Advertisement

The Solar System as a Benchmark for Exoplanet Systems Interpretation

  • Pilar Montañés-RodríguezEmail author
  • Enric Pallé
Reference work entry

Abstract

For hundreds of years, the Solar System and its planetary bodies were the only example in which to base our models of planet formation and evolution. With the discovery of exoplanets, a much greater diversity of planetary types and system architectures have been uncovered. Nevertheless, the Solar System planets remain our best test bed to understand planetary physics and interpret low signal-to-noise exoplanetary observations. Here, we put the Solar System planets in context to the broader planetary population in our galaxy and detail the several observations of our Solar System planets that have been performed with the goal of observing them as exoplanets. We pay special attention to the only planet known to host life in our galaxy so far, the Earth.

Notes

Acknowledgements

This work is partly financed by the Spanish Ministry of Economics and Competitiveness through projects ESP2014-57495-C2-1-R and ESP2016-80435-C2-2-R.

References

  1. Alessi M, Pudritz RE, Cridland AJ (2017) On the formation and chemical composition of super Earths. MNRAS 464:428–452.  https://doi.org/10.1093/mnras/stw2360, 1606.09174ADSGoogle Scholar
  2. Armitage PJ (2007) Massive planet migration: theoretical predictions and comparison with observations. ApJ 665:1381–1390. https://doi.org/10.1086/519921, 0705.3039ADSGoogle Scholar
  3. Armitage PJ (2010) Astrophysics of planet formation. Cambridge University Press, CambridgeGoogle Scholar
  4. Arnold L, Gillet S, Lardière O, Riaud P, Schneider J (2002) A test for the search for life on extrasolar planets. Looking for the terrestrial vegetation signature in the Earthshine spectrum. A&A 392:231–237. https://doi.org/10.1051/0004-6361:20020933, astro-ph/0206314ADSGoogle Scholar
  5. Atreya SK, Adams EY, Niemann HB et al (2006) Titan’s methane cycle. Planet Space Sci 54: 1177–1187. https://doi.org/10.1016/j.pss.2006.05.028ADSGoogle Scholar
  6. Bagenal F, Nerney E, Steffl AJ (2016) Io plasma torus ion composition: Voyager, Galileo, Cassini. In: AAS/Division for planetary sciences meeting abstracts, vol 48, p 402.04Google Scholar
  7. Baines KH, Atreya SK, Bullock MA et al (2013) The atmospheres of the terrestrial planets: clues to the origins and early evolution of Venus, Earth, and Mars, pp 137–160.  https://doi.org/10.2458/azu_uapress_9780816530595-ch006Google Scholar
  8. Batalha NM (2014) Exploring exoplanet populations with NASA’s Kepler mission. Proc Natl Acad Sci 111:12647–12654.  https://doi.org/10.1073/pnas.1304196111, 1409.1904ADSGoogle Scholar
  9. Batygin K, Bodenheimer PH, Laughlin GP (2016) In situ formation and dynamical evolution of hot Jupiter systems. ApJ 829:114. https://doi.org/10.3847/0004-637X/829/2/114, 1511.09157ADSGoogle Scholar
  10. Beichman C, Benneke B, Knutson H et al (2014) Observations of transiting exoplanets with the James webb space telescope (JWST). PASP 126:1134. https://doi.org/10.1086/679566ADSGoogle Scholar
  11. Bell JF, Lemmon MT, Duxbury TC et al (2005) Solar eclipses of Phobos and Deimos observed from the surface of Mars. Nature 436:55–57.  https://doi.org/10.1038/nature03437ADSGoogle Scholar
  12. Boley AC, Granados Contreras AP, Gladman B (2016) The in situ formation of giant planets at short orbital periods. ApJ 817:L17. https://doi.org/10.3847/2041-8205/817/2/L17, 1510.04276ADSGoogle Scholar
