Advertisement

Internal Structure of Giant and Icy Planets: Importance of Heavy Elements and Mixing

  • Ravit HelledEmail author
  • Tristan Guillot
Reference work entry

Abstract

In this chapter we summarize current knowledge of the internal structure of giant planets. We concentrate on the importance of heavy elements and their role in determining the planetary composition and internal structure, in planet formation, and during the planetary long-term evolution. We briefly discuss how internal structure models are derived, present the possible structures of the outer planets in the Solar System, and summarize giant planet formation and evolution. Finally, we introduce giant exoplanets and discuss how they can be used to better understand giant planets as a class of planetary objects.

Notes

Acknowledgements

R. H. acknowledges support from the Swiss National Science Foundation (SNSF), project number 200021-169054. T.G. acknowledges support from CNES and from ANR JOVIAL.

References

  1. Alibert Y, Mordasini C, Benz W, Winisdoer C (2005) Models of giant planet formation with migration and disc evolution. A&A 434:343ADSCrossRefGoogle Scholar
  2. Baraffe I, Chabrier G, Barman T (2008) Structure and evolution of super-Earth to super-Jupiter exoplanets: I. Heavy element enrichment in the interior. A&A 482:315ADSCrossRefGoogle Scholar
  3. Baraffe I, Chabrier G, Fortney J, Sotin C (2014) Planetary Internal Structures. In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI, vol 914. University of Arizona Press, Tucson, p 763Google Scholar
  4. Bolton SJ et al (2017) Jupiter’s interior and deep atmosphere: the initial pole-to- pole passes with the Juno spacecraft. Science 356(6340):821–825ADSCrossRefGoogle Scholar
  5. Burrows A, Hubeny I, Budaj J, Hubbard WB (2007) Possible solutions to the radius anomalies of transiting giant planets. ApJ 661:502ADSCrossRefGoogle Scholar
  6. Chabrier G, Baraffe I (2007) Heat transport in giant (exo)planets: a new perspective. ApJL 661:L81ADSCrossRefGoogle Scholar
  7. Conrath D, Gautier D (2000) Saturn helium abundance: a reanalysis of voyager measurements. Icarus 144:124ADSCrossRefGoogle Scholar
  8. Deming D, Seager S (2017) Illusion and reality in the atmospheres of exoplanets. JGR Planets 122:53ADSGoogle Scholar
  9. Folkner WM et al (2017) Jupiter gravity field estimated from the first two Juno orbits. Geophys Res Lett 44. https://doi.org/10.1002/2017GL073140ADSCrossRefGoogle Scholar
  10. Fortney JJ, Hubbard WB (2003) Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus 164:228ADSCrossRefGoogle Scholar
  11. Fortney JJ, Nettelmann N (2010) The interior structure, composition, and evolution of giant planets. Space Sci Rev 152:423ADSCrossRefGoogle Scholar
  12. Fortney JJ, Helled R, Nettelmann N, Stevenson DJ, Marley MS, Hubbard WB, Iess L (2016) Invited review for the forthcoming volume “Saturn in the 21st Century.” eprint arXiv:1609.06324Google Scholar
  13. Fuller J (2014) Saturn ring seismology: evidence for stable stratification in the deepinterior of Saturn. Icarus 242:283ADSCrossRefGoogle Scholar
  14. Guillot T (1999) A comparison of the interiors of Jupiter and Saturn. Icarus 47:1183–1200Google Scholar
  15. Guillot T (2005) The interiors of giant planets: models and outstanding questions. Annu Rev Earth Planet Sci 33:493–530ADSCrossRefGoogle Scholar
