Atmospheric Dynamics of Giants and Icy Planets

  • A. Sánchez-LavegaEmail author
  • M. Heimpel
Reference work entry


We present the state of knowledge of the dynamics of the atmospheres of the gas giants (Jupiter and Saturn) and ice giants (Uranus and Neptune), describing their general circulation, the most relevant atmospheric phenomena, and the models developed so far to explain their atmospheric dynamics. Observations show that these two types of fluid and cold planets differ in their general circulation at cloud level. Jupiter and Saturn are dominated by a jet system that alternates in their direction with latitude, and both possess an intense eastward equatorial jet. On the other hand, Uranus and Neptune show a dominating intense and wide in latitude westward jet symmetric with respect to the equator. In spite of this difference, the four planets present similar atmospheric dynamical phenomena (large-scale vortices, storms, and long waves, among others). Deep convection models have shown that turbulent convection resulting in angular momentum mixing may explain the westward (retrograde) equatorial flow on the ice giants. The jet systems of Jupiter and Saturn have been successfully reproduced using deep convection and shallow forcing models. However, the prograde equatorial flow of the gas giants is more naturally reproduced with deep models or hybrid shallow models incorporating aspects of deeper forcing.



A.S.-L. research is supported by the Spanish project AYA2015-65041-P with FEDER support, Grupos Gobierno Vasco IT-765-13.


  1. Allison M, Beebe RF, Conrath BJ, Hinson DP, Ingersoll AP (1991) Uranus atmospheric dynamics and circulation. In: Bergstralh J, Miner E (eds) Uranus. University of Arizona Press, Tucson, pp 253–295Google Scholar
  2. Antuñano A, del Rio-Gaztelurrutia T, Sánchez-Lavega A, Hueso R (2015) Dynamics of Saturn’s polar regions. J Geophys Res-Planets 120:155–176ADSCrossRefGoogle Scholar
  3. Atkinson DH, Pollack JB, Seiff A (1998) The Galileo probe Doppler wind experiment: measurement of the deep zonal winds on Jupiter. J Geophys Res 103:22911–22928ADSCrossRefGoogle Scholar
  4. Atreya AK, Wong AH (2005) Coupled clouds and chemistry of the Giant planets – a case for multiprobes. Space Sci Rev 116:121–136. Scholar
  5. Aurnou JM, Heimpel M, Wicht J (2007) The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190(1):110–126ADSCrossRefGoogle Scholar
  6. Aurnou JM, Heimpel M (2004) Zonal jets in rotating convection with mixed mechanical boundary conditions. Icarus 169:492–498ADSCrossRefGoogle Scholar
  7. Baines KH, Hammel HB, Rages KA, Romani PN, Samuelson RE (1995) Clouds and hazes in the atmosphere of Neptune. In: Cruikshank DP (ed) Neptune and triton. University of Arizona Press, Tucson, pp 613–682Google Scholar
  8. Bolton SJ, Adriani A, Adumitroaie V, Anderson J, Atreya S, Bloxham J, Brown S, Connerney JEP, DeJong E, Folkner W, Gautier D, Gulkis S, Guillot T, Hansen C, Hubbard WB, Iess L, Ingersoll A, Janssen M, Jorgensen J, Kaspi Y, Levin SM, Li C, Lunine J, Miguel Y, Orton G, Owen T, Ravine M, Smith E, Steffes P, Stone E, Stevenson D, Thorne R, Waite J (2017) Jupiter’s interior and deep atmosphere: the first close polar pass with the Juno spacecraft. Science 356:821--825ADSCrossRefGoogle Scholar
