Tenuous Atmospheres in the Solar System

  • Emmanuel LellouchEmail author
Reference work entry


Current knowledge of tenuous Solar System atmospheres is reviewed, with emphasis at the collisionally thick atmospheres of Pluto, Triton, and Io. A common sharing of atmospheres is that they are dominantly supported by seasonally varying sublimation/condensation exchanges with the surface. Io’s atmosphere is still fundamentally different from Pluto and Triton in that it presents large horizontal variability. Pluto’s atmosphere, and to a lesser extent Triton’s, are reduced (∼10 μbar class) and colder versions of Titan’s, including in particular a coupled nitrogen-methane chemistry that leads to the production of hydrocarbons, nitriles, and haze. Albeit similar in terms of surface pressure and temperature, Pluto’s and Triton’s atmospheres show marked differences in terms of thermal structure and detailed composition – that are amenable to differences in the ∼20 times smaller atmospheric methane mixing ratio on Triton versus Pluto – itself related to a smaller abundance in the ice phase. Io’s dominantly SO2, nanobar-class atmosphere has immediate support mostly from sublimating surface frost, with a contribution from volcanic plumes. The latter are also important in feeding the atmosphere with nonvolatile gases including SO, S2, NaCl, and KCl. The gas temperature, vertical structure, and dynamics of Io’s atmosphere remain poorly understood.


  1. Alday J, Roth L, Ivchenko N, Becker T, Retherford KD (2017) Detection of a hydrogen corona at Callisto in HST/STIS Lyman-alpha images. In: LPSC Conf. #48.1861AGoogle Scholar
  2. Austin JV, Goldstein DB (2000) Rarefied gas model of Io’s sublimation-driven atmosphere. Icarus 148:370ADSCrossRefGoogle Scholar
  3. Bertrand T, Forget F (2016) Observed glacier and volatile distribution on Pluto from atmosphere-topography processes. Nature 540:86–89ADSCrossRefGoogle Scholar
  4. Bertrand T, Forget F (2017) 3D modelling of organic haze in Pluto’s atmosphere. Icarus 287:72–86ADSCrossRefGoogle Scholar
  5. Cheng AF, Summers ME, Gladstone GR et al (2017) Haze in Pluto’s atmosphere. Icarus 290:112ADSCrossRefGoogle Scholar
  6. De Pater I, Roe H, Graham JR, Strobel DF, Bernath, P (2002) Detection of the forbidden SO a1Δ ➔X3Σ- rovibronic transition on Io at 1.7 μm. Icarus 156:296Google Scholar
  7. Elliot JL, Person MJ, McDonald SW et al (2000) The prediction and observation of the 1997 July 18 stellar occultation by Triton: more evidence for distortion and increasing pressure in triton’s atmosphere. Icarus 148:347ADSCrossRefGoogle Scholar
  8. Feaga LM, McGrath M, Feldman PD (2009) Io’s dayside SO2 atmosphere. Icarus 201:570ADSCrossRefGoogle Scholar
  9. Forget F, Bertrand T, Vangvichith M et al (2017) A post-new horizons global climate model of Pluto including the N2, CH4 and CO cycles. Icarus 287:54ADSCrossRefGoogle Scholar
  10. Gao P, Fan S, Wong ML et al (2017) Constraints on the microphysics of Pluto’s photochemical haze from New Horizons observations. Icarus 287:116ADSCrossRefGoogle Scholar
  11. Gladstone GR, Stern SA, Ennico K et al (2016) The atmosphere of Pluto as observed by New Horizons. Science 351:8866ADSCrossRefGoogle Scholar
  12. Grundy WM, Cruikshank DP, Gladstone GR et al (2016) The formation of Charon’s red poles from seasonally cold-trapped volatiles. Nature 539:65ADSCrossRefGoogle Scholar
  13. Gurrola EM (1995) Interpretation of radar data from the icy Galilean satellites and Triton. Ph.D. thesis. Stanford UniversityGoogle Scholar
