Composition and Chemistry of the Atmospheres of Terrestrial Planets: Venus, the Earth, Mars, and Titan

  • Thérèse EncrenazEmail author
  • Athena Coustenis
Reference work entry


In spite of noticeable differences, the atmospheres of the rocky, icy, and gaseous planets of the Solar System share common physico-chemical processes which drive their thermal and cloud structure, their general circulation, and their global climate. These processes are described in the first part of this review. In the second part, we discuss the formation scenario of the terrestrial planets, the atmospheric composition, and chemistry of Venus, the Earth, and Mars. The atmosphere of Titan is described in a third part, with special emphasis on its analogy with the early Earth and its exobiological implications.


  1. Acuna MH, Connerney JEP, Wasilewski P et al (1998) Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor mission. Science 279:1676–1680Google Scholar
  2. Bezard B, de Bergh C (2007) Composition of the atmosphere of Venus below the clouds. J Geophys Res 112:E4. CiteID E04S07CrossRefGoogle Scholar
  3. Bézard B, de Bergh C, Crisp D, Maillard J-P (1990) The deep atmosphere of Venus revealed by high-resolution night-side spectra. Nature 345:508–511ADSCrossRefGoogle Scholar
  4. Bibring J-P, Langevin Y, Mustard JF et al (2006) Science 312:400–404ADSCrossRefGoogle Scholar
  5. Boynton WV, Feldman WC, Mitrofanov I et al (2002) Science 297:81–85ADSCrossRefGoogle Scholar
  6. Carlson RW, Baines KH, Kamp L et al (1991) Galileo infrared imaging spectroscopy measurements at Venus. Science 253:1541–1548ADSCrossRefGoogle Scholar
  7. Coustenis A (2014) Titan. In: Spohn T, Breuer D, Johnson T (eds) Encyclopedia of the Solar System, 3rd edn. Elsevier, AmsterdamCrossRefGoogle Scholar
  8. Coustenis A, Encrenaz Th (2013) Life beyond earth: the search for habitable worlds in the universe. Cambridge University Press, New York. ISBN 9781107026179Google Scholar
  9. Coustenis A, Taylor FW (2008) Titan: exploring an earthlike world. World Scientific Publishing, Singapore, 330 ppCrossRefGoogle Scholar
  10. De Pater I, Lissauer JJ (2001) Planetary sciences. Cambridge University Press, Cambridge. ISBN 0521482194Google Scholar
  11. Drossart P, Rosenqvist J, Encrenaz T et al (1993) Earth global mosaic observations with NIMS-Galileo. Plan Space Sci 41:551–561ADSGoogle Scholar
  12. Fulchignoni M, Ferri F, Angrilli F et al (2005) In situ measurements of the physical characteristics of Titan's environment. Nature 438:785–791ADSCrossRefGoogle Scholar
  13. Griffith C, Owen T, Geballe TR, Miller G (1998) Transient clouds in Titan’s lower atmosphere. Nature 395:575–578ADSCrossRefGoogle Scholar
  14. Hanel RA, Conrath BJ, Jennings DE, Samuelson RE (2003) Exploration of the solar system by infrared remote sensing, 2nd edn. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  15. Heller R, Armstrong J (2014) Superhabitable worlds. Astrobiology 14:50–66ADSCrossRefGoogle Scholar
  16. Iess L, Jacobson RA, Ducci M et al (2012) The tides of Titan. Science 337:457–459ADSCrossRefGoogle Scholar
  17. Jakosky B, Slipsky M, Benna M, Mahaffy P, Elrod M, Yelle R, Stone S, Alsaeed N (2017) Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science 355:1408–1410ADSMathSciNetCrossRefGoogle Scholar
  18. Kipping DM, Bakos GA, Buchhave L, Nesvorný D, Schmitt A (2012) The hunt for exomoons with Kepler (HEK). I. Description of a new observational project. Astrophys J 750(2):115, 19 ppADSCrossRefGoogle Scholar
  19. Lellouch E et al (2000) The 2.4-45 μm spectrum of Mars observed with the infrared space observatory. Planet Space Sci 48:1393–1405ADSCrossRefGoogle Scholar
  20. Lewis JS (1997) Physics and chemistry of the solar system, revised edition. Academic, OrlandoGoogle Scholar
  21. Lissauer JJ, de Pater I (2013) Fundamental planetary science. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  22. Mangold N, Baratoux D, Witasse O, Encrenaz T, Sotin C (2016) Mars: a small terrestrial planet. Astron Astrophys Rev 24:1–107. id.15CrossRefGoogle Scholar
  23. Owen T, Lutz BL, de Bergh C (1988) Science 240:1767–1770ADSCrossRefGoogle Scholar
  24. Porco CC, Baker E, Barbara J et al (2005) Imaging of Titan with the Cassini spacecraft. Nature 434:159–168ADSCrossRefGoogle Scholar
  25. Raulin F (2008) Planetary science: organic lakes on Titan. Nature 454(7204):587–589ADSCrossRefGoogle Scholar
  26. Smith MD, Bougher S, Encrenaz T, Forget F, Kleinboehl A (2017) Thermal structure and composition. In: Haberle RM, Clancy RT, Forget F, Smith MD, Zurek RW (eds) The atmosphere and climate of Mars. Cambridge University Press, Cambridge, UKGoogle Scholar
  27. Smrekar SE, Stofan ER, Mueller R et al (2010) Science 328:605ADSCrossRefGoogle Scholar
  28. Tomasko M, Archinal B, Becker T et al (2005) Rain, winds and haze during the Huygens probe’s descent to Titan’s surface. Nature 438:765–778ADSCrossRefGoogle Scholar
  29. Von Zahn U, Kumar S, Niemann H, Prinn R (1983) Composition of the Venus atmosphere. In: Venus. University of Arizona Press, TucsonGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LESIAObservatoire de Paris, CNRS, PSL Universities, UPMC, UPDMeudonFrance

Personalised recommendations