Advertisement

Upper Atmospheres and Ionospheres of Planets and Satellites

  • Antonio García MuñozEmail author
  • Tommi T. Koskinen
  • Panayotis Lavvas
Reference work entry

Abstract

The upper atmospheres of the planets and their satellites are more directly exposed to sunlight and solar-wind particles than the surface or the deeper atmospheric layers. At the altitudes where the associated energy is deposited, the atmospheres may become ionized and are referred to as ionospheres. The details of the photon and particle interactions with the upper atmosphere depend strongly on whether the object has an intrinsic magnetic field that may channel the precipitating particles into the atmosphere or drive the atmospheric gas out to space. Important implications of these interactions include atmospheric loss over diverse timescales, photochemistry, and the formation of aerosols, which affect the evolution, composition, and remote sensing of the planets (satellites). The upper atmosphere connects the planet (satellite) bulk composition to the near-planet (-satellite) environment. Understanding the relevant physics and chemistry provides insight to the past and future conditions of these objects, which is critical for understanding their evolution. This chapter introduces the basic concepts of upper atmospheres and ionospheres in our solar system and discusses aspects of their neutral and ion composition, wind dynamics, and energy budget. This knowledge is key to putting in context the observations of upper atmospheres and haze on exoplanets and to devise a theory that explains exoplanet demographics.

References

  1. Badman SV, Branduardi-Raymont G, Galand M et al (2015) Auroral processes at the giant planets: energy deposition, emission mechanisms, morphology and spectra. Space Sci Rev 187:99–179. https://doi.org/10.1007/s11214-014-0042-xADSCrossRefGoogle Scholar
  2. Bauer SJ (1973) Physics of planetary ionospheres. Springer, BerlinCrossRefGoogle Scholar
  3. Ben-Jaffel L, Prange R, Sandel BR et al (1995) New analysis of the Voyager UVS H Lyman-α emission of Saturn. Icarus 113:91–102. https://doi.org/10.1006/icar.1995.1007ADSCrossRefGoogle Scholar
  4. Bertaux JL, Leblanc F, Witasse O, Quemerais E, Lilensten J et al (2005) Discovery of an aurora on Mars. Nature 435:790–794. https://doi.org/10.1038/nature03603ADSCrossRefGoogle Scholar
  5. Bhardwaj A, Thampi SV, Das TP et al (2016) On the evening time exosphere of Mars: result from MENCA aboard Mars orbiter mission. GRL 43:1862–1867. https://doi.org/10.1002/2016GL067707ADSCrossRefGoogle Scholar
  6. Bougher SW, Cravens TE, Grebowsky J, Luhmann J (2015a) The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci Rev 195:423–456. https://doi.org/10.1007/s11214-014-0053-7ADSCrossRefGoogle Scholar
  7. Bougher SW, Jakosky B, Halekas J, Grebowsky J, Luhmann J (2015b) Early MAVEN deep dip campaign reveals thermosphere and ionosphere variability. Science 350:0459. https://doi.org/10.1126/science.aad0459CrossRefGoogle Scholar
  8. Catling DC, Zahnle KJ (2009) The planetary air lead. Sci Am 300:36–43. https://doi.org/10.1038/scientificamerican0509-36ADSCrossRefGoogle Scholar
  9. Choudhary RK, Ambili KM, Choudhury S, Dhanya MB, Bhardwaj A (2016) On the origin of the ionosphere at the moon using results from Chandrayaan-1 S band radio occultation experiment and a photochemical model. Geophys Res Lett 43:10025–10033. https://doi.org/10.1002/2016GL070612ADSCrossRefGoogle Scholar