  13. Bonfils X, Delfosse X, Udry S et al (2013) The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. A&A 549:A109. https://doi.org/10.1051/0004-6361/201014704, 1111.5019ADSGoogle Scholar
  14. Borucki WJ, Koch D, Basri G et al (2010) Kepler planet-detection mission: introduction and first results. Science 327:977.  https://doi.org/10.1126/science.1185402ADSGoogle Scholar
  15. Brown RH, Lebreton JP, Waite JH (2010) Titan from Cassini-Huygens. https://doi.org/10.1007/978-1-4020-9215-2Google Scholar
  16. Burke CJ (2015) Terrestrial planet occurrence rates for the Kepler GK dwarf sample. In: AAS/Division for extreme solar systems abstracts, vol 3, p 501.01Google Scholar
  17. Chambers JE (2016) Pebble accretion and the diversity of planetary systems. ApJ 825:63. https://doi.org/10.3847/0004-637X/825/1/63, 1604.06362ADSGoogle Scholar
  18. Chauvin G, Lagrange AM, Dumas C et al (2004) A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing. A&A 425:L29–L32. https://doi.org/10.1051/0004-6361:200400056, astro-ph/0409323ADSGoogle Scholar
  19. Chiavassa A, Pere C, Faurobert M et al (2015) New view on exoplanet transits. Transit of Venus described using three-dimensional solar atmosphere STAGGER-grid simulations. A&A 576:A13. https://doi.org/10.1051/0004-6361/201425256, 1501.06207ADSGoogle Scholar
  20. Cowan NB, Agol E, Meadows VS et al (2009) Alien maps of an ocean-bearing world. ApJ 700:915–923. https://doi.org/10.1088/0004-637X/700/2/915, 0905.3742ADSGoogle Scholar
  21. Crow CA, McFadden LA, Robinson T et al (2011) Views from EPOXI: colors in our solar system as an analog for extrasolar planets. ApJ 729:130. https://doi.org/10.1088/0004-637X/729/2/130ADSGoogle Scholar
  22. Dalba PA, Muirhead PS, Fortney JJ et al (2015) The transit transmission spectrum of a cold gas giant planet. Astrophys J 814(2):154. http://stacks.iop.org/0004-637X/814/i=2/a=154ADSGoogle Scholar
  23. Deming D, Seager S (2009) Light and shadow from distant worlds. Nature 462:301–306.  https://doi.org/10.1038/nature08556ADSGoogle Scholar
  24. Deming D, Seager S, Winn J et al (2009) Discovery and characterization of transiting super Earths using an all-sky transit survey and follow-up by the James webb space telescope. PASP 121:952. https://doi.org/10.1086/605913, 0903.4880ADSGoogle Scholar
  25. Dressing CD, Charbonneau D (2013) The occurrence rate of small planets around small stars. ApJ 767:95. https://doi.org/10.1088/0004-637X/767/1/95, 1302.1647ADSGoogle Scholar
  26. Duxbury TC, Zakharov AV, Hoffmann H, Guinness EA (2014) Spacecraft exploration of Phobos and Deimos. Planet Space Sci 102:9–17. https://doi.org/10.1016/j.pss.2013.12.008ADSGoogle Scholar
  27. Ehrenreich D, Tinetti G, Lecavelier Des Etangs A, Vidal-Madjar A, Selsis F (2006) The transmission spectrum of Earth-size transiting planets. A&A 448:379–393. https://doi.org/10.1051/0004-6361:20053861, astro-ph/0510215ADSGoogle Scholar
  28. Ehrenreich D, Vidal-Madjar A, Widemann T et al (2012) Transmission spectrum of Venus as a transiting exoplanet. A&A 537:L2. https://doi.org/10.1051/0004-6361/201118400, 1112.0572ADSGoogle Scholar
  29. Fernandez JA, Ip WH (1984) Some dynamical aspects of the accretion of Uranus and Neptune – the exchange of orbital angular momentum with planetesimals. Icarus 58:109–120. https://doi.org/10.1016/0019-1035(84)90101-5ADSGoogle Scholar
  30. Fischer G, Pagaran J, Dyudina U, Delcroix M (2016) Dynamics of Saturnian thunderstorms. In: EGU general assembly conference abstracts, vol 18, p 6505Google Scholar
