The Diverse Population of Small Bodies of the Solar System

  • Julia de LeónEmail author
  • Javier Licandro
  • Noemí Pinilla-Alonso
Reference work entry


Small bodies are rocky and/or icy objects, usually ranging in size from a few meters to a few hundreds of kilometers. They comprise near-Earth and main belt asteroids, Jupiter Trojans, trans-Neptunian objects, Centaurs, comets, and a recently discovered category called the transitional objects. Their physical nature, distribution, formation, and evolution are fundamental to understand how the solar system formed and evolved and, ultimately, how planetary systems are formed in other stars. The number of discoveries regarding exoplanets and debris disks is continuously increasing, and therefore it is crucial to first understand our own solar system’s provenance and evolution in order to better interpret what is going on in newly discovered planetary systems. In this chapter we review the main physical and compositional properties of the different populations of small bodies of the solar system.


  1. Absil O, Defrère D, Coudé du Foresto V et al (2013) A near-infrared interferometric survey of debris-disc stars. III. First statistics based on 42 stars observed with CHARA/FLUOR. A&A 555:A104CrossRefGoogle Scholar
  2. Barucci MA, Alvarez-Candal A, Merlin F et al (2011) New insights on ices in centaur and transneptunian populations. Icarus 214:297–307ADSCrossRefGoogle Scholar
  3. Batygin K, Brown ME (2016) Evidence for a distant giant planet in the solar system. AJ 151:22ADSCrossRefGoogle Scholar
  4. Borovička J, Shrbený L, Kalenda P et al (2016) A catalog of video records of the 2013 Chelyabinsk superbolide. A&A 585:A90ADSCrossRefGoogle Scholar
  5. Bottke WF, Morbidelli A, Jedicke R et al (2002) Debiased orbital and absolute magnitude distribution of the near-earth objects. Icarus 156:399–433ADSCrossRefGoogle Scholar
  6. Brown ME (2013) The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. ApJ 778:L34ADSCrossRefGoogle Scholar
  7. Brown ME, Trujillo C, Rabinowitz D (2004) Discovery of a candidate inner Oort Cloud planetoid. ApJ 617:645–649ADSCrossRefGoogle Scholar
  8. Brown ME, Barkume KM, Ragozzine D, Schaller EL (2007) A collisional family of icy objects in the Kuiper belt. Nature 446:294–296ADSCrossRefGoogle Scholar
  9. Cruikshank DP, Imanaka H, Dalle Ore CM (2005) Tholins as coloring agents on outer Solar System bodies. Adv Space Res 36:178–183ADSCrossRefGoogle Scholar
  10. Delsanti A, Jewitt D (2006) The solar system beyond the planets. In: Blondel P, Mason JW (eds) Solar system update. Springer. Scholar
  11. DeMeo FE, Carry B (2013) The taxonomic distribution of asteroids from multi-filter all-sky photometric surveys. Icarus 226:723–741ADSCrossRefGoogle Scholar
  12. DeMeo FE, Carry B (2014) Solar system evolution from compositional mapping of the asteroid belt. Nature 505:629–634ADSCrossRefGoogle Scholar
  13. Edgeworth KE (1949) The origin and evolution of the solar system. MNRAS 109:600–609ADSCrossRefGoogle Scholar
  14. Ertel S, Absil O, Defrère D et al (2014) A near-infrared interferometric survey of debris-disk stars. IV. An unbiased sample of 92 southern stars observed in H band with VLTI/PIONIER. A&A 570:A128CrossRefGoogle Scholar
  15. Ferlet R, Vidal-Madjar A, Hobbs LM (1987) The beta pictoris circumstellar disk. V – time variations of the CA II-K line. A&A 185:267–270Google Scholar
  16. Fernandez JA (1980) On the existence of a comet belt beyond Neptune. MNRAS 192:481–491ADSCrossRefGoogle Scholar
  17. Gil-Hutton R (2002) Color diversity among Kuiper belt objects: the collisional resurfacing model revisited. Planet Space Sci 50:57–62ADSCrossRefGoogle Scholar
  18. Gil-Hutton R, Licandro J, Pinilla-Alonso N, Brunetto R (2009) The trans-Neptunian object size distribution at small sizes. A&A 500:909–916ADSCrossRefGoogle Scholar
  19. Greaves JS, Sibthorpe B, Acke B et al (2014) Extreme conditions in a close analog to the young solar system: Herschel observations of epsilon Eridani. ApJ 791:L11ADSCrossRefGoogle Scholar
  20. Green DWE (2006) (134340) Pluto, (136199) Eris, and (136199) Eris I (Dysnomia). IAU Circ 8747Google Scholar
  21. Grundy WM, Cruikshank DP, Gladstone GR et al (2016) The formation of Charon’s red poles from seasonally cold-trapped volatiles. Nature 539:65–68ADSCrossRefGoogle Scholar
