Skip to main content

The Diverse Population of Small Bodies of the Solar System

  • Reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Small bodies are rocky and/or icy objects, usually ranging in size from a few meters to a few hundreds of kilometers. They comprise near-Earth and main belt asteroids, Jupiter Trojans, trans-Neptunian objects, Centaurs, comets, and a recently discovered category called the transitional objects. Their physical nature, distribution, formation, and evolution are fundamental to understand how the solar system formed and evolved and, ultimately, how planetary systems are formed in other stars. The number of discoveries regarding exoplanets and debris disks is continuously increasing, and therefore it is crucial to first understand our own solar system’s provenance and evolution in order to better interpret what is going on in newly discovered planetary systems. In this chapter we review the main physical and compositional properties of the different populations of small bodies of the solar system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Absil O, Defrère D, Coudé du Foresto V et al (2013) A near-infrared interferometric survey of debris-disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR. A&A 555:A104

    Article  Google Scholar 

  • Barucci MA, Alvarez-Candal A, Merlin F et al (2011) New insights on ices in centaur and transneptunian populations. Icarus 214:297–307

    Article  ADS  Google Scholar 

  • Batygin K, Brown ME (2016) Evidence for a distant giant planet in the solar system. AJ 151:22

    Article  ADS  Google Scholar 

  • Borovička J, Shrbený L, Kalenda P et al (2016) A catalog of video records of the 2013 Chelyabinsk superbolide. A&A 585:A90

    Article  ADS  Google Scholar 

  • Bottke WF, Morbidelli A, Jedicke R et al (2002) Debiased orbital and absolute magnitude distribution of the near-earth objects. Icarus 156:399–433

    Article  ADS  Google Scholar 

  • Brown ME (2013) The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. ApJ 778:L34

    Article  ADS  Google Scholar 

  • Brown ME, Trujillo C, Rabinowitz D (2004) Discovery of a candidate inner Oort Cloud planetoid. ApJ 617:645–649

    Article  ADS  Google Scholar 

  • Brown ME, Barkume KM, Ragozzine D, Schaller EL (2007) A collisional family of icy objects in the Kuiper belt. Nature 446:294–296

    Article  ADS  Google Scholar 

  • Cruikshank DP, Imanaka H, Dalle Ore CM (2005) Tholins as coloring agents on outer Solar System bodies. Adv Space Res 36:178–183

    Article  ADS  Google Scholar 

  • Delsanti A, Jewitt D (2006) The solar system beyond the planets. In: Blondel P, Mason JW (eds) Solar system update. Springer. https://doi.org/10.1007/3-540-37683-6_11

    Google Scholar 

  • DeMeo FE, Carry B (2013) The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226:723–741

    Article  ADS  Google Scholar 

  • DeMeo FE, Carry B (2014) Solar system evolution from compositional mapping of the asteroid belt. Nature 505:629–634

    Article  ADS  Google Scholar 

  • Edgeworth KE (1949) The origin and evolution of the solar system. MNRAS 109:600–609

    Article  ADS  Google Scholar 

  • Ertel S, Absil O, Defrère D et al (2014) A near-infrared interferometric survey of debris-disk stars. IV. An unbiased sample of 92 southern stars observed in H band with VLTI/PIONIER. A&A 570:A128

    Article  Google Scholar 

  • Ferlet R, Vidal-Madjar A, Hobbs LM (1987) The beta pictoris circumstellar disk. V – time variations of the CA II-K line. A&A 185:267–270

    Google Scholar 

  • Fernandez JA (1980) On the existence of a comet belt beyond Neptune. MNRAS 192:481–491

    Article  ADS  Google Scholar 

  • Gil-Hutton R (2002) Color diversity among Kuiper belt objects: the collisional resurfacing model revisited. Planet Space Sci 50:57–62

    Article  ADS  Google Scholar 

  • Gil-Hutton R, Licandro J, Pinilla-Alonso N, Brunetto R (2009) The trans-Neptunian object size distribution at small sizes. A&A 500:909–916

    Article  ADS  Google Scholar 

  • Greaves JS, Sibthorpe B, Acke B et al (2014) Extreme conditions in a close analog to the young solar system: Herschel observations of epsilon Eridani. ApJ 791:L11

    Article  ADS  Google Scholar 

  • Green DWE (2006) (134340) Pluto, (136199) Eris, and (136199) Eris I (Dysnomia). IAU Circ 8747

    Google Scholar 

  • Grundy WM, Cruikshank DP, Gladstone GR et al (2016) The formation of Charon’s red poles from seasonally cold-trapped volatiles. Nature 539:65–68

    Article  ADS  Google Scholar 

  • Guilbert-Lepoutre A, Lasue J, Federico C et al (2011) New 3D thermal evolution model for icy bodies application to trans-Neptunian objects. A&A 529:A71

    Article  ADS  Google Scholar 

  • Hsieh HH, Jewitt D (2006) A population of comets in the main asteroid belt. Science 312:561–563

    Article  ADS  Google Scholar 

  • Jewitt D, Luu J (1993) Discovery of the candidate Kuiper belt object 1992 QB1. Nature 362:730–732

    Article  ADS  Google Scholar 

  • Keane JT, Matsuyama I, Kamata S, Steckloff JK (2016) Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature 540:90–93

    Article  ADS  Google Scholar 

  • Kennedy GM, Wyatt MC (2014) Do two-temperature debris discs have multiple belts? MNRAS 444:3164–3182

    Article  ADS  Google Scholar 

  • Krasinsky GA, Pitjeva EV, Vasilyev MV, Yagudina EI (2002) Hidden mass in the asteroid belt. Icarus 158:98–105

    Article  ADS  Google Scholar 

  • Kresak L (1979) The accuracy of reciprocal semimajor axes of cometary orbits. Bull Astron Inst Czechoslovakia 30:291–297

    ADS  Google Scholar 

  • Kuchynka P, Folkner WM (2013) A new approach to determining asteroid masses from planetary range measurements. Icarus 222:243–253

    Article  ADS  Google Scholar 

  • Kuiper GP (1951) Astrophysics: a topical symposium. McGraw-Hill, New York

    Google Scholar 

  • Lellouch E, Santos-Sanz P, Lacerda P et al (2013) “TNOs are Cool”: a survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations. A&A 557:A60

    Article  ADS  Google Scholar 

  • de León J, de la Fuente Marcos C, de la Fuente Marcos R (2017) Visible spectra of (474640) 2004 vn112–2013 rf98 with osiris at the 10.4 m GTC: evidence for binary dissociation near aphelion among the extreme trans-neptunian objects. Mon Not R Astron Soc Lett 467(1):L66

    Google Scholar 

  • Levison HF, Morbidelli A, Van Laerhoven C, Gomes R, Tsiganis K (2008) Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196:258–273

    Article  ADS  Google Scholar 

  • Licandro J, di Fabrizio L, Pinilla-Alonso N, de León J, Oliva E (2006) Trans-neptunian object (55636) 2002 TX300, a fresh icy surface in the outer solar system. A&A 457:329–333

    Article  ADS  Google Scholar 

  • Licandro J, Alí-Lagoa V, Tancredi G, Fernández Y (2016) Size and albedo distributions of asteroids in cometary orbits using WISE data. A&A 585:A9

    Article  ADS  Google Scholar 

  • McKinnon WB, Prialnik D, Stern SA, Coradini A (2008) Structure and evolution of Kuiper belt objects and dwarf planets. In: Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A, Dotson R (eds) The solar system beyond Neptune. University of Arizona Press, Tucson, pp 213–241

    Google Scholar 

  • Michel P, DeMeo FE, Bottke WF (2015) Asteroids: Recent Advances and New Perspectives. In: Michel P, DeMeo FE, Bottke WF (eds) Asteroids IV. University of Arizona Press, pp 3–10. https://doi.org/10.2458/azu_uapress_9780816532131-ch001

    Google Scholar 

  • Millan-Gabet R, Serabyn E, Mennesson B et al (2011) Exozodiacal dust levels for nearby main-sequence stars: a survey with the Keck interferometer nuller. ApJ 734:67

    Article  ADS  Google Scholar 

  • Moore JM, McKinnon WB, Spencer JR et al (2016) The geology of Pluto and Charon through the eyes of New Horizons. Science 351:1284–1293

    Article  ADS  Google Scholar 

  • Morbidelli A, Levison HF (2004) Scenarios for the origin of the orbits of the Trans-Neptunian objects 2000 CR105 and 2003 VB12 (Sedna). AJ 128:2564–2576

    Article  ADS  Google Scholar 

  • Moreno F, Licandro J, Ortiz JL et al (2011) (596) scheila in outburst: a probable collision event in the main asteroid belt. ApJ 738:130

    Article  ADS  Google Scholar 

  • Moreno F, Licandro J, Álvarez-Iglesias C, Cabrera-Lavers A, Pozuelos F (2014) Intermittent dust mass loss from activated asteroid P/2013 P5 (PANSTARRS). ApJ 781:118

    Article  ADS  Google Scholar 

  • Nesvorný D, Brož M, Carruba V (2015) Identification and dynamical properties of asteroid families. In: Michel P, DeMeo FE, Bottke WF (eds) Asteroids IV, pp 297–321. https://doi.org/10.2458/azu_uapress_9780816532131-ch016

