Advertisement

Temperature, Clouds, and Aerosols in Giant and Icy Planets

  • Robert A. WestEmail author
Reference work entry

Abstract

As observations (transit spectra and secondary eclipse spectra) of extrasolar planets accumulate, it has become clear that clouds and haze are prevalent in the Neptune–Jupiter-sized planets. Clouds and haze have a profound influence on the spectra and must be understood to make sensible interpretation of the data. High-temperature atmospheres are likely to contain condensates of dense materials (minerals and metals), and this presents a challenge to understand how such particles can be maintained high in the atmosphere. Perhaps photochemical haze is the more important aerosol at high altitude, but more work needs to be done to understand its formation and stability. This chapter summarizes the salient observations and ideas about temperature, clouds, and haze in gas and ice giant planets with emphasis on lessons learned from studies in our own solar system.

References

  1. Ackerman AS, Marley MS (2001) Precipitating condensation clouds in substellar atmospheres. Astrophys J 556(2):872–884.  https://doi.org/10.1086/321540ADSCrossRefGoogle Scholar
  2. Bétrémieux Y (2016) Effects of refraction on transmission spectra of gas giants: decrease of the Rayleigh scattering slope and breaking of retrieval degeneracies. Mon Not R Astron Soc 456(4):4051–4060.  https://doi.org/10.1093/mnras/stv2955ADSCrossRefGoogle Scholar
  3. Bétrémieux Y, Swain MR (2017) An analytical formalism accounting for clouds and other “surfaces” for exoplanet transmission spectroscopy. Mon Not R Astron Soc 467:2834ADSCrossRefGoogle Scholar
  4. Bond JC, O’Brien DP, Lauretta DS (2010) The compositional diversity of extrasolar terrestrial planets. I. In situ simulations. Astrophys J 715(2):1050–1070.  https://doi.org/10.1088/0004-637x/715/2/1050ADSCrossRefGoogle Scholar
  5. Brogi M, de Kok RJ, Albrecht S, Snellen IAG, Birkby JL, Schwarz H (2016) Rotation and winds of exoplanet hd 189733 b measured with high-dispersion transmission spectroscopy. Astrophys J 817(2).  https://doi.org/10.3847/0004-637x/817/2/106ADSCrossRefGoogle Scholar
  6. Burrows A, Sudarsky D, Hubeny I (2004) Spectra and diagnostics for the direct detection of wide-separation extrasolar giant planets. Astrophys J 609(1):407–416.  https://doi.org/10.1086/420974ADSCrossRefGoogle Scholar
  7. Carlson RW, Baines KH, Anderson MS, Filacchione G, Simon AA (2016) Chromophores from photolyzed ammonia reacting with acetylene: application to Jupiter’s great red spot. Icarus 274:106–115.  https://doi.org/10.1016/j.icarus.2016.03.008ADSCrossRefGoogle Scholar
  8. Charnay B, Meadows V, Leconte J (2015a) 3d modeling of Gj1214b’s atmosphere: vertical mixing driven by an anti-Hadley circulation. Astrophys J 813(1):15.  https://doi.org/10.1088/0004-637x/813/1/15ADSCrossRefGoogle Scholar
  9. Charnay B, Meadows V, Misra A, Leconte J, Arney G (2015b) 3d modeling of GJ1214b’s atmosphere: formation of inhomogeneous high clouds and observational implications. Astrophys J Lett 813(1):L1.  https://doi.org/10.1088/2041-8205/813/1/L1ADSCrossRefGoogle Scholar
  10. Crossfield IJM (2014) Doppler imaging of exoplanets and brown dwarfs. Astron Astrophys 566:A130.  https://doi.org/10.1051/0004-6361/201423750ADSCrossRefGoogle Scholar
  11. Crossfield IJM, Biller B, Schlieder JE, Deacon NR, Bonnefoy M, Homeier D,..., Kopytova T (2014) A global cloud map of the nearest known brown dwarf. Nature, 505(7485), 654-+.  https://doi.org/10.1038/nature12955ADSCrossRefGoogle Scholar
  12. De Kok RJ, Stam DM, Karalidi T (2011) Characterizing exoplanetary atmospheres through infrared polarimetry. Astrophys J 741(1).  https://doi.org/10.1088/0004-637x/741/1/59ADSCrossRefGoogle Scholar