  31. Formisano V, D’Aversa E, Bellucci G et al (2003) Cassini-VIMS at Jupiter: solar occultation measurements using Io. Icarus 166:75–84. https://doi.org/10.1016/S0019-1035(03)00178-7ADSGoogle Scholar
  32. Fujii Y, Kawahara H (2012) Mapping Earth analogs from photometric variability: spin-orbit tomography for planets in inclined orbits. ApJ 755:101. https://doi.org/10.1088/0004-637X/755/2/101, 1204.3504ADSGoogle Scholar
  33. García Muñoz A, Zapatero Osorio MR, Barrena R et al (2012) Glancing views of the Earth: from a Lunar eclipse to an exoplanetary transit. ApJ 755:103. https://doi.org/10.1088/0004-637X/755/2/103, 1206.4344ADSGoogle Scholar
  34. Gardner JP, Mather JC, Clampin M et al (2006) The James webb space telescope. Space Sci Rev 123:485–606. https://doi.org/10.1007/s11214-006-8315-7, astro-ph/0606175ADSGoogle Scholar
  35. Gibson GG, Denn FM, Young DW et al (1990) Characteristics of the Earth’s radiation budget derived from the first year of data from the Earth radiation budget experiment. In: Barkstrom BR (ed) Long-term monitoring of the Earth’s radiation budget, Proceedings of SPIE, vol 1299, pp 253–263. https://doi.org/10.1117/12.21383Google Scholar
  36. Gillon M, Jehin E, Magain P et al (2011) TRAPPIST: a robotic telescope dedicated to the study of planetary systems. In: European physical journal web of conferences, vol 11, p 06002.  https://doi.org/10.1051/epjconf/20101106002, 1101.5807Google Scholar
  37. Gomes R, Levison HF, Tsiganis K, Morbidelli A (2005) Origin of the cataclysmic late heavy bombardment period of the terrestrial planets. Nature 435:466–469.  https://doi.org/10.1038/nature03676ADSGoogle Scholar
  38. González-Merino B, Pallé E, Motalebi F, Montañés-Rodríguez P, Kissler-Patig M (2013) Earthshine observations at high spectral resolution: exploring and detecting metal lines in the Earth’s upper atmosphere. MNRAS 435:2574–2580.  https://doi.org/10.1093/mnras/stt1463, 1309.0354ADSGoogle Scholar
  39. Goode B, Cary JR, Doxas I, Horton W (2001a) Differentiating between colored random noise and deterministic chaos with the root mean squared deviation. J Geophys Res 106:21277–21288. https://doi.org/10.1029/2000JA000167ADSGoogle Scholar
  40. Goode PR, Qiu J, Yurchyshyn V et al (2001b) Earthshine observations of the Earth’s reflectance. Geophys Res Lett 28:1671–1674. https://doi.org/10.1029/2000GL012580ADSGoogle Scholar
  41. Hamdani S, Arnold L, Foellmi C et al (2006) Biomarkers in disk-averaged near-UV to near-IR Earth spectra using Earthshine observations. A&A 460:617–624. https://doi.org/10.1051/0004-6361:20065032, astro-ph/0609195ADSGoogle Scholar
  42. Hedelt P, Alonso R, Brown T et al (2011) Venus transit 2004: illustrating the capability of exoplanet transmission spectroscopy. A&A 533:A136. https://doi.org/10.1051/0004-6361/201016237, 1107.3700ADSGoogle Scholar
  43. Hitchcock DR, Lovelock JE (1967) Life detection by atmospheric analysis. Icarus 7:149–159. https://doi.org/10.1016/0019-1035(67)90059-0ADSGoogle Scholar
  44. Hodosán G, Rimmer PB, Helling C (2016) Is lightning a possible source of the radio emission on HAT-P-11b? MNRAS 461:1222–1226.  https://doi.org/10.1093/mnras/stw977, 1604.07406ADSGoogle Scholar
  45. Howard AW, Marcy GW, Bryson ST et al (2012) Planet occurrence within 0.25 AU of solar-type stars from kepler. ApJS 201:15. https://doi.org/10.1088/0067-0049/201/2/15, 1103.2541ADSGoogle Scholar