    Google Scholar 

  • Nimmo F, Hamilton DP, McKinnon WB et al (2016) Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540:94–96

    Article  ADS  Google Scholar 

  • Norwood J, Hammel H, Milam S et al (2016) Solar system observations with the James webb space telescope. PASP 128(2):025,004

    Article  Google Scholar 

  • Oort JH (1950) The structure of the cloud of comets surrounding the solar system and a hypothesis concerning its origin. Bull Astron Inst Netherlands 11:91–110

    ADS  Google Scholar 

  • Ortiz JL, Thirouin A, Campo Bagatin A et al (2012) Rotational fission of Trans-Neptunian objects: the case of Haumea. MNRAS 419:2315–2324

    Article  ADS  Google Scholar 

  • Parker J (2017) Distant ekos: the Kuiper belt electronic newsletter. www.boulder.swri.edu/ekonews/issues/past/n107/html/index.html

  • Parviainen H, Deeg HJ, Belmonte JA (2013) Secondary eclipses in the CoRoT light curves. A homogeneous search based on Bayesian model selection. A&A 550:A67

    Article  ADS  Google Scholar 

  • Petit JM, Kavelaars JJ, Gladman B, Loredo T (2008) Size distribution of multikilometer transneptunian objects. In: Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A, Dotson R (eds) The Solar System beyond Neptune, University of Arizona Press, Tucson pp 71–87

    Google Scholar 

  • Pinilla-Alonso N (2016) Icy dwarf planets: colored popsicles in the outer Solar System. IAU Focus Meet 29(27):241–246

    ADS  Google Scholar 

  • Pinilla-Alonso N, Licandro J, Gil-Hutton R, Brunetto R (2007) The water ice rich surface of (145453) 2005 RR43: a case for a carbon-depleted population of TNOs? A&A 468:L25–L28

    Article  ADS  Google Scholar 

  • Pinilla-Alonso N, Brunetto R, Licandro J et al (2009) The surface of (136108) Haumea (2003 EL{61}), the largest carbon-depleted object in the Trans-Neptunian belt. A&A 496:547–556

    Article  ADS  Google Scholar 

  • Pozuelos FJ, Cabrera-Lavers A, Licandro J, Moreno F (2015) On the dust environment of main-belt comet 313P/Gibbs. ApJ 806:102

    Article  ADS  Google Scholar 

  • Ricci L, Carpenter JM, Fu B et al (2015) ALMA observations of the debris disk around the young solar analog HD 107146. ApJ 798:124

    Article  ADS  Google Scholar 

  • Schaller EL, Brown ME (2007) Volatile loss and retention on Kuiper belt objects. ApJ 659:L61–L64

    Article  ADS  Google Scholar 

  • Scheinberg A, Fu RR, Elkins-Tanton LT, Weiss BP (2015) Asteroid differentiation: melting and large-scale structure. In: Michel P, DeMeo FE, Bottke WF (eds) Asteroids IV, pp 533–552. https://doi.org/10.2458/azu_uapress_9780816532131-ch028

    Google Scholar 

  • Stansberry J, Grundy W, Brown M et al. (2008) Physical properties of Kuiper belt and centaur objects: constraints from the Spitzer space telescope. In: Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A, Dotson R (eds) The Solar System beyond Neptune. University of Arizona Press, Tucson, pp 161–179

    Google Scholar 

  • Stern SA, Bagenal F, Ennico K et al (2015) The Pluto system: initial results from its exploration by New Horizons. Science 350:aad1815

    Google Scholar 

  • Stern SA, Binzel RP, Earle AM et al (2017) Past epochs of significantly higher pressure atmospheres on Pluto. Icarus 287:47–53

    Article  ADS  Google Scholar 

  • Tancredi G (2014) A criterion to classify asteroids and comets based on the orbital parameters. Icarus 234:66–80

    Article  ADS  Google Scholar 

  • Trujillo CA, Sheppard SS (2014) A Sedna-like body with a perihelion of 80 astronomical units. Nature 507:471–474

    Article  ADS  Google Scholar 

  • Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature 435:459–461

    Article  ADS  Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    Article  ADS  Google Scholar 

  • Wetherill GW (1992) An alternative model for the formation of the asteroids. Icarus 100:307–325

    Article  ADS  Google Scholar 

  • Whipple FL (1950) A comet model. I. The acceleration of Comet Encke. ApJ 111:375–394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia de León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de León, J., Licandro, J., Pinilla-Alonso, N. (2018). The Diverse Population of Small Bodies of the Solar System. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-55333-7_55

Download citation

Publish with us

Policies and ethics