  10. Clancy RT, Sandor BJ, García Muñoz A, Lefèvre F, Smith MD, Wolff MJ, Montmessin F, Murchie SL, Nair H (2013) First detection of Mars atmospheric hydroxyl: CRISM near-IR measurement versus LMD GCM simulation of OH Meinel band emission in the Mars polar winter atmosphere. Icarus 226:272–281. https://doi.org/10.1016/j.icarus.2013.05.035ADSCrossRefGoogle Scholar
  11. Clancy RT, Sandor BJ, Hoge J (2015) Doppler winds mapped around the lower thermospheric terminator of Venus: 2012 solar transit observations from the James Clerk Maxwell Telescope. Icarus 254:233–258. https://doi.org/10.1016/j.icarus.2015.03.031ADSCrossRefGoogle Scholar
  12. Coates AJ, Crary FJ, Lewis GR et al (2007) Discovery of heavy negative ions in Titan’s ionosphere. GRL 34:L22103. https://doi.org/10.1029/2007GRL030978ADSCrossRefGoogle Scholar
  13. Connerney JEP, Waite JH (1984) New model of Saturn’s ionosphere with an influx of water from the rings. Nature 312:136–138. https://doi.org/10.1038/312136a0ADSCrossRefGoogle Scholar
  14. Crary FJ, Magee BA, Mandt K et al (2009) Heavy ions, temperatures and winds in Titan’s ionosphere: combined Cassini CAPS and INMS observations. PSS 57:1847–1856. https://doi.org/10.1016/j.pss.2009.09.006CrossRefGoogle Scholar
  15. Cravens TE, Brace LH, Taylor HA Jr, Quenon SJ, Russell CT et al (1982) Disappearing ionospheres on the nightside of Venus. Icarus 51:271–282. https://doi.org/10.1016/0019-1035(82)90083-5ADSCrossRefGoogle Scholar
  16. Cui J, Yelle RV, Li T et al (2014) Density waves in Titan’s upper atmosphere. J Geophys R 119:490–518. https://doi.org/10.1002/2013JA019113ADSCrossRefGoogle Scholar
  17. Dennerl K (2008) X-rays from Venus observed with Chandra. Planet Space Sci 56:1414–1423. https://doi.org/10.1016/j.pss.2008.03.008ADSCrossRefGoogle Scholar
  18. Drossart P, Maillard J-P, Caldwell J et al (1989) Detection of H3+ on Jupiter. Nature 340:539–541. https://doi.org/10.1038/340539a0ADSCrossRefGoogle Scholar
  19. Drossart P, Fouchet Th, Crovisier J et al (1999) Fluorescence in the 3 micron bands of methane on Jupiter and Saturn from ISO/SWS observations. In: Cox P, Kessler MF (eds) The Universe as seen by ISO. ESA special publication, vol 427. pp 169–172Google Scholar
  20. Edgington SG, Spilker LJ (2016) Cassini’s grand finale. Nat Geosci 9:472–473ADSCrossRefGoogle Scholar
  21. Feuchtgruber H, Lellouch E, de Graauw T et al (1997) External supply of oxygen to the atmospheres of the giant planets. Nature 389:159–162. https://doi.org/10.1038/38236ADSCrossRefGoogle Scholar
  22. Fletcher LN, Orton GS, Teanby NA, Irwin PGJ, Bjoraker GL (2009) Methane and its isotopologues on Saturn from Cassini/CIRS observations. Icarus 199:351–367. https://doi.org/10.1016/j.icarus.2008.09.019ADSCrossRefGoogle Scholar
  23. Forget F, Montmessin F, Bertaux J-L, González-Galindo F, Lebonnois S et al (2009) Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. JGR:114, E01004. https://doi.org/10.1029/2008JE003086
  24. Fox JL (2009) Morphology of the dayside ionosphere of Mars: implications for ion outflows. JGR 114:E12005. https://doi.org/10.1029/2009JE003432ADSCrossRefGoogle Scholar
  25. Fox JL, Bougher SW (1991) Structure, luminosity and dynamics of the Venus thermosphere. Space Sci Rev 55:357–489. https://doi.org/10.1007/BF00177141ADSCrossRefGoogle Scholar