  13. Deming LD, Seager S (2017) Illusion and reality in the atmospheres of exoplanets. https://arxiv.org/abs/1701.00493
  14. Dyudina UA, Sackett PD, Bayliss DDR, Seager S, Throop HB, Dones L (2005) Phase light curves for extrasolar Jupiters and Saturns. Astrophys J 618(2):973–986.  https://doi.org/10.1086/426050ADSCrossRefGoogle Scholar
  15. Etangs ALD, Pont F, Vidal-Madjar A, Sing D (2008) Rayleigh scattering in the transit spectrum of HD189733b. Astron Astrophys 481(2):L83–L86.  https://doi.org/10.1051/0004-6361:200809388ADSCrossRefGoogle Scholar
  16. Evans KF, Stephens GL (1991) A new polarized atmospheric radiative-transfer model. J Quant Spectrosc Radiat Transf 46(5):413–423.  https://doi.org/10.1016/0022-4073(91)90043-pADSCrossRefGoogle Scholar
  17. Friedson A, Wong AS, Yung Y (2002) Models for polar haze formation in Jupiter's stratosphere. Icarus 158(2):389–400.  https://doi.org/10.1006/icar.2002.6885ADSCrossRefGoogle Scholar
  18. Gierasch PJ, Conrath BJ (1993) Dynamics of the atmospheres of the outer planets – post-voyager measurement objectives. J Geophys Res Planets 98(E3):5459–5469CrossRefGoogle Scholar
  19. Gladstone GR, Allen M, Yung YL (1996) Hydrocarbon photochemistry in the upper atmosphere of Jupiter. Icarus 119(1):1–52.  https://doi.org/10.1006/icar.1996.0001ADSCrossRefGoogle Scholar
  20. Hansen JE, Hovenier JW (1974) Interpretation of polarization of Venus. J Atmos Sci 31(4):1137–1160.  https://doi.org/10.1175/1520-0469(1974)031<1137:Iotpov>2.0.Co;2ADSCrossRefGoogle Scholar
  21. Heng K (2017) Exoplanetary atmospheres: theoretical concepts and foundations. Princeton University Press, PrincetonCrossRefGoogle Scholar
  22. Hu RY, Seager S (2014) Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super earths and mini Neptunes. Astrophys J 784(1):63ADSCrossRefGoogle Scholar
  23. Hu RY, Demory BO, Seager S, Lewis N, Showman AP (2015) A semi-analytical model of visible-wavelength phase curves of exoplanets and applications to Kepler-7 B and Kepler-10 B. Astrophys J 802(1):51.  https://doi.org/10.1088/0004-637x/802/1/51ADSCrossRefGoogle Scholar
  24. Hubbard WB, Haemmerle V, Porco CC, Rieke GH, Rieke MJ (1995) The occultation of Sao-78505 by Jupiter. Icarus 113(1):103–109.  https://doi.org/10.1006/icar.1995.1008ADSCrossRefGoogle Scholar
  25. Karalidi T, Stam DM, Guirado D (2013) Flux and polarization signals of spatially inhomogeneous gaseous exoplanets. Astron Astrophys 555.  https://doi.org/10.1051/0004-6361/201321492ADSCrossRefGoogle Scholar
  26. Karalidi T, Apai D, Schneider G, Hanson JR, Pasachoff JM (2015) Aeolus: a Markov Chain Monte Carlo code for mapping ultracool atmospheres. An application on Jupiter and brown dwarf HST light curves. Astrophys J 814(1):65.  https://doi.org/10.1088/0004-637x/814/1/65ADSCrossRefGoogle Scholar
  27. Kataria T, Showman AP, Fortney JJ, Stevenson KB, Line MR, Kreidberg L,... Désert J-M (2015). The atmospheric circulation of the hot jupiter wasp-43b: comparing three-dimensional models to spectrophotometric data. Astrophys J 801(2):86.  https://doi.org/10.1088/0004-637x/801/2/86ADSCrossRefGoogle Scholar
  28. Koskinen TT, Sandel BR, Yelle RV, Capalbo FJ, Holsclaw GM, McClintock WE, Edgington S (2013) The density and temperature structure near the exobase of Saturn from Cassini UVIS solar occultations. Icarus 226(2):1318–1330.  https://doi.org/10.1016/j.icarus.2013.07.037ADSCrossRefGoogle Scholar
  29. Koskinen TT, Moses JI, West RA, Guerlet S, Jouchoux A (2016) The detection of benzene in Saturn's upper atmosphere. Geophys Res Lett 43(15):7895–7901.  https://doi.org/10.1002/2016gl070000ADSCrossRefGoogle Scholar