  46. Huitson CM, Sing DK, Pont F et al (2013) An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO. MNRAS 434:3252–3274.  https://doi.org/10.1093/mnras/stt1243, 1307.2083ADSGoogle Scholar
  47. Ip WH, Fernandez JA (1988) Exchange of condensed matter among the outer and terrestrial protoplanets and the effect on surface impact and atmospheric accretion. Icarus 74:47–61. https://doi.org/10.1016/0019-1035(88)90030-9ADSGoogle Scholar
  48. Irvine WM, Simon T, Menzel DH, Pikoos C, Young AT (1968) Multicolor photoelectric photometry of the brighter planets. III. Observations from Boyden observatory. AJ 73:807. https://doi.org/10.1086/110702ADSGoogle Scholar
  49. Irwin PGJ (2003) Giant planets of our solar system: atmospheres compositions, and structure. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-540-85158-5Google Scholar
  50. Kawahara H, Fujii Y (2010) Global mapping of Earth-like exoplanets from scattered light curves. ApJ 720:1333–1350. https://doi.org/10.1088/0004-637X/720/2/1333, 1004.5152ADSGoogle Scholar
  51. Kawahara H, Fujii Y (2011) Mapping clouds and terrain of Earth-like planets from photometric variability: demonstration with planets in face-on orbits. ApJ 739:L62. https://doi.org/10.1088/2041-8205/739/2/L62, 1106.0136ADSGoogle Scholar
  52. Kley W, Nelson RP (2012) Planet-disk interaction and orbital evolution. ARA&A 50:211–249.  https://doi.org/10.1146/annurev-astro-081811-125523, 1203.1184ADSGoogle Scholar
  53. Kurtz DW (ed) (2005) Transits of Venus: new views of the solar system and galaxy. Cambridge University Press, CambridgeGoogle Scholar
  54. Laughlin G, Deming D, Langton J et al (2009) Rapid heating of the atmosphere of an extrasolar planet. Nature 457:562–564.  https://doi.org/10.1038/nature07649ADSGoogle Scholar
  55. Lee EJ, Chiang E, Ormel CW (2014) Make super-earths, not Jupiters: accreting nebular gas onto solid cores at 0.1 AU and beyond. ApJ 797:95. https://doi.org/10.1088/0004-637X/797/2/95, 1409.3578ADSGoogle Scholar
  56. Lemmon MT (2015) Martian upper atmospheric aerosol properties from phobos eclipse observation. In: AAS/Division for planetary sciences meeting abstracts, vol 47, p 401.09Google Scholar
  57. Lin DNC, Bodenheimer P, Richardson DC (1996) Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380:606–607. https://doi.org/10.1038/380606a0ADSGoogle Scholar
  58. Mahaffy PR, Webster CR, Atreya SK et al (2013) Abundance and isotopic composition of gases in the martian atmosphere from the curiosity rover. Science 341:263–266.  https://doi.org/10.1126/science.1237966ADSGoogle Scholar
  59. Malhotra R (1995) The origin of Pluto’s orbit: implications for the solar system beyond Neptune. AJ 110:420. https://doi.org/10.1086/117532, astro-ph/9504036ADSGoogle Scholar
  60. Mallama A (2009) Characterization of terrestrial exoplanets based on the phase curves and albedos of Mercury, Venus and Mars. Icarus 204:11–14. https://doi.org/10.1016/j.icarus.2009.07.010ADSGoogle Scholar
  61. Mallama A, Krobusek B, Pavlov H (2017) Comprehensive wide-band magnitudes and albedos for the planets, with applications to exo-planets and planet nine. Icarus 282:19–33. https://doi.org/10.1016/j.icarus.2016.09.023, 1609.05048ADSGoogle Scholar
  62. Marois C, Macintosh B, Barman T et al (2008) Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348.  https://doi.org/10.1126/science.1166585, 0811.2606ADSGoogle Scholar