  16. Guillot T, Showman AP (2002) Evolution of “51 pegasus b-like” planets. A&A 385:156ADSCrossRefGoogle Scholar
  17. Guillot T, Gautier D (2015) Giant planets. In: Schubert G, Spohn T (eds) Treatise on geophysics, 2nd edn. Elsevier. http://adsabs.harvard.edu/abs/2014arXiv1405.3752G
  18. Guillot T, Burrows A, Hubbard WB, Lunine JI, Saumon D (1996) Giant planets at small orbital distances. ApJL 459:L35ADSCrossRefGoogle Scholar
  19. Guillot T, Stevenson DJ, Hubbard WB, Saumon D (2004) The interior of Jupiter. In: Bagenal F, Dowling TE, McKinnon WB (eds) Jupiter. The planet, satellites and magnetosphere. Cambridge planetary science, vol 1. Cambridge University Press, Cambridge, pp 35–57. ISBN:0-521-81808-7Google Scholar
  20. Guillot T, Santos NC, Pont F, Iro N, Melo C, Ribas I (2006) A correlation between the heavy element content of transiting extrasolar planets and the metallicity of their parent stars. A&A 453:L21ADSCrossRefGoogle Scholar
  21. Helled R, Guillot T (2013) Interior models of Saturn: including the uncertainties in shape and rotation. ApJ 767:113ADSCrossRefGoogle Scholar
  22. Helled R, Lunine J (2014) Measuring Jupiter’s water abundance by Juno: the link between interior and formation models. MNRAS 441:2273ADSCrossRefGoogle Scholar
  23. Helled R, Anderson JD, Schubert G (2010) Uranus and Neptune: shape and rotation. Icarus 210:446ADSCrossRefGoogle Scholar
  24. Helled R, Anderson JD, Podolak M, Schubert G (2011) Interior models of Uranus and Neptune. ApJ 726:15ADSCrossRefGoogle Scholar
  25. Helled R, Galanti E, Kaspi Y (2015) Saturn’s fast spin determined from its gravitational field and oblateness. Nature 520(7546):202–204ADSCrossRefGoogle Scholar
  26. Hori Y, Ikoma M (2011) Gas giant formation with small cores triggered by envelope pollution by icy planetesimals. MNRAS 416:419ADSCrossRefGoogle Scholar
  27. Hubbard WB, Militzer B (2016) A preliminary Jupiter model. ApJ 820:80ADSCrossRefGoogle Scholar
  28. Iaroslavitz E, Podolak M (2007) Atmospheric mass deposition by captured planetesimals. Icarus 187:600ADSCrossRefGoogle Scholar
  29. Ikoma M, Guillot T, Genda H, Tanigawa T, Ida S (2006) On the origin of HD 149026b. Astrophys J 650(2):1150–1159ADSCrossRefGoogle Scholar
  30. Kurokawa H, Inutsuka S (2015) On the radius anomaly of hot Jupiters: reexamination of the possibility and impact of layered convection. ApJ 815:78ADSCrossRefGoogle Scholar
  31. Lambrechts M, Johansen A (2014) Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. A&A 572:12, id. A107Google Scholar
  32. Laughlin G, Crismani M, Adams FC (2011) On the anomalous radii of the transiting extrasolar planets. ApJL 729:L7ADSCrossRefGoogle Scholar
  33. Leconte J, Chabrier G (2012) A new vision on giant planet interiors: the impact of double diffusive convection. A&A 540:A20ADSCrossRefGoogle Scholar
  34. Leconte J, Chabrier G (2013) Layered convection as the origin of Saturn’s luminosity anomaly. Nat Geosci 6:347ADSCrossRefGoogle Scholar
  35. Levison HF, Kretke KA, Duncan MJ (2016) Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524:322ADSCrossRefGoogle Scholar
  36. Lorenzen W, Holst B, Redmer R (2009) Demixing of hydrogen and helium at megabar pressures. PRL 102(11):115701ADSCrossRefGoogle Scholar