  30. Levasseur-Regourd A-C, Renard J-B, Shkuratov YG, Hadamcik E (2015) Laboratory studies. In: Kolokolova L, Hough J, Levasseur-Regourd A-C (eds) Polarimetry of stars and planetary systems. Cambridge University Press, Cambridge, UK, pp 62–80CrossRefGoogle Scholar
  31. Lin Z, Stamnes S, Jin Z, Laszlo I, Tsay SC, Wiscombe WJ, Stamnes K (2015) Improved discrete ordinate solutions in the presence of an anisotropically reflecting lower boundary: upgrades of the DISORT computational tool. J Quant Spectrosc Radiat Transf 157:119–134.  https://doi.org/10.1016/j.jqsrt.2015.02.014ADSCrossRefGoogle Scholar
  32. Line MR, Parmentier V (2016) The influence of nonuniform cloud cover on transit transmission spectra. Astrophys J 820(1):78.  https://doi.org/10.3847/0004-637x/820/1/78ADSCrossRefGoogle Scholar
  33. Lodders K, Fegley B (2002) Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars – I. Carbon, nitrogen and oxygen. Icarus 155(2):393–424.  https://doi.org/10.1006/icar.2001.6740ADSCrossRefGoogle Scholar
  34. Madhusudhan N, Burrows A (2012) Analytic models for albedos, phase curves, and polarization of reflected light from exoplanets. Astrophys J 747(1).  https://doi.org/10.1088/0004-637x/747/1/25ADSCrossRefGoogle Scholar
  35. Mayorga LC, Jackiewicz J, Rages K, West RA, Knowles B, Lewis N, Marley MS (2016) JUPITER’S phase variations from cassini: a testbed for future direct-imaging missions. Astron J 152(6).  https://doi.org/10.3847/0004-6256/152/6/209ADSCrossRefGoogle Scholar
  36. Miles-Páez PA, Zapatero Osorio MR, Pallé E, Ramírez KP (2013) Linear polarization of rapidly rotating ultracool dwarfs. Astron Astrophys 556.  https://doi.org/10.1051/0004-6361/201321851ADSCrossRefGoogle Scholar
  37. Morley CV, Fortney JJ, Kempton EMR, Marley MS, Vissher C, Zahnle K (2013) Quantitatively assessing the role of clouds in the transmission spectrum of Gj 1214b. Astrophys J 775(1).  https://doi.org/10.1088/0004-637x/775/1/33ADSCrossRefGoogle Scholar
  38. Moses J (2000) Photochemistry of Saturn’s atmosphere I. Hydrocarbon chemistry and comparisons with ISO observations. Icarus 143(2):244–298.  https://doi.org/10.1006/icar.1999.6270ADSCrossRefGoogle Scholar
  39. Moses JI (2014) Chemical kinetics on extrasolar planets. Philos Trans R Soc Math Phys Eng Sci 372(2014).  https://doi.org/10.1098/rsta.2013.0073ADSCrossRefGoogle Scholar
  40. Moses JI, Madhusudhan N, Visscher C, Freedman RS (2013) Chemical consequences of the c/o ratio on hot jupiters: examples from wasp-12b, corot-2b, xo-1b, and HD 189733b. Astrophys J 763(1).  https://doi.org/10.1088/0004-637x/763/1/25ADSCrossRefGoogle Scholar
  41. Muñoz O, Hovenier JW (2015) Experimental scattering matrices of clouds of randomly oriented particles. In: Kolokolova L, Hough J, Levasseur-Regourd A-C (eds) Polarimetry of stars and planetary systems. Cambridge University Press, Cambridge, pp 130–144CrossRefGoogle Scholar
  42. Parmentier V, Fortney JJ, Showman AP, Morley C, Marley MS (2016) Transitions in the cloud composition of hot Jupiters. Astrophys J 828(1):22.  https://doi.org/10.3847/0004-637x/828/1/22ADSCrossRefGoogle Scholar
  43. Perryman MAC (2014) The exoplanet handbook. (First paperback edition). Cambridge University Press, Cambridge/New YorkGoogle Scholar
  44. Petigura EA, Marcy GW (2011) Carbon and oxygen in nearby stars: keys to protoplanetary disk chemistry. Astrophys J 735(1):41.  https://doi.org/10.1088/0004-637x/735/1/41ADSCrossRefGoogle Scholar
  45. Pollack JB, Rages K, Baines KH, Bergstralh JT, Wenkert D, Danielson GE (1986) Estimates of the bolometric Albedos and radiation balance of Uranus and Neptune. Icarus 65(2–3):442–466.  https://doi.org/10.1016/0019-1035(86)90147-8ADSCrossRefGoogle Scholar