  14. Hansen CJ, Shemansky DE, Esposito LW et al (2011) The composition and structure of the Enceladus plume. Geo Res Lett 38. CiteID L11202CrossRefGoogle Scholar
  15. Hartkorn O, Saur J, Strobel DF (2017) Structure and density of Callisto’s atmosphere from a fluid-kinetic model of its ionosphere: comparison with Hubble Space Telescope and Galileo observations. Icarus 282:237ADSCrossRefGoogle Scholar
  16. Hinson DP, Linscott IR, Young LA et al (2017) Radio occultation measurements of Pluto’s neutral atmosphere with New Horizons. Icarus 290:96ADSCrossRefGoogle Scholar
  17. Herbert F, Sandel BR (1991) CH4 and haze in Triton’s lower atmosphere. JGR 96:19241–19252ADSCrossRefGoogle Scholar
  18. Horanyi M, Poppe A, Sternovsky Z (2015) Dust ablation in Pluto’s atmosphere. AGU Abstract, fall meeting, San FranciscoGoogle Scholar
  19. Ingersoll AP (1990) Dynamics of Triton’s atmosphere. Nature 344:315ADSCrossRefGoogle Scholar
  20. Jessup KL, Spencer JR, Ballester GE et al (2004) The atmospheric signature of Io’s prometheus plume and anti-jovian hemisphere: evidence for a sublimation atmosphere. Icarus 169:197ADSCrossRefGoogle Scholar
  21. Jessup KL, Spencer JR (2015) Spatially resolved HST/STIS observations of Io’s dayside equatorial atmosphere. Icarus 248:165ADSCrossRefGoogle Scholar
  22. Krasnopolsky VA, Cruikshank DP (1995) Photochemistry of Triton’s atmosphere and ionosphere. J Geophys Res 100:21271–21286ADSCrossRefGoogle Scholar
  23. Leblanc F, Oza AV, Leclercq L et al (2017) On the orbital variability of Ganymede’s atmosphere. Icarus 293:185ADSCrossRefGoogle Scholar
  24. Lellouch E, Belton M, de Pater I et al (1992) The structure, stability, and global distribution of Io’s atmosphere. Icarus 98:271ADSCrossRefGoogle Scholar
  25. Lellouch E (1996) Urey prize lecture. Io’s atmosphere: not yet understood. Icarus 124:1ADSCrossRefGoogle Scholar
  26. Lellouch E, Strobel DF, Belton MJS et al (1996) Detection of sulfur monoxide in Io’s atmosphere. ApJ 459:107ADSCrossRefGoogle Scholar
  27. Lellouch E, Paubert G, Moses JI, Schneider NM, Strobel DF (2003) Volcanically emitted sodium chloride as a source for Io’s neutral clouds and plasma torus. Nature 421:45–47ADSCrossRefGoogle Scholar
  28. Lellouch E, Sicardy B, Bergh d et al (2009) Pluto’s lower atmosphere structure and methane abundance from high-resolution spectroscopy and stellar occultations. A&A 495:L17ADSCrossRefGoogle Scholar
  29. Lellouch E, de Bergh C, Sicardy B et al (2010) Detection of CO in Triton’s atmosphere and the nature of surface-atmosphere interactions. A&A 512:L8ADSCrossRefGoogle Scholar
  30. Lellouch E, Ali-Dib M, Jessup KL et al (2015a) Detection and characterization of Io’s atmosphere from high-resolution 4-μm spectroscopy. Icarus 253:99ADSCrossRefGoogle Scholar
  31. Lellouch E, de Bergh C, Sicardy B et al (2015b) Exploring the spatial, temporal, and vertical distribution of methane in Pluto’s atmosphere. Icarus 246:268ADSCrossRefGoogle Scholar
  32. Lellouch E, Gurwell M, Butler B et al (2017) Detection of CO and HCN in Pluto’s atmosphere with ALMA. Icarus 286:289ADSCrossRefGoogle Scholar
  33. McDoniel WJ, Goldstein DB, Varghese P, Trafton LM (2017) The interaction of Io’s plumes and sublimation atmosphere. Icarus 294:81ADSCrossRefGoogle Scholar
  34. McGrath MA, Lellouch E, Strobel DF, Feldman P, Johnson RE (2004) Satellite atmospheres. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter. The planet, satellites and magnetospheres. Cambridge planetary science, vol 1. Cambridge University Press, Cambridge, UK, pp 457–484. ISBN:0-521-81808-7Google Scholar