  63. Martins JHC, Santos NC, Figueira P et al (2015) Evidence for a spectroscopic direct detection of reflected light from 51 Pegasi b. A&A 576:A134. https://doi.org/10.1051/0004-6361/201425298, 1504.05962ADSGoogle Scholar
  64. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359. https://doi.org/10.1038/378355a0ADSGoogle Scholar
  65. Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. ArXiv e-prints 1109.2497Google Scholar
  66. Mayorga LC, Jackiewicz J, Rages K et al (2016) Jupiter’s phase variations from Cassini: a testbed for future direct-imaging missions. AJ 152:209. https://doi.org/10.3847/0004-6256/152/6/209, 1610.07679ADSGoogle Scholar
  67. McLaughlin DB (1924) ApJ 60:22ADSGoogle Scholar
  68. Miles-Páez PA, Pallé E, Zapatero Osorio MR (2014) Simultaneous optical and near-infrared linear spectropolarimetry of the earthshine. A&A 562:L5. https://doi.org/10.1051/0004-6361/201323009, 1401.6029ADSGoogle Scholar
  69. Misra AK, Meadows VS (2014) Discriminating between cloudy, hazy, and clear sky exoplanets using refraction. ApJ 795:L14. https://doi.org/10.1088/2041-8205/795/1/L14, 1409.7072ADSGoogle Scholar
  70. Misra A, Meadows V, Claire M, Crisp D (2014) Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. Astrobiology 14:67–86.  https://doi.org/10.1089/ast.2013.0990, 1312.2025ADSGoogle Scholar
  71. Montanes Rodriguez P (2006) Earth observed as a distant planet. In: European planetary science congress 2006, p 573ADSGoogle Scholar
  72. Montañés-Rodríguez P, Pallé E, Goode PR, Hickey J, Koonin SE (2005) Globally integrated measurements of the Earth’s visible spectral albedo. ApJ 629:1175–1182. https://doi.org/10.1086/431420, astro-ph/0505084ADSGoogle Scholar
  73. Montañés-Rodríguez P, Pallé E, Goode PR, Martín-Torres FJ (2006) Vegetation signature in the observed globally integrated spectrum of Earth considering simultaneous cloud data: applications for extrasolar planets. ApJ 651:544–552. https://doi.org/10.1086/507694, astro-ph/0604420ADSGoogle Scholar
  74. Montañés-Rodríguez P, González-Merino B, Pallé E, López-Puertas M, García-Melendo E (2015) Jupiter as an exoplanet: UV to NIR transmission spectrum reveals hazes, a Na layer, and possibly stratospheric H2O-ice clouds. ApJ 801:L8. https://doi.org/10.1088/2041-8205/801/1/L8ADSGoogle Scholar
  75. Moore JH, Brigham LA (1927) The spectrum of the eclipsed moon. PASP 39:223. https://doi.org/10.1086/123720ADSGoogle Scholar
  76. Morbidelli A, Levison HF, Tsiganis K, Gomes R (2005) Chaotic capture of Jupiter’s trojan asteroids in the early solar system. Nature 435:462–465.  https://doi.org/10.1038/nature03540ADSGoogle Scholar
  77. Morbidelli A, Lunine JI, O’Brien DP, Raymond SN, Walsh KJ (2012) Building terrestrial planets. Annu Rev Earth Planet Sci 40:251–275.  https://doi.org/10.1146/annurev-earth-042711-105319, 1208.4694ADSGoogle Scholar
  78. Murchie S (1999) Mars pathfinder spectral measurements of Phobos and Deimos: comparison with previous data. J Geophys Res 104:9069–9080. https://doi.org/10.1029/98JE02248ADSGoogle Scholar
  79. Murgas F, Pallé E, Zapatero Osorio MR et al (2014) The GTC exoplanet transit spectroscopy survey . I. OSIRIS transmission spectroscopy of the short period planet WASP-43b. A&A 563:A41. https://doi.org/10.1051/0004-6361/201322374, 1401.3692ADSGoogle Scholar
  80. Niemann HB, Atreya SK, Bauer SJ et al (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784.  https://doi.org/10.1038/nature04122ADSGoogle Scholar
  81. Niemann HB, Atreya SK, Demick JE et al (2010) Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J Geophys Res (Planets) 115:E12006. https://doi.org/10.1029/2010JE003659ADSGoogle Scholar