  46. Pope SK, Tomasko MG, Williams MS, Perry ML, Doose LR, Smith PH (1992) Clouds of ammonia ice – laboratory measurements of the single-scattering properties. Icarus 100(1):203–220.  https://doi.org/10.1016/0019-1035(92)90030-bADSCrossRefGoogle Scholar
  47. Ragent B., Colburn DS, Rages KA, Knight TCD, Avrin P, Orton GS.,..., Grams GW (1998). The clouds of Jupiter: results of the Galileo Jupiter mission probe nephelometer experiment. J Geophys Res Planets 103(E10):22891–22909.  https://doi.org/10.1029/98je00353CrossRefGoogle Scholar
  48. Rages K, Pollack JB, Smith PH (1983) Size estimates of titans aerosols based on Voyager high-phase-angle images. J Geophys Res Space Phys 88(Na11):8721–8728.  https://doi.org/10.1029/JA088iA11p08721ADSCrossRefGoogle Scholar
  49. Rages K, Pollack JB, Tomasko MG, Doose LR (1991) Properties of scatterers in the troposphere and lower stratosphere of Uranus based on voyager imaging data. Icarus 89(2):359–376.  https://doi.org/10.1016/0019-1035(91)90183-TADSCrossRefGoogle Scholar
  50. Robinson TD, Maltagliati L, Marley MS, Fortney JJ (2014) Titan solar occultation observations reveal transit spectra of a hazy world. Proc Natl Acad Sci U S A 111(25):9042–9047.  https://doi.org/10.1073/pnas.1403473111ADSCrossRefGoogle Scholar
  51. Rossow WB (1978) Cloud microphysics – analysis of clouds of Earth, Venus, Mars, and Jupiter. Icarus 36(1):1–50.  https://doi.org/10.1016/0019-1035(78)90072-6ADSCrossRefGoogle Scholar
  52. Sánchez-Lavega AN, Pérez-Hoyos S, Hueso R (2004) Clouds in planetary atmospheres: a useful application of the Clausius–Clapeyron equation. Am J Phys 72(6):767.  https://doi.org/10.1119/1.1645279ADSCrossRefGoogle Scholar
  53. Seager S (2010) Exoplanet atmospheres: physical processes. Princeton University Press, PrincetonGoogle Scholar
  54. Seager S, Dotson R (2010) Exoplanets. University of Arizona Press, TucsonGoogle Scholar
  55. Shemansky DE, Liu X (2012) Saturn upper atmospheric structure from Cassini EUV and FUV occultations11This article is part of a special issue that honours the work of Dr. Donald M. Hunten FRSC who passed away in December 2010 after a very illustrious career. Can J Phys 90(8):817–831.  https://doi.org/10.1139/p2012-036ADSCrossRefGoogle Scholar
  56. Simon AA, Rowe JF, Gaulme P, Hammel HB, Casewell SL, Fortney JJ,..., Marley MS (2016) Neptune’s dynamic atmosphere from Kepler k2 observations: implications for brown dwarf light curve analyses. Astrophys J 817(2).  https://doi.org/10.3847/0004-637x/817/2/162ADSCrossRefGoogle Scholar
  57. Smith PH, Tomasko MG (1984) Photometry and polarimetry of Jupiter at large phase angles .2. Polarimetry of the south tropical zone, south equatorial belt, and the polar-regions from the Pioneer-10 and Pioneer-11 missions. Icarus 58(1):35–73.  https://doi.org/10.1016/0019-1035(84)90097-6ADSCrossRefGoogle Scholar
  58. Spurr RJD (2006) VLIDORT: a linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. J Quant Spectrosc Radiat Transf 102(2):316–342.  https://doi.org/10.1016/j.jqsrt.2006.05.005ADSCrossRefGoogle Scholar
  59. Sudarsky D, Burrows A, Hubeny I, Li AG (2005) Phase functions and light curves of wide-separation extrasolar giant planets. Astrophys J 627(1):520–533.  https://doi.org/10.1086/430206ADSCrossRefGoogle Scholar
  60. Tomasko MG, Doose LR (1984) Polarimetry and photometry of Saturn from Pioneer-11 – observations and constraints on the distribution and properties of cloud and aerosol-particles. Icarus 58(1):1–34.  https://doi.org/10.1016/0019-1035(84)90096-4ADSCrossRefGoogle Scholar