  37. Lorenzen W, Holst B, Redmer R (2011) Metallization in hydrogen-helium mixtures. Phys Rev B 84(23):235109ADSCrossRefGoogle Scholar
  38. Loubeyre P, Letoullec R, Pinceaux JP (1991) A new determination of the binary phase diagram of H2-He mixtures at 296 K. J Phys Condens Matter 3:3183ADSCrossRefGoogle Scholar
  39. Lozovsky M, Helled R, Rosenberg ED, Bodenheimer P (2017) Jupiter’s formation and its primordial internal structure. ApJ 836:16, article id. 227ADSCrossRefGoogle Scholar
  40. Mankovich C, Fortney JJ, Moore KL (2016) Bayesian evolution models for Jupiter with helium rain and double-diffusive convection. ApJ 832:13, article id. 113ADSCrossRefGoogle Scholar
  41. Marley MS, Gómez P, Podolak M (1995) Monte Carlo interior models for Uranus and Neptune. GJR 100:23349CrossRefGoogle Scholar
  42. Miguel Y, Guillot T, Fayon L (2016) Jupiter internal structure: the effect of different equations of state. A&A 596:12, id. A114Google Scholar
  43. Militzer B, Hubbard WB, Vorberger J, Tamblyn I, Bonev SA (2008) A massive core in Jupiter predicted from first-principles simulations. ApJL 688:L45ADSCrossRefGoogle Scholar
  44. Militzer B, Soubiran F, Wahl SM, Hubbard W (2016) Understanding Jupiter’s interior. JGR Planets 121:1552ADSGoogle Scholar
  45. Mirouh GM, Garaud P, Stellmach S, Traxler AL, Wood TS (2012) ApJ 750:61ADSCrossRefGoogle Scholar
  46. Morales MA, Schwegler E, Ceperley D et al (2009) Phase separation in hydrogen-helium mixtures at Mbar pressures. PNAS 106:1324ADSCrossRefGoogle Scholar
  47. Morales MA, Hamel S, Caspersen K, Schwegler E (2013) Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors. Phys Rev B 87:174105ADSCrossRefGoogle Scholar
  48. Moutou C, Deleuil M, Guillot T, Baglin A, Bordé P, Bouchy F, Cabrera J, Csizmadia S, Deeg HJ (2013) CoRoT: harvest of the exoplanet program. Icarus 226:1625–1634ADSCrossRefGoogle Scholar
  49. Nettelmann N, Holst B, Kietzmann A, French M, Redmer R, Blaschke D (2008) Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. ApJ 683:1217ADSCrossRefGoogle Scholar
  50. Nettelmann N, Helled R, Fortney JJ, Redmer R (2012a) New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modi ed shape and rotation data. Planet Space Sci 77:143. Special editionADSCrossRefGoogle Scholar
  51. Nettelmann N, Püstow R, Redmer R (2013) Saturn layered structure and homogeneous evolution models with different EOSs. Icarus 225:548ADSCrossRefGoogle Scholar
  52. Nettelmann N, Fortney JJ, Moore K, Mankovich C (2015) An exploration of double diffusive convection in Jupiter as a result of hydrogen-helium phase separation. Mon Not R Astron Soc 447(4):3422–3441ADSCrossRefGoogle Scholar
  53. Nettelmann N, Wang K, Fortney JJ, Hamel S, Yellamilli S, Bethkenhagen M, Redmer R (2016) Uranus evolution models with simple thermal boundary layers. Icarus 275:107–116ADSCrossRefGoogle Scholar
  54. Paardekooper SJ, Mellema G (2004) Planets opening dust gaps in gas disks. A&A 425:L9ADSCrossRefGoogle Scholar
  55. Podolak M, Helled R (2012) What do we really know about Uranus and Neptune? ApJL 759(2):7, article id. L32ADSCrossRefGoogle Scholar
  56. Podolak M, Hubbard WB, Stevenson DJ (1991) Model of Uranus interior and magnetic field. In: Uranus, vol 2961. University of Arizona Press, TucsonGoogle Scholar