  82. Pallé E, Goode PR, Yurchyshyn V et al (2003) Earthshine and the Earth’s albedo: 2. Observations and simulations over 3 years. J Geophys Res (Atmos) 108:4710. https://doi.org/10.1029/2003JD003611
  83. Pallé E, Goode PR, Montañés-Rodríguez P, Koonin SE (2004) Changes in Earth’s reflectance over the past two decades. Science 304:1299–1301.  https://doi.org/10.1126/science.1094070ADSGoogle Scholar
  84. Pallé E, Ford EB, Seager S, Montañés-Rodríguez P, Vazquez M (2008) Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations. ApJ 676:1319-1329. https://doi.org/10.1086/528677, 0802.1836ADSGoogle Scholar
  85. Pallé E, Zapatero Osorio MR, Barrena R, Montañés-Rodríguez P, Martín EL (2009) Earth’s transmission spectrum from lunar eclipse observations. Nature 459:814–816.  https://doi.org/10.1038/nature08050, 0906.2958ADSGoogle Scholar
  86. Pasachoff JM, Sheehan W (2012) Lomonosov, the discovery of Venus’s atmosphere, and the eighteenth-century transits of Venus. J Astron Hist Herit 15:3–14ADSGoogle Scholar
  87. Pasachoff JM, Schneider G, Gary D et al (2016) The 2016 transit of Mercury observed from major solar telescopes and satellites. In: AAS/Division for planetary sciences meeting abstracts, vol 48, p 117.05Google Scholar
  88. Pepin RO (2006) Atmospheres on the terrestrial planets: clues to origin and evolution. Earth Planet Sci Lett 252:1–14. https://doi.org/10.1016/j.epsl.2006.09.014ADSGoogle Scholar
  89. Porco CC, Baker E, Barbara J et al (2005) Imaging of titan from the cassini spacecraft. Nature 434:159–168.  https://doi.org/10.1038/nature03436ADSGoogle Scholar
  90. Potter AE, Killen RM, Reardon KP, Bida TA (2013) Observation of neutral sodium above Mercury during the transit of November 8, 2006. Icarus 226:172–185. https://doi.org/10.1016/j.icarus.2013.05.029ADSGoogle Scholar
  91. Qiu J, Goode PR, Pallé E et al (2003) Earthshine and the Earth’s albedo: 1. Earthshine observations and measurements of the lunar phase function for accurate measurements of the Earth’s bond albedo. J Geophys Res (Atmos) 108:4709. https://doi.org/10.1029/2003JD003610
  92. Queloz D, Eggenberger A, Mayor M et al (2000) A&A 359:L13ADSGoogle Scholar
  93. Ragazzoni R, Magrin D, Rauer H et al (2016) PLATO: a multiple telescope spacecraft for exo-planets hunting. In: Space telescopes and instrumentation 2016: optical, infrared, and millimeter wave. Proceedings of SPIE, vol 9904, p 990428. https://doi.org/10.1117/12.2236094
  94. Reale F, Gambino AF, Micela G et al (2015) Using the transit of Venus to probe the upper planetary atmosphere. Nat Commun 6:7563.  https://doi.org/10.1038/ncomms8563, 1507.00195
  95. Ricker GR (2016) The transiting exoplanet survey satellite (TESS): discovering exoplanets in the solar neighborhood. AGU fall meeting abstractsGoogle Scholar
  96. Robinson TD, Maltagliati L, Marley MS, Fortney JJ (2014) Titan solar occultation observations reveal transit spectra of a hazy world. Proc Nat Acad Sci 111:9042–9047.  https://doi.org/10.1073/pnas.1403473111, 1406.3314ADSGoogle Scholar
  97. Rossiter RA (1924) ApJ 60:15ADSGoogle Scholar
  98. Sagan C, Thompson WR, Carlson R, Gurnett D, Hord C (1993) A search for life on Earth from the Galileo spacecraft. Nature 365:715–721. https://doi.org/10.1038/365715a0ADSGoogle Scholar
  99. Sanchez-Lavega A (2011) An introduction to planetary atmospheres. Taylor & Francis Group, LLC. http://www.ajax.ehu.es/planetary_atmospheres/://www.ajax.ehu.es/planetary_atmospheres/Google Scholar