  26. Fox JL, Sung KY (2001) Solar activity variations of the Venus thermosphere/ionosphere. J Geophys Res 106:21305–21335. https://doi.org/10.1029/2001JA000069ADSCrossRefGoogle Scholar
  27. Friedson AJ, Wong A-S, Yung YL (2002) Models for polar haze formation in Jupiter’s stratosphere. Icarus 158:389–400. https://doi.org/10.1006/icar.2002.6885ADSCrossRefGoogle Scholar
  28. Fulchignoni M, Ferri F, Angrilli F et al (2005) In situ measurements of the physical characteristics of Titan’s environment. Nature 438:785–791. https://doi.org/10.1038/nature043114ADSCrossRefGoogle Scholar
  29. Galand M, Coates AJ, Cravens TE, Wahlund J-E (2014) Titan’s ionosphere. In: Titan. Interior, surface, atmosphere, and space environment. Cambridge Planetary Science. Cambridge University Press, Cambridge, UK ISBN 9780521199926Google Scholar
  30. García Muñoz A, Mills FP, Piccioni G, Drossart P (2009) The near-infrared nitric oxide nightglow in the upper atmosphere of Venus. Proc Natl Acad Sci 106:985–988. https://doi.org/10.1073/pnas.0808091106ADSCrossRefGoogle Scholar
  31. González-Galindo F, López-Valverde MA, Forget F, García-Comas M, Millour E, Montabone L (2015) Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. JGR Planet 120:2020–2035. https://doi.org/10.1002/2015JE004925ADSCrossRefGoogle Scholar
  32. Greathouse TK, Gladstone GR, Moses JI et al (2010) New horizons Alice ultraviolet observations of a stellar occultation by Jupiter’s atmosphere. Icarus 208:293–305. https://doi.org/10.1016/j.icarus.2010.02.002ADSCrossRefGoogle Scholar
  33. Grebowsky JM, Benna M, Planet JMC, Collinson GA, Mahaffy PR, Jakosky BM (2017) Unique, non-earthlike, meteoritic ion behavior in upper atmosphere of Mars. Geophys Res Lett. https://doi.org/10.1002/2017GL072635ADSCrossRefGoogle Scholar
  34. Grodent D (2015) A brief review of ultraviolet auroral emissions on giant planets. Space Sci Rev 187:23–50. https://doi.org/10.1007/s11214-014-0052-8ADSCrossRefGoogle Scholar
  35. Herbert F, Sandel BR (1999) Ultraviolet observations of Uranus and Neptune. Planet Space Sci 47:1119–1139. https://doi.org/10.1016/S0032-0633(98)00142-1ADSCrossRefGoogle Scholar
  36. Hinson DP, Flasar FM, Kliore AJ, Schinder PJ, Twicken JD, Herrera RG (1997) Jupiter’s ionosphere: results from the first Galileo radio occultation experiment. Geophys Res Lett 24:2107–2110. https://doi.org/10.1029/97GL01608ADSCrossRefGoogle Scholar
  37. Huestis DL, Slanger TG, Sharpee BD, Fox JL (2010) Chemical origins of the Mars ultraviolet dayglow. Faraday Discuss 147:307–322. https://doi.org/10.1039/C003456HADSCrossRefGoogle Scholar
  38. Hunten DM (1993) Atmospheric evolution of the terrestrial planets. Science 259:915–920. https://doi.org/10.1126/science.259.5097.915ADSCrossRefGoogle Scholar
  39. Jakosky BM, Grebowsky JM, Luhmann JG, Connerney J, Eparvier F et al (2015) MAVEN observations of the response of Mars to an interplanetary coronal mass ejection. Science 350:0210. https://doi.org/10.1126/science.aad0210CrossRefGoogle Scholar
  40. Jakosky BM, Slipski M, Benna M, Mahaffy P, Elrod M, Yelle R, Stone S, Alsaeed N (2017) Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science 355:1408–1410. https://doi.org/10.1126/science.aai7721ADSMathSciNetCrossRefGoogle Scholar