  9. Busse FH (1970) Thermal instabilities in rapidly rotating systems. J Fluid Mech 44(03):441–460ADSCrossRefGoogle Scholar
  10. Busse FH (1976) A simple model of convection in the jovian atmosphere. Icarus 20:255–260ADSCrossRefGoogle Scholar
  11. Cabanes S, Aurnou J, Favier B, Le Bars M (2017) A laboratory model for deep-seated jets on the gas giants. Nat Phys 13:387--390ADSCrossRefGoogle Scholar
  12. Cho JYK, Polvani LM (1996) The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science 273:335–337ADSCrossRefGoogle Scholar
  13. Choi DS, Showman AP, Brown RH (2009) Cloud features and zonal wind measurements of Saturn’s atmosphere as observed by Cassini/VIMS. Journal of Geophysical Research (Planets) 114:4007ADSCrossRefGoogle Scholar
  14. Christensen UR (2001) Zonal flow driven by deep convection on the major planets. Geophys Res Lett 28:2553–2556ADSCrossRefGoogle Scholar
  15. Christensen UR (2007) Zonal flow driven by strongly supercritical convection in rotating spherical shells. J Fluid Mech 470(115–133):2002MathSciNetGoogle Scholar
  16. Connerney JEP (2007) Planetary magnetism. In: Schubert G (ed) Treatise on geophysics, vol 20. Elsevier, Amsterdam, pp 243–280CrossRefGoogle Scholar
  17. de Pater I, Sromovsky L, Fry PM, Hammel HB, Baranec C, Sayanagi K (2015) Record-breaking storm activity on Uranus in 2014. Icarus 252:121–128ADSCrossRefGoogle Scholar
  18. del Genio AD, Achterberg RK, Baines KH, Flasar FM, Read PL, Sánchez-Lavega A, Showman AP (2009) Chapter 6: Saturn atmospheric structure and dynamics. In: Dougherty M, Esposito L, Krimigis T (eds) Saturn after Cassini-Huygens. Springer, Dordrecht, pp 113–159CrossRefGoogle Scholar
  19. Dobbs-Dixon I, Lin D (2008) Atmospheric dynamics of short-period extrasolar gas giant planets. i. Dependence of nightside temperature on opacity. Astrophys J 673(1):513ADSCrossRefGoogle Scholar
  20. Duarte LD, Gastine T, Wicht J (2013) Anelastic dynamo models with variable electrical conductivity: an application to gas giants. Phys Earth Planet Inter 222:22–34ADSCrossRefGoogle Scholar
  21. Dowling TE, Ingersoll AP (1988) Potential vorticity and layer thickness variations in the flow around Jupiter’s great red spot and white oval BC. J Atmos Sci 45:1380–1396ADSCrossRefGoogle Scholar
  22. Fletcher LN, Irwin PGJ, Achterberg RK, Orton GS, Flasar FM (2016a) Seasonal variability of Saturn’s tropospheric temperatures, winds and para-H2 from Cassini far-IR spectroscopy. Icarus 264:137–159ADSCrossRefGoogle Scholar
  23. Fletcher LN, Greathouse TK, Orton GS, Sinclair JA, Giles RS, Irwin PGJ (2016b) Mid-infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus 278:128–161ADSCrossRefGoogle Scholar
  24. Fouchet T et al (2008) An equatorial oscillation in Saturn’s middle atmosphere. Nature 453:200–202ADSCrossRefGoogle Scholar
  25. French M, Becker A, Lorenzen W, Nettelmann N, Bethkenhagen M, Wicht J, Redmer R (2012) Ab initio simulations for material properties along the jupiter adiabat. Astrophysical J Suppl Series 202(1):5–15ADSCrossRefGoogle Scholar
  26. García-Melendo E, Sánchez-Lavega A (2001) A study of the stability of Jovian zonal winds from HST images: 1995–2000. Icarus 152:316–330ADSCrossRefGoogle Scholar
  27. García-Melendo E, Pérez-Hoyos S, Sánchez-Lavega A, Hueso R (2011) Saturn’s zonal wind profile in 2004 - 2009 from Cassini ISS images and its long-term variability. Icarus 215:62–74ADSCrossRefGoogle Scholar
  28. Gastine T, Wicht J (2012) Effects of compressibility on driving zonal flow in gas giants. Icarus 219(1):428–442ADSCrossRefGoogle Scholar
  29. Gastine T, Wicht J, Aurnou JM (2013) Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225:156–172ADSCrossRefGoogle Scholar
  30. Gastine T, Heimpel M, Wicht J (2014a) Zonal flow scaling in rapidly-rotating compressible convection. Phys Earth Planet Inter 232:36–50ADSCrossRefGoogle Scholar
  31. Gastine T, Wicht J, Duarte L, Heimpel M, Becker A (2014b) Explaining jupiter’s mag netic field and equatorial jet dynamics. Geophys Res Lett 41(15):5410–5419ADSCrossRefGoogle Scholar
  32. Guillot T, Stevenson DJ, Hubbard W, Saumon D (2004) The interior of jupiter. In: Bagenal F, Dowling T, McKinnon W (eds) Jupiter, the planet, satellites and magnetosphere. Cambridge University Press, Cambridge, pp 35–67Google Scholar
  33. Hanel RA, Conrath BJ, Herath LW, Kunde VG, Pirraglia JA (1981) Journal Geophysical Research 86:8705–8712ADSCrossRefGoogle Scholar
  34. Heimpel M, Aurnou J (2007) Turbulent convection in rapidly rotating spherical shells: a model for equatorial and high latitude jets on jupiter and saturn. Icarus 187(2):540–557ADSCrossRefGoogle Scholar
  35. Heimpel M, Gómez Pérez N (2011) On the relationship between zonal jets and dynamo action in giant planets. Geophys Res Lett 38(14):14201–14206ADSCrossRefGoogle Scholar
  36. Heimpel M, Aurnou J, Wicht J (2005) Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438:193–196ADSCrossRefGoogle Scholar
  37. Heimpel M, Gastine T, Wicht J (2016) Simulation of deep-seated zonal jets and shallow vortices in gas giant atmospheres. Nat Geosci 9:19–23ADSCrossRefGoogle Scholar
  38. Hueso R, Sánchez-Lavega A (2001) A three-dimensional model of moist convection for the giant planets: the Jupiter case. Icarus 151:257–274ADSCrossRefGoogle Scholar
  39. Hueso R, Sánchez Lavega A, Guillot T (2002) A model for large scale convective storms in Júpiter. Journal Geophsical Research-Planets 107(10):5/1–5/11Google Scholar
  40. Hueso R, Sánchez-Lavega A (2004) A three – dimensional model of moist convection for the Giant planets II: Saturn’s water and ammonia moist convective storms. Icarus 172:255–271ADSCrossRefGoogle Scholar
  41. Holme R, Bloxham J (1996) The magnetic fields of uranus and neptune: methods and models. Journal of Geophysical Research: Planets 101(E1):2177–2200CrossRefGoogle Scholar
  42. Ingersoll AP, Barnet CD, Beebe RF, Flasar FM, Hinson DP, Limaye SS, Sromovsky LA, Suomi VE (1995) Dynamic meteorology of Neptune. In: Cruikshank DP (ed) Neptune and triton. University of Arizona Press, Tucson, pp 613–682Google Scholar
  43. Ingersoll AP, Dowling TE, Gierasch PJ, Orton GS, Read PL, Sanchez-Lavega A, Showman AP, Simon-Miller AA, Vasavada AR (2004) Chapter 6: dynamics of Jupiter’s atmosphere. In: Bagenal F, McKinnon W, Dowling T (eds) Jupiter: the planet, satellites & magnetosphere. Cambridge University Press, Cambridge, pp 105–128Google Scholar
  44. Ingersoll A (1976) Pioneer 10 and 11 observations and the dynamics of jupiter’s atmosphere. Icarus 29(2):245–253ADSCrossRefGoogle Scholar