  100. Sanchis-Ojeda R, Rappaport S, Winn JN et al (2014) A study of the shortest-period planets found with kepler. ApJ 787:47. https://doi.org/10.1088/0004-637X/787/1/47, 1403.2379ADSGoogle Scholar
  101. Schleicher H, Wiedemann G, Wöhl H, Berkefeld T, Soltau D (2004) Detection of neutral sodium above Mercury during the transit on 2003 May 7. A&A 425:1119–1124. https://doi.org/10.1051/0004-6361:20040477ADSGoogle Scholar
  102. Seager S, Turner EL, Schafer J, Ford EB (2005) Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5:372–390.  https://doi.org/10.1089/ast.2005.5.372, astro-ph/0503302ADSGoogle Scholar
  103. Simon AA, Rowe JF, Gaulme P et al (2016) Neptune’s dynamic atmosphere from kepler K2 observations: implications for brown dwarf light curve analyses. ApJ 817:162. https://doi.org/10.3847/0004-637X/817/2/162, 1512.07090ADSGoogle Scholar
  104. Sing DK, Pont F, Aigrain S et al (2011) Hubble space telescope transmission spectroscopy of the exoplanet HD 189733b: high-altitude atmospheric haze in the optical and near-ultraviolet with STIS. MNRAS 416:1443–1455. https://doi.org/10.1111/j.1365-2966.2011.19142.x, 1103.0026ADSGoogle Scholar
  105. Sing DK, Fortney JJ, Nikolov N et al (2016) A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529:59–62.  https://doi.org/10.1038/nature16068, 1512.04341ADSGoogle Scholar
  106. Siverd RJ, Pepper J, Stanek K et al (2009) KELT: a wide-field survey of bright stars for transiting planets. In: Pont F, Sasselov D, Holman MJ (eds) Transiting planets. IAU symposium, vol 253, pp 350–353. https://doi.org/10.1017/S1743921308026628Google Scholar
  107. Slipher VM (1914) On the spectrum of the eclipsed moon. Astron Nachr 199:103ADSGoogle Scholar
  108. Snellen IAG (2004) A new method for probing the atmospheres of transiting exoplanets. MNRAS 353:L1–L6. https://doi.org/10.1111/j.1365-2966.2004.08169.x, astro-ph/0403101ADSGoogle Scholar
  109. Snellen I, Stuik R, Otten G et al (2013) MASCARA: the multi-site all-sky CAmeRA. In: European physical journal web of conferences, vol 47, p 03008.  https://doi.org/10.1051/epjconf/20134703008Google Scholar
  110. Stephens GL, Campbell GG, Vonder Haar TH (1981) Earth radiation budgets. J Geophys Res 86:9739–9760. https://doi.org/10.1029/JC086iC10p09739ADSGoogle Scholar
  111. Sterzik MF, Bagnulo S, Palle E (2012) Biosignatures as revealed by spectropolarimetry of Earthshine. Nature 483:64–66.  https://doi.org/10.1038/nature10778ADSGoogle Scholar
  112. Stiller GP (ed) (2000) The Karlsruhe optimized and precise radiative transfer algorithm (KOPRA), Wissenschaftliche Berichte, vol FZKA 6487. Forschungszentrum KarlsruheGoogle Scholar
  113. Tinetti G, Meadows VS, Crisp D et al (2006a) Detectability of planetary characteristics in disk-averaged spectra. I: the Earth model. Astrobiology 6:34–47.  https://doi.org/10.1089/ast.2006.6.34ADSGoogle Scholar
  114. Tinetti G, Rashby S, Yung YL (2006b) Detectability of red-edge-shifted vegetation on terrestrial planets orbiting m stars. Astrophys J Lett 644(2):L129. http://stacks.iop.org/1538-4357/644/i=2/a=L129ADSGoogle Scholar
  115. Tinetti G, Deroo P, Swain MR et al (2010) Probing the terminator region atmosphere of the hot-Jupiter XO-1b with transmission spectroscopy. ApJ 712:L139–L142. https://doi.org/10.1088/2041-8205/712/2/L139, 1002.2434ADSGoogle Scholar
  116. Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature 435:459–461.  https://doi.org/10.1038/nature03539ADSGoogle Scholar
  117. Tuomi M, Anglada-Escudé G (2013) Up to four planets around the M dwarf GJ 163. Sensitivity of Bayesian planet detection criteria to prior choice. A&A 556:A111. https://doi.org/10.1051/0004-6361/201321174, 1306.1717ADSGoogle Scholar
  118. Tuomi M, Jones HRA, Barnes JR, Anglada-Escudé G, Jenkins JS (2014) Bayesian search for low-mass planets around nearby M dwarfs – estimates for occurrence rate based on global detectability statistics. MNRAS 441:1545–1569.  https://doi.org/10.1093/mnras/stu358, 1403.0430ADSGoogle Scholar
  119. Vázquez M, Pallé E, Rodríguez PM (2010) The Earth as a distant planet. Springer, New York. https://doi.org/10.1007/978-1-4419-1684-6Google Scholar
  120. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) Depletion and excitation of the asteroid belt by migrating planets. In: Workshop on formation of the first solids in the solar system, LPI contributions, vol 1639, p 9151ADSGoogle Scholar
  121. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2012) Populating the asteroid belt from two parent source regions due to the migration of giant planets: the grand tack. Meteorit Planet Sci 47:1941–1947. https://doi.org/10.1111/j.1945-5100.2012.01418.xADSGoogle Scholar
  122. Webster DL (1927) Meteorological, geological, and biological conditions on Venus. Nature 120:879–880. https://doi.org/10.1038/120879a0ADSGoogle Scholar
  123. Wilson EH, Atreya SK (2009) Titan’s carbon budget and the case of the missing ethane. J Phys Chem A 113:11221–11226. https://doi.org/10.1021/jp905535aGoogle Scholar
  124. Winn JN, Fabrycky DC (2015) The occurrence and architecture of exoplanetary systems. ARA&A 53:409–447.  https://doi.org/10.1146/annurev-astro-082214-122246, 1410.4199ADSGoogle Scholar
  125. Wolstencroft RD, Raven JA (2002) Photosynthesis: likelihood of occurrence and possibility of detection on Earth-like planets. Icarus 157:535–548.  https://doi.org/10.1006/icar.2002.6854ADSGoogle Scholar
  126. Woolf NJ, Smith PS, Traub WA, Jucks KW (2002) The spectrum of earthshine: a pale blue dot observed from the ground. ApJ 574:430–433. https://doi.org/10.1086/340929, astro-ph/0203465ADSGoogle Scholar
  127. Wright JT (2010) Exoplanet orbit database. www.exoplanets.org
  128. Wyatt MC (2008) Evolution of debris disks. ARA&A 46:339–383.  https://doi.org/10.1146/annurev.astro.45.051806.110525ADSGoogle Scholar
  129. Yan F, Fosbury R, Petr-Gotzens M, Pallé E, Zhao G (2015a) HARPS observes the Earth transiting the sun – a method to study exoplanet atmospheres using precision spectroscopy on large ground-based telescopes. The Messenger 161:17–19ADSGoogle Scholar
  130. Yan F, Fosbury RAE, Petr-Gotzens MG, Pallé E, Zhao G (2015b) Using the Rossiter-McLaughlin effect to observe the transmission spectrum of Earth’s atmosphere. ApJ 806:L23. https://doi.org/10.1088/2041-8205/806/2/L23, 1506.04456ADSGoogle Scholar
  131. Yoshikawa I, Ono J, Yoshioka K et al (2008) Observation of Mercury’s sodium exosphere during the transit on November 9, 2006. Planet Space Sci 56:1676–1680. https://doi.org/10.1016/j.pss.2008.07.026ADSGoogle Scholar
  132. Zeng L, Sasselov D (2014) The effect of temperature evolution on the interior structure of H2O-rich planets. ApJ 784:96. https://doi.org/10.1088/0004-637X/784/2/96, 1402.7299ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Astrofísica de CanariasLa LagunaSpain

Personalised recommendations