  41. Keating GM, Bertaux JL, Bougher SW, Dickinson RE, Cravens TE, Hedin AE (1985) Models of Venus neutral upper atmosphere – structure and composition. Adv Space Res 5:117–171. https://doi.org/10.1016/0273-1177(85)90200-5ADSCrossRefGoogle Scholar
  42. Kim YH, Fox JL (1994) The chemistry of hydrocarbon ions in the Jovian ionosphere. Icarus 112:310–325. https://doi.org/10.1006/icar.1994.1186ADSCrossRefGoogle Scholar
  43. Kim YH, Fox JL, Black JH, Moses JI (2014) Hydrocarbon ions in the lower ionosphere of Saturn. J Geophys Res 119:384–395. https://doi.org/10.1002/2013JA019022CrossRefGoogle Scholar
  44. Kliore AJ, Patel IR, Lindal GF et al (1980) Structure of the ionosphere and atmosphere of Saturn from Pioneer 11 Saturn radio occultation. J Geophys Res 85:5857–5870. https://doi.org/10.1029/JA085iA11p05857ADSCrossRefGoogle Scholar
  45. Kliore AJ, Nagy AF, Marouf EA et al (2009) Midlatitude and high-latitude electron density profiles in the ionosphere of Saturn obtained by Cassini radio occultation observations. J Geophys Res 114:A04315. https://doi.org/10.1029/2008JA013900ADSCrossRefGoogle Scholar
  46. Koskinen T, Yelle RV, Snowden D et al (2011) The mesosphere and thermosphere of Titan revealed by Cassini/UVIS stellar occultations. Icarus 216:507–534. https://doi.org/10.1016/j.icarus.2011.09.022ADSCrossRefGoogle Scholar
  47. Koskinen TT, Sandel BR, Yelle RV et al (2013) The density and temperature structure near the exobase of Saturn from Cassini UVIS solar occultations. Icarus 226:1318–1330. https://doi.org/10.1016/j.icarus.2013.07.037ADSCrossRefGoogle Scholar
  48. Koskinen TT, Sandel BR, Yelle RV et al (2015) Saturn’s variable thermosphere from Cassini/UVIS occultations. Icarus 260:174–189. https://doi.org/10.1016/j.icarus.2015.07.008ADSCrossRefGoogle Scholar
  49. Koskinen TT, Moses JI, West RA, Guerlet S, Jouchoux A (2016) The detection of benzene in Saturn’s upper atmosphere. Geophys Res Lett 43:7895–7901. https://doi.org/10.1002/2016GL070000ADSCrossRefGoogle Scholar
  50. Krasnopolsky VA (2002) Mars’ upper atmosphere and ionosphere at low, medium, and high solar activities: implications for evolution of water. J Geophys Res (Planets) 107:5128. https://doi.org/10.1029/2001JE001809ADSCrossRefGoogle Scholar
  51. Lammer H, Kasting JF, Chassefière E, Johnson RE, Kulikov YN, Tiang F (2008) Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci Rev 139(1–4):399–436. https://doi.org/10.1007/s11214-008-9413-5ADSCrossRefGoogle Scholar
  52. Lavvas P, Galand M, Yelle RV et al (2011a) Energy deposition and primary chemical products in Titan’s upper atmosphere. Icarus 213:233–251. https://doi.org/10.1016/j.icarus. 2011.03.001ADSCrossRefGoogle Scholar
  53. Lavvas P, Sander M, Kraft M et al (2011b) Surface chemistry and particle shape: processes for the evolution of aerosols in Titan’s atmosphere. Astrophys J 728:80. https://doi.org/10.1088/0004-637X/728/2/80. (11p)ADSCrossRefGoogle Scholar
  54. Lavvas P, Yelle RV, Koskinen T et al (2013) Aerosol growth in Titan’s ionosphere. PNAS 110:2729–2734. https://doi.org/10.1073/pnas.1217059110ADSCrossRefGoogle Scholar
  55. Lellouch E, Moreno R, Orton GS et al (2015) New constraints on the CH4 vertical profile in Uranus and Neptune from Herschel observations. A&A 579:A121. https://doi.org/10.1051/0004-6361/201526518ADSCrossRefGoogle Scholar
  56. Liang MC, Yung YL, Shemansky DE (2007) Photolytically generated aerosols in the mesosphere and thermosphere of Titan. Astrophys J 661:199–202. https://doi.org/10.1086/518785ADSCrossRefGoogle Scholar
  57. Lindal GF (1992) The atmosphere of Neptune: an analysis of radio occultation data acquired with Voyager 2. AJ 103:967–982. https://doi.org/10.1086/116119ADSCrossRefGoogle Scholar
  58. Lindal GF, Sweetnam DN, Eshleman VR (1985) The atmosphere of Saturn: an analysis of the Voyager radio occultation measurements. ApJ 90:1136–1146. https://doi.org/10.1086/113820ADSCrossRefGoogle Scholar
  59. Lindal GF, Lyons JR, Sweetnam DN, Eshleman VR, Hinson DP, Tyler GL (1987) The atmosphere of Uranus: results of radio occultation measurements with Voyager 2. J Geophys Res 92:14987–15001. https://doi.org/10.1029/JA092iA13p14987ADSCrossRefGoogle Scholar
  60. Liu W, Dalgarno A (1996) The ultraviolet spectra of the Jovian dayglow. ApJ 462:502–518. https://doi.org/10.1086/177168ADSCrossRefGoogle Scholar
  61. Mahieux A, Vandaele AC, Robert S, Wilquet V, Drummond R et al (2015) Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express. Planet Space Sci 113:347–358. https://doi.org/10.1016/j.pss.2014.12.020ADSCrossRefGoogle Scholar
  62. Majeed T, McConnell JC, Gladstone GR (1999) A model analysis of Galileo electron densities on Jupiter. Geophys Res Lett 26:2335–2338. https://doi.org/10.1029/1999GL900530ADSCrossRefGoogle Scholar
  63. Majeed T, Waite JH Jr, Bougher SW et al (2005) Process of equatorial thermal structure at Jupiter: an analysis of the Galileo temperature profile with a three-dimensional model. J Geophys Res 110:E12007. https://doi.org/10.1029/2004JE002351ADSCrossRefGoogle Scholar
  64. Mangold N, Baratoux D, Witasse O, Encrenaz T, Sotin C (2016) Mars: a small terrestrial planet. Astron Astrophys Rev 24:15. https://doi.org/10.1007/s00159-016-0099-5ADSCrossRefGoogle Scholar
  65. Matcheva KI, Strobel DF, Flasar FM (2001) Interaction of gravity waves with ionospheric plasma: implications for Jupiter’s ionosphere. Icarus 152:347–365. https://doi.org/10.1006/icar.2001.6631ADSCrossRefGoogle Scholar
  66. Meier RR (1991) Ultraviolet spectroscopy and remote sensing of the upper atmosphere. Space Sci Rev 58:1–185. https://doi.org/10.1007/BF01206000ADSCrossRefGoogle Scholar
  67. Mendillo M, Nagy A, Waite JH (eds) (2002) Atmospheres in the solar system. American Geophysical Union, Geophysical Monograph, Washington, DC, p 130Google Scholar
  68. Miller KL, Knudsen WC, Spenner K, Whitten RC, Novak V (1980) Solar zenith angle dependence of ionospheric ion and electron temperatures and density on Venus. J Geophys Res Space Phys 85:7759–7764. https://doi.org/10.1029/JA085iA13p07759ADSCrossRefGoogle Scholar
  69. Miller S, Stallard T, Smith C et al (2006) H3+: the driver of giant planet atmospheres. Phil Trans R Soc A 364:3121–3137. https://doi.org/10.1098/rsta.2006.1877ADSCrossRefGoogle Scholar
  70. Miller S, Stallard T, Melin H, Tennyson J (2010) H3+ cooling in planetary atmospheres. Faraday Discuss 147:283–291. https://doi.org/10.1039/c004152cADSCrossRefGoogle Scholar
  71. Moses JI, Bass SF (2000) The effects of external material on the chemistry and structure of Saturn’s ionosphere. J Geophys Res 105:7013–7052. https://doi.org/10.1029/1999JE001172ADSCrossRefGoogle Scholar
  72. Moses JI, Rages K, Pollack JB (1995) An analysis of Neptune’s stratospheric haze using high phase-angle Voyager images. Icarus 113:232–266. https://doi.org/10.1006/icar.1995.1022ADSCrossRefGoogle Scholar
  73. Mueller-Wodarg ICF, Strobel DF, Moses JI, Waie JH, Crovisier J, Yelle RV, Bougher SW, Roble RG (2008) Neutral atmospheres. Space Sci Rev 139:191–234. https://doi.org/10.1007/s11214-008-9404-6ADSCrossRefGoogle Scholar
  74. Müller-Wodarg ICF, Mendillo M, Yelle RV et al (2006) A global circulation model of Saturn’s thermosphere. Icarus 180:147–160. https://doi.org/10.1016/j.icarus.2005.09.002ADSCrossRefGoogle Scholar
  75. Müller-Wodarg ICF, Moore L, Galand M, Miller S, Mendillo M (2012) Magnetosphere-atmosphere coupling at Saturn: 1 – response of thermosphere and ionosphere to steady state polar forcing. Icarus 221:481–494. https://doi.org/10.1016/j.icarus.2012.08.034ADSCrossRefGoogle Scholar
  76. Müller-Wodarg I, Griffith CA, Lellouch E, Cravens TE (2014) Titan. Interior, surface, atmosphere, and space environment. Cambridge Planetary Science. Cambridge University Press, Cambridge, UK ISBN 9780521199926Google Scholar
  77. Müller-Wodarg ICF, Bruinsma S, Marty J-C, Svedhem H (2016) In situ observations of waves in Venus’s polar lower thermosphere with Venus Express aerobraking. Nat Phys 12:767–771. https://doi.org/10.1038/nphys3733CrossRefGoogle Scholar
  78. Nagy AF, Balogh A, Cravens TE, Mendillo M, Mueller-Wodarg I (eds) (2008) Comparative aeronomy. Springer, New YorkGoogle Scholar
  79. Niemann HB, Atreya SK, Demick JE et al (2010) Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J Geophys Res 115(E):12006. https://doi.org/10.1029/2010JE003659CrossRefGoogle Scholar
  80. O’Donoghue J, Stallard TS, Melin H et al (2013) The domination of Saturn’s low-latitude ionosphere by ring rain. Nature 496:193–195. https://doi.org/10.1038/nature12049ADSCrossRefGoogle Scholar
  81. Parkinson CD, Griffioen E, McConnell JC, Gladstone GR, Sandel BR (1998) He 584 Å dayglow at Saturn: a reassessment. Icarus 133:210–220. https://doi.org/10.1006/icar.1998.5926ADSCrossRefGoogle Scholar
  82. Pätzold A, Häusler B, Bird MK, Tellmann S, Mattei R, Asmar SW, Dehant V, Eidel W, Imamura T, Simpson RA, Tyler GL (2007) The structure of Venus’ middle atmosphere and ionosphere. Nature 450:657–660. https://doi.org/10.1038/nature06239ADSCrossRefGoogle Scholar
  83. Rees MH (1989) Physics and chemistry of the upper atmosphere. Cambridge University Press, LondonCrossRefGoogle Scholar
  84. Robinson TD, Maltagliati L, Marley M et al (2014) Titan solar occultation observations reveal transit spectra of a hazy world. PNAS 111:9042–9047. https://doi.org/10.1073/pnas.1403473111ADSCrossRefGoogle Scholar
  85. Sánchez-Lavega A, García Muñoz A, García-Melendo E, Pérez-Hoyos S, Gómez-Forrelad et al (2015) An extremely high-altitude plume seen at Mars’ morning terminator. Nature 518:525–528. https://doi.org/10.1038/nature14162ADSCrossRefGoogle Scholar
  86. Schneider NM, Deighan JI, Jain SK, Stiepen A, Stewart AIF et al (2015) Discovery of diffuse aurora on Mars. Science 350:0313. https://doi.org/10.1126/science.aad0313CrossRefGoogle Scholar
  87. Schubert GMP, Hickey MP, Walterscheid RL (2003) Heating of Jupiter’s thermosphere by the dissipation of upward propagating acoustic waves. Icarus 163:398–413. https://doi.org/10.1016/S0019-1035(03)00078-2ADSCrossRefGoogle Scholar
  88. Schunk RW, Nagy AF (2000) Ionospheres. Physics, plasma physics, and chemistry. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  89. Seiff A, Kirk DB, Knight TCD et al (1998) Thermal structure of Jupiter’s atmosphere in the North Equatorial Belt, near the edge of a 5 μm hot spot. J Geophys Res 103:22857–22890. https://doi.org/10.1029/98JE01766ADSCrossRefGoogle Scholar
  90. Slanger TG, Cosby PC, Huestis DL, Bida TA (2001) Discovery of the atomic oxygen green line in the Venus night airglow. Science 291:463–465. https://doi.org/10.1126/science.291.5503.463ADSCrossRefGoogle Scholar
  91. Smith CGA, Aylward AD (2009) Coupled rotational dynamics of Jupiter’s thermosphere and ionosphere. Ann Geophys 27:199–230. https://doi.org/10.5194/angeo-27-199-2009ADSCrossRefGoogle Scholar
  92. Smith CGA, Aylward AD, Millward GH et al (2007) An unexpected cooling effect in Saturn’s upper atmosphere. Nature 445:399–401. https://doi.org/10.1038/nature05518ADSCrossRefGoogle Scholar
  93. Snowden D, Yelle RV (2014) The thermal structure of Titan’s upper atmosphere, II: energetics. Icarus 228:64–77. https://doi.org/10.1016/j.icarus.2013.08.027ADSCrossRefGoogle Scholar
  94. Snowden D, Yelle RV, Cui J et al (2013) The thermal structure of Titan’s upper atmosphere, I: temperature profiles from Cassini INMS observations. Icarus 226:552–582. https://doi.org/10.1016/j.icarus.2013.06.006ADSCrossRefGoogle Scholar
  95. Stevens MH, Strobel DF, Herbert F (1993) An analysis of the Voyager 2 ultraviolet spectrometer occultation data at Uranus: inferring heat sources and model atmospheres. Icarus 100:45–63. https://doi.org/10.1006/icar.1993.1005ADSCrossRefGoogle Scholar
  96. Strobel DF, Koskinen T, Müller-Wodarg ICF (2016) Saturn’s variable thermosphere. Astro-ph arXiv:1610.07669v1Google Scholar
  97. Stubbs TJ, Glenar DA, Farrell WM, Vondrak RR, Collier MR et al (2011) On the role of dust in the lunar ionosphere. Planet Space Sci 59:1659–1664. https://doi.org/10.1016/j.pss.2011.05.011ADSCrossRefGoogle Scholar
  98. Vervack RJ Jr, Moses JI (2015) Saturn’s upper atmosphere during the Voyager era: reanalysis and modeling of the UVS occultations. Icarus 258:135–163. https://doi.org/10.1016/j.icarus.2015.06.007ADSCrossRefGoogle Scholar
  99. Vogt MF, Withers P, Mahaffy PR, Benna M, Elrod MK et al (2015) Ionopause-like density gradients in the Martian ionosphere: a first look with MAVEN. Geophys Res Lett 42:8885–8893. https://doi.org/10.1002/2015GL065269ADSCrossRefGoogle Scholar
  100. Volkov AN, Johnson RE, Tucker OJ, Erwin JT (2011) Thermally driven atmospheric escape: transition from hydrodynamic to Jeans escape. Astrophys J 729:L24. https://doi.org/10.1088/2041-8205/729/2/L24ADSCrossRefGoogle Scholar
  101. Vuitton V, Yelle RV, McEwan MJ (2007) Ion chemistry and N-containing molecules in Titan’s upper atmosphere. Icarus 191:722–742. https://doi.org/10.1016/j.icarus.2007.06.023ADSCrossRefGoogle Scholar
  102. Vuitton V, Yelle RV, Cui J (2008) Formation and distribution of benzene on Titan. J Geophys Res 113(E):05007. https://doi.org/10.1029/2007JE002997CrossRefGoogle Scholar
  103. Vuitton V, Lavvas P, Yelle RV et al (2009) Negative ion chemistry in Titan’s upper atmosphere. PSS 57:1558–1572. https://doi.org/10.1016/j.pss.2009.04.004ADSCrossRefGoogle Scholar
  104. Vuitton V, Dutuit O, Smith MA et al (2014) Chemistry of Titan’s atmosphere in Titan. Interior, surface, atmosphere, and space environment. Cambridge Planetary Science. Cambridge University Press, Cambridge, UK ISBN 9780521199926Google Scholar
  105. Wahlund J-E, Galand M, Muller-Wodard I et al (2009) On the amount of heavy molecular ions in Titan’s ionosphere. PSS 57:1857–1865. https://doi.org/10.1016/j.pss.2009.07.014CrossRefGoogle Scholar
  106. Waite JH Jr, Young DT, Cravens TE et al (2007) The process of Tholin formation in Titan’s upper atmosphere. Science 316:870–875. https://doi.org/10.1126/science.1139727ADSCrossRefGoogle Scholar
  107. West RA, Lavvas P, Anderson C et al (2014) Titan’s Haze. In: Titan. Interior, surface, atmosphere, and space environment. Cambridge Planetary Science. Cambridge University Press, Cambridge, UK ISBN 9780521199926Google Scholar
  108. Withers P (2012) How do meteoroids affect Venus’s and Mars’s ionospheres? EOS Trans Am Geophys Union 93:337–338. https://doi.org/10.1029/2012EO350002ADSCrossRefGoogle Scholar
  109. Withers P, Pratt R (2013) An observational study of the response of the upper atmosphere of Mars to lower atmospheric dust storms. Icarus 225:378–389. https://doi.org/10.1016/j.icarus.2013.02.032ADSCrossRefGoogle Scholar
  110. Withers P, Fillingim MO, Lillis RJ, Häusler B, Hinson DP et al (2012) Observations of the nightside ionosphere of Mars by the Mars Express radio Science experiment (MaRS). J Geophys Res Space Phys 117:A12307. https://doi.org/10.1029/2012JA018185ADSCrossRefGoogle Scholar
  111. Wong A-S, Yung YL, Friedson AJ (2003) Benzene and haze formation in the polar atmosphere of Jupiter. Geophys Res Lett 30:1447. https://doi.org/10.1029/2002GL016661ADSCrossRefGoogle Scholar
  112. Yelle RV (1991) Non-LTE models of Titan’s upper atmosphere. Astrophys J 383:380–400. https://doi.org/10.1086/170796ADSCrossRefGoogle Scholar
  113. Yelle RV, Miller S (2004) In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter’s thermosphere and ionosphere. Cambridge University Press, Cambridge, pp 185–218Google Scholar
  114. Yelle RV, Herbert F, Sandel BR, Vervack RJ Jr, Wentzel TM (1993) The distribution of hydrocarbons in Neptune’s upper atmosphere. Icarus 104:38–59. https://doi.org/10.1006/icar.1993.1081ADSCrossRefGoogle Scholar
  115. Yelle RV, Griffith CA, Young LA (2001) Structure of Jovian stratosphere at the Galileo probe entry site. Icarus 152:331–346. https://doi.org/10.1006/icar.2001.6640ADSCrossRefGoogle Scholar
  116. Yelle RV, Cui J, Muller-Wodarg ICF (2008) Methane escape from Titan’s atmosphere. J Geophys Res 113(E):10003. https://doi.org/10.1029/2007JE003031CrossRefGoogle Scholar
  117. Young LA, Yelle RV, Young RE et al (1997) Gravity waves in Jupiter’s thermosphere. Science 276:108–111. https://doi.org/10.1126/science.276.5309.108ADSCrossRefGoogle Scholar
  118. Zhang TL, Lu QM, Baumjohann W et al (2012) Magnetic reconnection in the near Venusian magnetotail. Science 336:567–570. https://doi.org/10.1126/science.1217013ADSCrossRefGoogle Scholar
  119. Zurbuchen TH, Raines JM, Slavin JA, Gershman DJ, Gilbert JA et al (2011) MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science 333:1862–1865. https://doi.org/10.1126/science.1211302ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Antonio García Muñoz
    • 1
    • 4
    Email author
  • Tommi T. Koskinen
    • 2
  • Panayotis Lavvas
    • 3
  1. 1.Zentrum für Astronomie und AstrophysikBerlinGermany
  2. 2.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  3. 3.GSMA, UMR 7331, CNRSUniversité de ReimsReimsFrance
  4. 4.Technische Universität BerlinBerlinGermany

Personalised recommendations