  45. Jones CA, Kuzanyan KM (2009) Compressible convection in the deep atmospheres of giant planets. Icarus 204:227–238ADSCrossRefGoogle Scholar
  46. Karkoschka E (2015) Uranus’ southern circulation revealed by voyager 2: unique characteristics. Icarus 250:294–307ADSCrossRefGoogle Scholar
  47. Kaspi Y, Flierl GR, Showman AP (2009) The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus 202:525–542ADSCrossRefGoogle Scholar
  48. Lian Y, Showman AP (2010) Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus 207(1):373–393ADSCrossRefGoogle Scholar
  49. Limaye SS (1986) Jupiter - new estimates of the mean zonal flow at the cloud level. Icarus 65:335–352ADSCrossRefGoogle Scholar
  50. Liu J, Goldreich PM, Stevenson DJ (2008) Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196(2):653–664ADSCrossRefGoogle Scholar
  51. Nellis WJ, Weir ST, Mitchell AC (1996) Metallization and electrical conductivity of hydrogen in jupiter. Science 273:936–938ADSCrossRefGoogle Scholar
  52. Nettelmann N, Holst B, Kietzmann A, French M, Redmer R, Blaschke D (2008) Ab initio equation of state data for hydrogen, helium, and water and the internal structure of jupiter. Astrophys J 683(2):1217–1228ADSCrossRefGoogle Scholar
  53. Norwood P, Moses J, Fletcher LN, Orton G, Irwin PGJ, Atreya S, Rages K, Cavalié T, Sánchez-Lavega A, Hueso R (2016) Giant planet observations with the James Webb space telescope. Pub Astron Soc Pacific 128:018005ADSCrossRefGoogle Scholar
  54. Orton GS, Friedson AJ, Caldwell J, Hammel HB, Baines KH, Bergstrahl JT et al (1991) Thermal maps of Jupiter: spatial organisation and time-dependence of stratospheric temperature, 1980 to 1990. Science 252:537–542ADSCrossRefGoogle Scholar
  55. Pérez-Hoyos S, Sánchez-Lavega A (2006) On the vertical wind shear of Saturn’s equatorial jet at cloud level. Icarus 180(1):161–175ADSCrossRefGoogle Scholar
  56. Pirraglia J (1984) Meridional energy balance of jupiter. Icarus 59(2):169–176ADSCrossRefGoogle Scholar
  57. Porco CC, West RA, McEwen A, Del Genio AD, Ingersoll AP, Thomas P, Squyres S, Dones L, Murray CD, Johnson TV, Burns JA, Brahic A, Neukum G, Veverka J, Barbara JM, Denk T, Evans M, Ferrier JJ, Geissler P, Helfenstein P, Roatsch T, Throop H, Tiscareno M, Vasavada AR (2003) Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science 299:1541–1547ADSCrossRefGoogle Scholar
  58. Read PL (2004) Jupiter’s and saturn’s convectively driven banded jets in the laboratory. Geophys Res Lett 31.
  59. Rogers JH (1995) The giant planet Jupiter. Cambridge Univ Press, Cambridge, UKGoogle Scholar
  60. Sánchez-Lavega A, Rojas JF, Sada PV (2000) Saturn’s zonal winds at cloud level. Icarus 147:405–420ADSCrossRefGoogle Scholar
  61. Sánchez-Lavega A, Orton GS, Hueso R, García-Melendo E, Pérez-Hoyos S, Simon-Miller A, Rojas JF, Gómez JM, Yanamandra-Fisher P, Fletcher L, Joels J, Kemerer J, Hora J, Karkoschka E, de Pater I, Wong MH, Marcus PS, Pinilla-Alonso N, Carvalho F, Go C, Parker D, Salway M, Valimberti M, Wesley A, Pujiv Z (2008) Depth of a strong jovian jet from a planetary-scale disturbance driven by storms. Nature 451:437–440ADSCrossRefGoogle Scholar
  62. Sánchez-Lavega A, del Río-Gaztelurrutia T, Hueso R, Gómez-Forrellad JM, Sanz-Requena JF, Legarreta J, García-Melendo E, Colas F, Lecacheux J, Fletcher LN, Barrado-Navascués D, Parker D, the International Outer PlanetWatch Team (2011) Deep winds beneath Saturn’s upper clouds from a seasonal long-lived planetary-scale storm. Nature 475:71–74. Scholar