  57. Podolak M, Podolak JI, Marley MS (2000) Further investigations of random models of Uranus and Neptune. PSS 48:143Google Scholar
  58. Pollack JB, Hubickyj O, Bodenheimer P, Lissauer JJ, Podolak M, Greenzweig Y (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62ADSCrossRefGoogle Scholar
  59. Rosenblum E, Garaud P, Traxler A, Stellmach S (2011) Erratum: “Turbulent mixing and layer formation in double-diffusive convection: three-dimensional numerical simulations and theory”. ApJ 742:132ADSCrossRefGoogle Scholar
  60. Saumon D, Guillot T (2004) Shock compression of deuterium and the interiors of Jupiter and Saturn. ApJ 609:1170ADSCrossRefGoogle Scholar
  61. Schouten JA, de Kuijper A, Michels JPJ (1991) Critical line of He-H2 up to 2500 K and the influence of attraction on fluid-fluid separation. Phys Rev B 44:6630ADSCrossRefGoogle Scholar
  62. Spilker LJ (2012) Cassini: science highlights from the equinox and solstice missions. In: Lunar and Planetary Institute Science Conference Abstracts, vol 43, p 1358ADSGoogle Scholar
  63. Stevenson DJ, Salpeter EE (1977a) The dynamics and helium distribution in hydrogen-helium fluid planets. ApJS 35:239ADSCrossRefGoogle Scholar
  64. Stevenson DJ, Salpeter EE (1977b) The phase diagram and transport properties for hydrogen-helium fluid planets. ApJS 35:221ADSCrossRefGoogle Scholar
  65. Tanaka H, Ida S (1999) Growth of a migrating protoplanet. Icarus 139:350ADSCrossRefGoogle Scholar
  66. Thorngren DP, Fortney JJ, Murray-Clay RA, Lopez ED (2016) The mass-metallicity relation for giant planets. ApJ 831:14, article id. 64ADSCrossRefGoogle Scholar
  67. Vazan A, Kovetz A, Podolak M, Helled R (2013) The effect of composition on the evolution of giant and intermediate-mass planets. Mon Not R Astron Soc 434(4):3283–3292ADSCrossRefGoogle Scholar
  68. Vazan A, Helled R, Kovetz A, Podolak M (2015) Convection and mixing in giant planet evolution. ApJ 803:32ADSCrossRefGoogle Scholar
  69. Vazan A, Helled R, Podolak M, Kovetz A (2016) The evolution and internal structure of Jupiter and Saturn with compositional gradients. ApJ 829:118ADSCrossRefGoogle Scholar
  70. Venturini J, Alibert Y, Benz W (2016) Planet formation with envelope enrichment: new insights on planetary diversity. A&A 596:14, id. A90Google Scholar
  71. von Zahn U, Hunten DM, Lehmacher G (1998) Helium in Jupiter’s atmosphere: results from the Galileo probe helium interferometer experiment. JGR 103:22815ADSCrossRefGoogle Scholar
  72. Wahl SM et al (2017) Comparing Jupiter interior structure models to Juno gravity measurements and the role of an expanded core. Geophys Res Lett 44:4649–4659ADSCrossRefGoogle Scholar
  73. Wilson HF, Militzer B (2010) Sequestration of noble gases in giant planet interiors. PRL 104:121101ADSCrossRefGoogle Scholar
  74. Wilson HF, Militzer B (2012) Solubility of water ice in metallic hydrogen: consequences for core erosion in gas giant planets. ApJ 745:54ADSCrossRefGoogle Scholar
  75. Wood TS, Garaud P, Stellmach S (2013) A new model for mixing by double-diffusive convection (semi-convection). II. The transport of heat and composition through layers. ApJ 768:157ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Computational SciencesUniversity of ZurichZurichSwitzerland
  2. 2.Observatoire de la Cote dAzurNice Cedex 4France

Personalised recommendations