  35. Moses JI, Zolotov MYu, Fegley B (2002) Alkali and chlorine photochemistry in a volcanically driven atmosphere on Io. Icarus 156:137–105ADSCrossRefGoogle Scholar
  36. Moullet A, Gurwell MA, Lellouch E, Moreno R (2010) Simultaneous mapping of SO2, SO, NaCl in Io’s atmosphere with the submillimeter array. Icarus 208:353–365ADSCrossRefGoogle Scholar
  37. Moullet A, Lellouch E, Moreno R, Gurwell MA, Moore C (2008) First disk-resolved millimeter observations of Io’s surface and SO2 atmosphere. A&A 482:279ADSCrossRefGoogle Scholar
  38. Moullet A, Lellouch E, Moreno R et al (2013) Exploring Io’s atmospheric composition with APEX: first measurement of 34SO2 and tentative Detection of KCl. ApJ 776:32ADSCrossRefGoogle Scholar
  39. Moullet A, Lellouch E, Gurwell M et al (2015) Distribution of alkali gases in Io’s atmosphere. American Astronomical Society, DPS meeting #47, id.311.31Google Scholar
  40. Olkin CB, Elliot JL, Hammel HB et al (1997) The thermal structure of Triton’s atmosphere: results from the 1993 and 1995 occultations. Icarus 129:178ADSCrossRefGoogle Scholar
  41. Olkin CB, Young LA, Borncamp D et al (2015) Evidence that Pluto’s atmosphere does not collapse from occultations including the 2013 May 04 event. Icarus 246:220–225ADSCrossRefGoogle Scholar
  42. Pearl J, Hanel R, Kunde V et al (1979) Identification of gaseous SO2 and new upper limits for other gases on Io. Nature 280:755ADSCrossRefGoogle Scholar
  43. Rages K, Pollack JB (1992) Voyager imaging of Triton’s clouds and hazes. Icarus 99:289–301ADSCrossRefGoogle Scholar
  44. Roth L, Saur J, Retherford KD et al (2014) Transient water vapor at Europa’s South Pole. Science 343:171ADSCrossRefGoogle Scholar
  45. Sicardy B, Talbot J, Meza E et al (2016) Pluto’s atmosphere from the 2015 June 29 ground-based stellar occultation at the time of the new horizons flyby. Astrophys J Lett 819:L38ADSCrossRefGoogle Scholar
  46. Saur J, Neubauer FM, Strobel DF, Summers ME (2002) Interpretation of Galileo’s Io plasma and field observations: I0, I24, and I27 flybys and close polar passes. J Geophys Res 107(A12):SMP 5-1CrossRefGoogle Scholar
  47. Spencer JR, Jessup KL, McGrath MA, Ballester GE, Yelle R (2000) Discovery of Gaseous S2 in Io’s Pele Plume. Science 288:1208ADSCrossRefGoogle Scholar
  48. Spencer JR, Lellouch E, Richter MJ et al (2005) Mid-infrared detection of large longitudinal asymmetries in Io’s SO2 atmosphere. Icarus 176:283ADSCrossRefGoogle Scholar
  49. Spencer JR, Stansberry JA, Trafton LM et al (1997) Volatile transport, seasonal cycles, and atmospheric dynamics on Pluto. In: Stern SA, Tholen DJ (eds) Pluto and Charon. University of Arizona Press, Tucson, p 435Google Scholar
  50. Stansberry JA, Spencer JR, Schmitt B et al (1996) A model for the overabundance of methane in the atmospheres of Pluto and Triton. Planet Space Sci 44:1051–1063ADSCrossRefGoogle Scholar
  51. Stern SA, Kammer JA, Barth EL et al (2017) Evidence for possible clouds in Pluto’s present-day atmosphere. Astronom J 154:43ADSCrossRefGoogle Scholar
  52. Strobel DF, Zhu X, Summers ME (1994) On the vertical structure of Io’s atmosphere. Icarus 111:18ADSCrossRefGoogle Scholar
  53. Strobel DF, Summers ME (1995) Triton’s upper atmosphere and ionosphere. In: Cruikshank DP (ed) Neptune and Triton. The University of Arizona Press, Tucson Arizona, pp 1107–1150Google Scholar
  54. Strobel DF, Zhu X, Summers ME, Stevens MH (1996) On the vertical thermal structure of Pluto’s atmosphere. Icarus 120:266ADSCrossRefGoogle Scholar
  55. Strobel DF, Zhu X (2017) Comparative planetary nitrogen atmospheres: density and thermal structures of Pluto and Triton. Icarus 291:55ADSCrossRefGoogle Scholar
  56. Summers ME, Strobel DF (1996) Photochemistry and vertical transport in Io’s atmosphere and ionosphere. Icarus 120:290ADSCrossRefGoogle Scholar
  57. Teolis BD, Waite JH (2016) Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS. Icarus 222:277ADSCrossRefGoogle Scholar
  58. Toigo AD, Gierasch PJ, Sicardy B, Lellouch E (2010) Thermal tides on Pluto. Icarus 208:402ADSCrossRefGoogle Scholar
  59. Toigo AD, French RG, Gierasch PJ et al (2015) General circulation models of the dynamics of Pluto’s volatile transport on the eve of the New Horizons encounter. Icarus 254:306ADSCrossRefGoogle Scholar
  60. Trafton LM, Hunten DM, Zahnle KJ, McNutt RL Jr (1997) Escape processes at Pluto and Charon. In: Stern SA, Tholen DJ (eds) Pluto and Charon. University of Arizona Press, Tucson, pp 475–522Google Scholar
  61. Trafton LM (2015) On the state of methane and nitrogen ice on Pluto and Triton: implications of the binary phase diagram. Icarus 246:197ADSCrossRefGoogle Scholar
  62. Tsang CCC, Spencer JR, Lellouch E et al (2012) Io’s atmosphere: constraints on sublimation support from density variations on seasonal timescales using NASA IRTF/TEXES observations from 2001 to 2010. Icarus 212:277ADSCrossRefGoogle Scholar
  63. Tsang CCC, Spencer JR, Lellouch E et al (2013) Io’s contracting atmosphere post 2011 perihelion: further evidence for partial sublimation support on the anti-Jupiter hemisphere. Icarus 226:1177ADSCrossRefGoogle Scholar
  64. Tsang CCC, Spencer JR, Jessup KL (2015) Non-detection of post-eclipse changes in Io’s Jupiter-facing atmosphere: evidence for volcanic support? Icarus 248:243ADSCrossRefGoogle Scholar
  65. Tsang CCC, Spencer JR, Lellouch E, Lopez-Valverde MA, Richter MJ (2016) The collapse of Io’s primary atmosphere in Jupiter eclipse. J Geophys Res Planet 121:1400–1410ADSCrossRefGoogle Scholar
  66. Walker AC, Gratiy SL, Goldstein DB et al (2010) A comprehensive numerical simulation of Io’s sublimation-driven atmosphere. Icarus 207:409ADSCrossRefGoogle Scholar
  67. Wong MC, Smyth WH (2000) Model calculations for Io’s atmosphere at eastern and western elongations. Icarus 146:60–74ADSCrossRefGoogle Scholar
  68. Wong ML, Fan S, Gao P et al (2017) The photochemistry of Pluto’s atmosphere illuminated by New Horizons. Icarus 287:110ADSCrossRefGoogle Scholar
  69. Yelle R, Lunine JI (1989) Evidence for a molecule heavier than methane in the atmosphere of Pluto. Nature 339:288ADSCrossRefGoogle Scholar
  70. Young LA (2012) Volatile transport on inhomogeneous surfaces: I – analytic expressions, with application to Pluto’s day. Icarus 221:80ADSCrossRefGoogle Scholar
  71. Young LA (2013) Pluto’s seasons: new predictions for new horizons. ApJ 766: id. L22, 6 ppADSCrossRefGoogle Scholar
  72. Young LA, Kammer JA, Steffl AJ, et al. (2018) Structure and composition of Pluto’s atmosphere from the new horizons solar ultraviolet occultation. Icarus 300:174–199ADSCrossRefGoogle Scholar
  73. Zhang J, Goldstein DB, Varghese PL et al (2003) Simulation of gas dynamics and radiation in volcanic plumes of Io. Icarus 163:182ADSCrossRefGoogle Scholar
  74. Zolotov MY, Fegley B (1998) Volcanic production of sulfur monoxide (SO) on Io. Icarus 132:431ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA)Observatoire de ParisMeudonFrance

Section editors and affiliations

  • Agustín Sanchez Lavega
    • 1
  1. 1.Universidad del País VascoBilbaoSpain

Personalised recommendations