  63. Sánchez-Lavega A (2011) An introduction to planetary atmospheres. Taylor & Francis/CRC Press, Boca Raton. 696 ppGoogle Scholar
  64. Sánchez-Lavega A, Fisher G, Fletcher LN, Garcia-Melendo E, Hesman B, Perez-Hoyos S, Sayanagi K, Sromovsky L (2016) Chapter 13: The Great Storm of 2010–2011. In: Baines KH, Flasar FM, Krupp N, Stallard TS (eds) Saturn in the 21st Century. Cambridge University Press, Cambridge. (in the press) Scholar
  65. Sánchez-Lavega A, Sromovsky L, Showman A, Del Genio A, Young R, Hueso R, García Melendo E, Kaspi Y, Orton GS, Barrado-Izagirre N, Choi D, Barbara J (2017) Zonal Jets in Gas Giants. In: Galperin B, Read P, ISSI (eds) Zonal Jets. Cambridge University Press. (in the press), CambridgeGoogle Scholar
  66. Sayanagi K, Dyudina UA, Ewald SP, Fisher G, Ingersoll AP, Kurth WS, Muro GD, Porco CC, West RA (2013) Dynamics of Saturn’s great storm of 2010–2011 from Cassini ISS and RPWS. Icarus 223:460–478ADSCrossRefGoogle Scholar
  67. Sayanagi K, Baines KH, Dyudina U, Fletcher LN, Sánchez-Lavega A, West RA (2016) Chapter12. Saturn’s Polar Atmosphere. In: Baines KH, Flasar FM, Krupp N, Stallard TS (eds) Saturn in the 21st Century. Cambridge University Press, Cambridge. (in the press).arXiv_1609.09626v2Google Scholar
  68. Schneider T, Liu J (2009) Formation of jets and equatorial superrotation on Jupiter. J Atmos Sci 66:579–601ADSCrossRefGoogle Scholar
  69. Scott R, Polvani LM (2008) Equatorial superrotation in shallow atmospheres. Geophys Res Lett 35(24):24202–24206ADSCrossRefGoogle Scholar
  70. Showman AP (2007) Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J Atmos Sci 64(9):3132–3157ADSCrossRefGoogle Scholar
  71. Showman AP, Polvani LM (2011) Equatorial superrotation on tidally locked exoplanets. Astrophys J 738(1):71ADSCrossRefGoogle Scholar
  72. Soderlund K, Heimpel M, King E, Aurnou J (2013) Turbulent models of ice giant internal dynamics: dynamos, heat transfer, and zonal flows. Icarus 224(1):97–113ADSCrossRefGoogle Scholar
  73. Sromovsky LA, de Pater I, Fry PM, Hammel HB, Marcus P (2015) High S/N keck and Gemini AO imaging of Uranus during 2012–2014: new cloud patterns, increasing activity, and improved wind measurements. Icarus 258:192–223ADSCrossRefGoogle Scholar
  74. Vallis GK (2006) Atmospheric and oceanic fluid dynamics: fundamentals and large-scale cir- culation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  75. West RA, Baines KH, Karkoschka E, Sánchez-Lavega A (2009) Chapter 7: clouds and aerosols in Saturn’s atmosphere. In: Dougherty M, Esposito L, Krimigis T (eds) Saturn after Cassini-Huygens. Springer, pp 161–179Google Scholar
  76. Williams GP (1978) Planetary circulations: 1. Barotropic representation of jovian and terrestrial turbulence. J Atmos Sci 35(8):1399–1426ADSCrossRefGoogle Scholar
  77. Zhang K (1992) Spiralling columnar convection in rapidly rotating spherical fluid shells. J Fluid Mech 236:535–556ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento Física Aplicada I, Escuela de Ingeniería de BilbaoUniversidad del País Vasco UPV/EHUBilbaoSpain
  2. 2.Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations