Pulsar Timing as an Exoplanet Discovery Method

  • Michael KramerEmail author
Reference work entry


Before the optical discovery of exoplanets, radio pulsar timing techniques provided the first evidence for a planetary system outside the solar system. In 1992, the discovery of the first “pulsar planets” by Alex Wolszczan and colleagues was surprising but also demonstrated the extraordinary precision that enables pulsar astronomers searching for bodies orbiting a pulsar, allowing even the detection of asteroid-sized bodies. Despite this precision, the number of pulsars with orbiting bodies of planetary size or lower has remained surprisingly small. Apart from a system in a globular cluster, which may have been created with the help of exchange interactions, only one further pulsar-planet system is known. This raises the question about the formation processes of pulsar planets and the required conditions. Here, we summarize the applied techniques and the current status of the field.


  1. Alpar MA, Cheng AF, Ruderman MA, Shaham J (1982) A new class of radio pulsars. Nature 300:728–730ADSCrossRefGoogle Scholar
  2. Antoniadis J, Freire PCC, Wex N et al (2013) A massive pulsar in a compact relativistic binary. Science 340:448ADSCrossRefGoogle Scholar
  3. Arzoumanian Z, Joshi K, Rasio F, Thorsett SE (1996) Orbital parameters of the PSR B1620−26 triple system. In: Johnston S, Walker MA, Bailes M (eds) Pulsars: problems and progress, IAU colloquium 160. Astronomical Society of the Pacific, San Francisco, pp 525–530Google Scholar
  4. Backer DC (1970a) Peculiar pulse burst in PSR 1237+25. Nature 228:1297–1298ADSCrossRefGoogle Scholar
  5. Backer DC (1970b) Pulsar nulling phenomena. Nature 228:42–43ADSCrossRefGoogle Scholar
  6. Backer DC, Thorsett SE (1995) PSR 1620−26 – a triple system. In: Fruchter A, Tavani M, Backer D (eds) Millisecond pulsars. A decade of surprises. ASP conference series, vol 72. Astronomical Society of the Pacific, San Francisco, pp 387–390Google Scholar
  7. Backer DC, Foster RF, Sallmen S (1993) A second companion of the millisecond pulsar 1620−26. Nature 365:817–819ADSCrossRefGoogle Scholar
  8. Bailes M, Lyne AG, Shemar SL (1991) A planet orbiting the neutron star PSR1829−10. Nature 352:311–313ADSCrossRefGoogle Scholar
  9. Bailes M, Bates SD, Bhalerao V et al (2011) Transformation of a star into a planet in a millisecond pulsar binary. Science 333:1717ADSCrossRefGoogle Scholar
  10. Barr ED, Champion DJ, Kramer M et al (2013) The Northern high time resolution universe pulsar survey – I. Setup and initial discoveries. MNRAS 435:2234–2245CrossRefGoogle Scholar
  11. Bassa CG, Janssen GH, Stappers BW et al (2016) A millisecond pulsar in an extremely wide binary system. MNRAS 460:2207–2222ADSCrossRefGoogle Scholar
  12. Brook PR, Karastergiou A, Buchner S et al (2014) Evidence of an asteroid encountering a pulsar. ApJ 780:L31ADSCrossRefGoogle Scholar
  13. Champion DJ, Hobbs GB, Manchester RN et al (2010) Measuring the mass of solar system planets using pulsar timing. ApJ 720:L201–L205ADSCrossRefGoogle Scholar
  14. Cordes JM, Shannon RM (2008) Rocking the lighthouse: circumpulsar asteroids and radio intermittency. ApJ 682:1152–1165ADSCrossRefGoogle Scholar
  15. Fonseca E, Stairs IH, Arzoumanian Z et al (2015) Long-term timing of the pulsar triple system in M4. In: American astronomical society meeting abstracts, vol 225, p 346.15Google Scholar
  16. Freire PC, Camilo F, Kramer M et al (2003) Further results from the timing of the millisecond pulsars in 47 Tucanae. MNRAS 340:1359–1374ADSCrossRefGoogle Scholar
  17. Freire PCC, Bassa CG, Wex N et al (2011) On the nature and evolution of the unique binary pulsar J1903+0327. MNRAS 412:2763–2780ADSCrossRefGoogle Scholar
  18. Freire PCC, Wex N, Esposito-Farèse G et al (2012) The relativistic pulsar-white dwarf binary PSR J1738+0333 – II. The most stringent test of scalar-tensor gravity. MNRAS 423:3328–3343Google Scholar
  19. Gil JA, Jessner A, Kramer M (1993) Are there really planets around PSR B1257+12? A&A 271:L17ADSGoogle Scholar
  20. Hotan AW, Bailes M, Ord SM (2006) High-precision baseband timing of 15 millisecond pulsars. MNRAS 369:1502–1520ADSCrossRefGoogle Scholar
  21. Joshi KJ, Rasio FA (1997) Distant companions and planets around millisecond pulsars. ApJ 479:948–959ADSCrossRefGoogle Scholar
  22. Keane E, Bhattacharyya B, Kramer M et al (2015) A cosmic census of radio pulsars with the SKA. In: Advancing astrophysics with the square kilometre array (AASKA14), p 40Google Scholar
  23. Keith MJ, Jameson A, van Straten W et al (2010) The high time resolution universe pulsar survey I: system configuration and initial discoveries. MNRAS 409:619–627ADSCrossRefGoogle Scholar
  24. Kerr M, Hobbs G, Johnston S, Shannon RM (2016) Periodic modulation in pulse arrival times from young pulsars: a renewed case for neutron star precession. MNRAS 455:1845–1854ADSCrossRefGoogle Scholar
  25. Konacki M, Lewandowski W, Wolszczan A, Doroshenko O, Kramer M (1999) Are there planets around the pulsar PSR b0329+54? ApJ 519:L81–L84ADSCrossRefGoogle Scholar
  26. Kramer M (2011) Planets around pulsars. Am Inst Phys Conf Ser 1331:5–18ADSGoogle Scholar
  27. Kramer M et al (2017, submitted) Tests of gravity from timing the double pulsarGoogle Scholar
  28. Kramer M, Backer DC, Cordes JM et al (2004) Strong-field tests of gravity using pulsars and black holes. New Astron Rev 48:993–1002ADSCrossRefGoogle Scholar
  29. Kramer M, Lyne AG, O’Brien JT, Jordan CA, Lorimer DR (2006) A periodically active pulsar giving insight into magnetospheric physics. Science 312:549–551ADSCrossRefGoogle Scholar
  30. Lorimer DR, Kramer M (2005) Handbook of pulsar astronomy. Cambridge University Press, CambridgeGoogle Scholar
  31. Lyne AG, Biggs JD, Brinklow A, Ashworth M, McKenna J (1988) Discovery of a binary millisecond pulsar in the globular cluster M4. Nature 332:45–47ADSCrossRefGoogle Scholar
  32. Lyne A, Hobbs G, Kramer M, Stairs I, Stappers B (2010) Switched magnetospheric regulation of pulsar spin-down. Science 329:408ADSCrossRefGoogle Scholar
  33. Margalit B, Metzger BD (2017) Merger of a white dwarf-neutron star binary to 10 29 carat diamonds: origin of the pulsar planets. MNRAS 465:2790–2803ADSCrossRefGoogle Scholar
  34. Martin RG, Livio M, Palaniswamy D (2016) Why are pulsar planets rare? ApJ 832:122ADSCrossRefGoogle Scholar
  35. McLaughlin MA, Stairs IH, Kaspi VM et al (2003) PSR J1847-0130: a radio pulsar with magnetar spin characteristics. ApJ 591:L135–L138ADSCrossRefGoogle Scholar
  36. Menou K, Perna R, Hernquist L (2001) Stability and evolution of supernova fallback disks. ApJ 559:1032–1046ADSCrossRefGoogle Scholar
  37. Mottez F, Bonazzola S, Heyvaerts J (2013) Towards a theory of extremely intermittent pulsars. I. Does something orbit PSR B1931+24? A&A 555:A125Google Scholar
  38. Özel F, Freire P (2016) Masses, radii, and the equation of state of neutron stars. Annu Rev Astron Astrophys 54:401–440ADSCrossRefGoogle Scholar
  39. Phinney ES, Kulkarni SR (1994) Binary and millisecond pulsars. Annu Rev Astron Astrophys 32:591–639ADSCrossRefGoogle Scholar
  40. Podsiadlowski P (1993) Planet formation scenarios. In: Phillips JA, Thorsett SE, Kulkarni SR (eds) Planets around pulsars. Astronomical Society of the Pacific Conference Series, San Francisco, pp 149–165Google Scholar
  41. Podsiadlowski P, Pringle JE, Rees MJ (1991) The origin of the planet orbiting PSR 1829−10. Nature 352:783–784ADSCrossRefGoogle Scholar
  42. Rasio FA, Nicholson PD, Shapiro SL, Teukolsy SA (1992) An observational test for the existence of a planetary system orbiting PSR 1257+12. Nature 355:325–326ADSCrossRefGoogle Scholar
  43. Scargle JD (1982) Studies in astronomical timer series analysis II. Statistical aspects of spectral analysis of unevenly spaced data. ApJ 263:835–853Google Scholar
  44. Shabanova TV (1995) Evidence for a planet around the pulsar PSR b0329+54. ApJ 453:779ADSCrossRefGoogle Scholar
  45. Shannon RM, Cordes JM, Metcalfe TS et al (2013) An asteroid belt interpretation for the timing variations of the millisecond pulsar B1937+21. ApJ 766:5ADSCrossRefGoogle Scholar
  46. Sigurdsson S, Richer HB, Hansen BM, Stairs IH, Thorsett SE (2003) A young white dwarf companion to pulsar b1620−26: evidence for early planet formation. Science 301: 193–196ADSCrossRefGoogle Scholar
  47. Spiewak R, Bailes M, Barr E et al (2017, submitted) A low-luminosity millisecond pulsar with a planetary-mass companion. MNRASGoogle Scholar
  48. Tauris TM, Langer N, Podsiadlowski P (2015) Ultra-stripped supernovae: progenitors and fate. MNRAS 451:2123–2144ADSCrossRefGoogle Scholar
  49. Thorsett SE, Arzoumanian Z, Taylor JH (1993) PSR B1620−26: a binary radio pulsar with a planetary companion? ApJ 412:L33–L36ADSCrossRefGoogle Scholar
  50. van Haaften LM, Nelemans G, Voss R, Jonker PG (2012) Formation of the planet around the millisecond pulsar J1719−1438. A&A 541:A22ADSCrossRefGoogle Scholar
  51. Verbiest JPW, Bailes M, van Straten W et al (2008) Precision timing of PSR J0437−4715: an accurate pulsar distance, a high pulsar mass, and a limit on the variation of Newton’s gravitational constant. ApJ 679:675–680ADSCrossRefGoogle Scholar
  52. Verbiest JPW, Lentati L, Hobbs G et al (2016) The international pulsar timing array: first data release. MNRAS 458:1267–1288ADSCrossRefGoogle Scholar
  53. Weisberg JM, Nice DJ, Taylor JH (2010) Timing measurements of the relativistic binary pulsar PSR B1913+16. ApJ 722:1030–1034ADSCrossRefGoogle Scholar
  54. Wolszczan A (2008) Fifteen years of the neutron star planet research. Phys Scr T130(1):014005. Scholar
  55. Wolszczan A, Frail DA (1992) A planetary system around the millisecond pulsar PSR1257+12. Nature 355:145–147ADSCrossRefGoogle Scholar
  56. Young MD, Manchester RN, Johnston S (1999) A radio pulsar with an 8.5-second period that challenges emission models. Nature 400:848–849ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MPI für RadioastrononomieBonnGermany

Personalised recommendations