  61. Tomasko MG, West RA, Castillo ND (1978) Photometry and polarimetry of Jupiter at large phase angles .1. Analysis of imaging data of a prominent belt and a zone from Pioneer 10. Icarus 33(3):558–592.  https://doi.org/10.1016/0019-1035(78)90191-4ADSCrossRefGoogle Scholar
  62. Toon OB, Mckay CP, Ackerman TP, Santhanam K (1989) Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple-scattering atmospheres. J Geophys Res-Atmos 94(D13):16287–16301ADSCrossRefGoogle Scholar
  63. Visscher C, Lodders K, Fegley B (2006) Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. II. Sulfur and phosphorus. Astrophys J 648(2):1181–1195.  https://doi.org/10.1086/506245ADSCrossRefGoogle Scholar
  64. Visscher C, Lodders K, Fegley B (2010) Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. III. Iron, magnesium, and silicon. Astrophys J 716(2):1060–1075.  https://doi.org/10.1088/0004-637x/716/2/1060ADSCrossRefGoogle Scholar
  65. West RA (2000) Condensates in Jovian atmospheres. In: Griffith CA, Marley MS (eds) From giant planets to cool stars : proceedings of a workshop held at Northern Arizona University, Flagstaff, Arizona, USA, 8–11 June 1999. Astronomical Society of the Pacific, San FranciscoGoogle Scholar
  66. West RA (2014) Atmospheres of the giant planets. In: Spohn T, Breuer D, Johnson TV (eds) Encyclopedia of the solar system, 3rd edn. Elsevier, Amsterdam, pp 743–758Google Scholar
  67. West RA, Smith PH (1991) Evidence for aggregate particles in the atmospheres of titan and JUPITER. Icarus 90(2):330–333.  https://doi.org/10.1016/0019-1035(91)90113-8ADSCrossRefGoogle Scholar
  68. West RA, Strobel DF, Tomasko MG (1986) Clouds, aerosols, and photochemistry in the Jovian atmosphere. Icarus 65(2–3):161–217.  https://doi.org/10.1016/0019-1035(86)90135-1ADSCrossRefGoogle Scholar
  69. West RA, Baines KH, Pollack JB (1991) Clouds and aerosols in the Uranian atmosphere. In: Bergstralh JT, Miner ED, Matthews MS (eds) Uranus. University of Arizona Press, Tucson, pp 296–326Google Scholar
  70. West RA, Baines KH, Friedson AJ, Banfield D, Ragent B, Taylor FW (2004) Clouds and haze. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter : the planet, satellites, and magnetosphere. Cambridge University Press, Cambridge, UK, pp 79–104Google Scholar
  71. West RA, Baines KH, Karkoschka E, Sánchez-Lavega A (2009) Clouds and haze in Saturn’s atmosphere. In: Dougherty M, Esposito L, Krimigis SM (eds) Saturn from Cassini-Huygens. Springer, Dordrecht, pp 161–180CrossRefGoogle Scholar
  72. West RA, Yanamandra-Fisher PA, Korokhin V (2015) Gas giant planets, Saturn’s rings and Titan. In: Kolokolova L, Hough J, Levasseur-Regourd A-C (eds) Polarimetry of stars and planetary Systems. Cambridge Univ. Press, Cambridge, pp 320–339CrossRefGoogle Scholar
  73. Wong MH, Atreya SK, Kuhn WR, Romani PN, Mihalka KM (2015) Fresh clouds: a parameterized updraft method for calculating cloud densities in one-dimensional models. Icarus 245:273–281.  https://doi.org/10.1016/j.icarus.2014.09.042ADSCrossRefGoogle Scholar
  74. Zahnle K, Marley MS, Morley CV, Moses JI (2016) Photolytic hazes in the atmosphere of 51 ERI B. Astrophys J 824(2).  https://doi.org/10.3847/0004-637x/824/2/137ADSCrossRefGoogle Scholar
  75. Zapatero Osorio MR, Béjar VJS, Goldman B, Caballero JA, Rebolo R, Acosta-Pulido JA,..., Peña Ramirez K (2011) Near-infrared linear polarization of ultracool dwarfs. Astrophys J 740(1).  https://doi.org/10.1088/0004-637x/740/1/4ADSCrossRefGoogle Scholar
  76. Zhou Y, Apai D, Schneider GH, Marley MS, Showman AP (2016) Discovery of rotational modulations in the planetary-mass companion 2m1207b: intermediate rotation period and heterogeneous clouds in a low gravity atmosphere. Astrophys J 818(2):176.  https://doi.org/10.3847/0004-637x/818/2/176ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations