ADS  Google Scholar 

  • Xie JW (2014) Transit timing variation of near-resonance planetary pairs. II. Confirmation of 30 planets in 15 multiple-planet systems. ApJS 210:25

    Article  ADS  Google Scholar 

Download references

Acknowledgements

EA acknowledges support from NASA Grants NNX13AF20G, NNX13A124G, and NNX13AF62G, from National Science Foundation (NSF) grant AST-1615315, and from NASA Astrobiology Institute’s Virtual Planetary Laboratory, supported by NASA under cooperative agreement NNH05ZDA001C. DCF acknowledges support from NASA under Grant No. NNX14AB87G issued through the Kepler Participating Scientist Program and from the Alfred P. Sloan Foundation. We thank Sam Hadden, Jack Lissauer, Kento Masuda, Mahmoudreza Oshagh, and Jason Steffen for feedback, and we thank the Other Worlds Laboratory at UC Santa Cruz for hospitality while revising this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Agol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Agol, E., Fabrycky, D.C. (2018). Transit-Timing and Duration Variations for the Discovery and Characterization of Exoplanets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_7

Download citation

Publish with us

Policies and ethics