  22. Guilbert-Lepoutre A, Lasue J, Federico C et al (2011) New 3D thermal evolution model for icy bodies application to trans-Neptunian objects. A&A 529:A71ADSCrossRefGoogle Scholar
  23. Hsieh HH, Jewitt D (2006) A population of comets in the main asteroid belt. Science 312:561–563ADSCrossRefGoogle Scholar
  24. Jewitt D, Luu J (1993) Discovery of the candidate Kuiper belt object 1992 QB1. Nature 362:730–732ADSCrossRefGoogle Scholar
  25. Keane JT, Matsuyama I, Kamata S, Steckloff JK (2016) Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature 540:90–93ADSCrossRefGoogle Scholar
  26. Kennedy GM, Wyatt MC (2014) Do two-temperature debris discs have multiple belts? MNRAS 444:3164–3182ADSCrossRefGoogle Scholar
  27. Krasinsky GA, Pitjeva EV, Vasilyev MV, Yagudina EI (2002) Hidden mass in the asteroid belt. Icarus 158:98–105ADSCrossRefGoogle Scholar
  28. Kresak L (1979) The accuracy of reciprocal semimajor axes of cometary orbits. Bull Astron Inst Czechoslovakia 30:291–297ADSGoogle Scholar
  29. Kuchynka P, Folkner WM (2013) A new approach to determining asteroid masses from planetary range measurements. Icarus 222:243–253ADSCrossRefGoogle Scholar
  30. Kuiper GP (1951) Astrophysics: a topical symposium. McGraw-Hill, New YorkGoogle Scholar
  31. Lellouch E, Santos-Sanz P, Lacerda P et al (2013) “TNOs are Cool”: a survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations. A&A 557:A60ADSCrossRefGoogle Scholar
  32. de León J, de la Fuente Marcos C, de la Fuente Marcos R (2017) Visible spectra of (474640) 2004 vn112–2013 rf98 with osiris at the 10.4 m GTC: evidence for binary dissociation near aphelion among the extreme trans-neptunian objects. Mon Not R Astron Soc Lett 467(1):L66Google Scholar
  33. Levison HF, Morbidelli A, Van Laerhoven C, Gomes R, Tsiganis K (2008) Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196:258–273ADSCrossRefGoogle Scholar
  34. Licandro J, di Fabrizio L, Pinilla-Alonso N, de León J, Oliva E (2006) Trans-neptunian object (55636) 2002 TX300, a fresh icy surface in the outer solar system. A&A 457:329–333ADSCrossRefGoogle Scholar
  35. Licandro J, Alí-Lagoa V, Tancredi G, Fernández Y (2016) Size and albedo distributions of asteroids in cometary orbits using WISE data. A&A 585:A9ADSCrossRefGoogle Scholar
  36. McKinnon WB, Prialnik D, Stern SA, Coradini A (2008) Structure and evolution of Kuiper belt objects and dwarf planets. In: Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A, Dotson R (eds) The solar system beyond Neptune. University of Arizona Press, Tucson, pp 213–241Google Scholar
  37. Michel P, DeMeo FE, Bottke WF (2015) Asteroids: Recent Advances and New Perspectives. In: Michel P, DeMeo FE, Bottke WF (eds) Asteroids IV. University of Arizona Press, pp 3–10. Scholar
  38. Millan-Gabet R, Serabyn E, Mennesson B et al (2011) Exozodiacal dust levels for nearby main-sequence stars: a survey with the Keck interferometer nuller. ApJ 734:67ADSCrossRefGoogle Scholar
  39. Moore JM, McKinnon WB, Spencer JR et al (2016) The geology of Pluto and Charon through the eyes of New Horizons. Science 351:1284–1293ADSCrossRefGoogle Scholar
  40. Morbidelli A, Levison HF (2004) Scenarios for the origin of the orbits of the Trans-Neptunian objects 2000 CR105 and 2003 VB12 (Sedna). AJ 128:2564–2576ADSCrossRefGoogle Scholar
  41. Moreno F, Licandro J, Ortiz JL et al (2011) (596) scheila in outburst: a probable collision event in the main asteroid belt. ApJ 738:130ADSCrossRefGoogle Scholar
  42. Moreno F, Licandro J, Álvarez-Iglesias C, Cabrera-Lavers A, Pozuelos F (2014) Intermittent dust mass loss from activated asteroid P/2013 P5 (PANSTARRS). ApJ 781:118ADSCrossRefGoogle Scholar
  43. Nesvorný D, Brož M, Carruba V (2015) Identification and dynamical properties of asteroid families. In: Michel P, DeMeo FE, Bottke WF (eds) Asteroids IV, pp 297–321. Scholar
  44. Nimmo F, Hamilton DP, McKinnon WB et al (2016) Reorientation of Sputnik Planitia implies a subsurface ocean on Pluto. Nature 540:94–96ADSCrossRefGoogle Scholar
  45. Norwood J, Hammel H, Milam S et al (2016) Solar system observations with the James webb space telescope. PASP 128(2):025,004CrossRefGoogle Scholar
  46. Oort JH (1950) The structure of the cloud of comets surrounding the solar system and a hypothesis concerning its origin. Bull Astron Inst Netherlands 11:91–110ADSGoogle Scholar
  47. Ortiz JL, Thirouin A, Campo Bagatin A et al (2012) Rotational fission of Trans-Neptunian objects: the case of Haumea. MNRAS 419:2315–2324ADSCrossRefGoogle Scholar
  48. Parker J (2017) Distant ekos: the Kuiper belt electronic newsletter.
  49. Parviainen H, Deeg HJ, Belmonte JA (2013) Secondary eclipses in the CoRoT light curves. A homogeneous search based on Bayesian model selection. A&A 550:A67ADSCrossRefGoogle Scholar
  50. Petit JM, Kavelaars JJ, Gladman B, Loredo T (2008) Size distribution of multikilometer transneptunian objects. In: Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A, Dotson R (eds) The Solar System beyond Neptune, University of Arizona Press, Tucson pp 71–87Google Scholar
  51. Pinilla-Alonso N (2016) Icy dwarf planets: colored popsicles in the outer Solar System. IAU Focus Meet 29(27):241–246ADSGoogle Scholar
  52. Pinilla-Alonso N, Licandro J, Gil-Hutton R, Brunetto R (2007) The water ice rich surface of (145453) 2005 RR43: a case for a carbon-depleted population of TNOs? A&A 468:L25–L28ADSCrossRefGoogle Scholar
  53. Pinilla-Alonso N, Brunetto R, Licandro J et al (2009) The surface of (136108) Haumea (2003 EL{61}), the largest carbon-depleted object in the Trans-Neptunian belt. A&A 496:547–556ADSCrossRefGoogle Scholar
  54. Pozuelos FJ, Cabrera-Lavers A, Licandro J, Moreno F (2015) On the dust environment of main-belt comet 313P/Gibbs. ApJ 806:102ADSCrossRefGoogle Scholar
  55. Ricci L, Carpenter JM, Fu B et al (2015) ALMA observations of the debris disk around the young solar analog HD 107146. ApJ 798:124ADSCrossRefGoogle Scholar
  56. Schaller EL, Brown ME (2007) Volatile loss and retention on Kuiper belt objects. ApJ 659:L61–L64ADSCrossRefGoogle Scholar
  57. Scheinberg A, Fu RR, Elkins-Tanton LT, Weiss BP (2015) Asteroid differentiation: melting and large-scale structure. In: Michel P, DeMeo FE, Bottke WF (eds) Asteroids IV, pp 533–552. Scholar
  58. Stansberry J, Grundy W, Brown M et al. (2008) Physical properties of Kuiper belt and centaur objects: constraints from the Spitzer space telescope. In: Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A, Dotson R (eds) The Solar System beyond Neptune. University of Arizona Press, Tucson, pp 161–179Google Scholar
  59. Stern SA, Bagenal F, Ennico K et al (2015) The Pluto system: initial results from its exploration by New Horizons. Science 350:aad1815Google Scholar
  60. Stern SA, Binzel RP, Earle AM et al (2017) Past epochs of significantly higher pressure atmospheres on Pluto. Icarus 287:47–53ADSCrossRefGoogle Scholar
  61. Tancredi G (2014) A criterion to classify asteroids and comets based on the orbital parameters. Icarus 234:66–80ADSCrossRefGoogle Scholar
  62. Trujillo CA, Sheppard SS (2014) A Sedna-like body with a perihelion of 80 astronomical units. Nature 507:471–474ADSCrossRefGoogle Scholar
  63. Tsiganis K, Gomes R, Morbidelli A, Levison HF (2005) Origin of the orbital architecture of the giant planets of the solar system. Nature 435:459–461ADSCrossRefGoogle Scholar
  64. Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209ADSCrossRefGoogle Scholar
  65. Wetherill GW (1992) An alternative model for the formation of the asteroids. Icarus 100:307–325ADSCrossRefGoogle Scholar
  66. Whipple FL (1950) A comet model. I. The acceleration of Comet Encke. ApJ 111:375–394Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Julia de León
    • 1
    Email author
  • Javier Licandro
    • 1
  • Noemí Pinilla-Alonso
    • 2
  1. 1.Instituto de Astrofísica de CanariasLa Laguna, TenerifeSpain
  2. 2.Florida Space InstituteUCFOrlandoUSA

Personalised recommendations