Interiors and Surfaces of Terrestrial Planets and Major Satellites

  • Alberto G. FairénEmail author
Reference work entry


To reliably advance in studies of extrasolar planets, or exoplanets, we need previously a solid understanding of our own planetary neighborhood. In this chapter, we will give a general overview of the internal structure, composition, surface features, and geologic units of the four terrestrial planets of the solar system: Mercury, Venus, Earth, and Mars. We will include the Earth’s Moon as part of a large Earth-Moon system. We will also revise the current knowledge of the surfaces and interiors of six most representative major satellites orbiting the giant gas planets of the solar system: Io, Europa, Ganymede, Callisto (Jupiter), Titan (Saturn), and Triton (Neptune).


  1. Acuña MH, Connerney JE, Ness NF, Lin RP, Mitchell D, Carlson CW, McFadden J, Anderson KA, Reme H, Mazelle C, Vignes D, Wasilewski P, Cloutier P (1999) Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284:790ADSCrossRefGoogle Scholar
  2. Amend JP, Shock EL (1998) Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281:1659–1662ADSCrossRefGoogle Scholar
  3. Anderson JD, Schubert G, Jacobson RA, Lau EL, Moore WB, Sjogren WL (1998) Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281:2019–2022ADSCrossRefGoogle Scholar
  4. Anderson JD, Jacobsen RA, McElrath TP, Schubert G, Moore WB, Thomas PC (2001) Shape, mean radius, gravity field, and interior structure of Callisto. Icarus 153:157–161ADSCrossRefGoogle Scholar
  5. Baker VR, Hamilton CW, Burr DM, Gulick VC, Komatsu G, Luo W, Rice JW, Rodriguez JAP (2015) Fluvial geomorphology on Earth-like planetary surfaces: a review. Geomorphology 245:149–182CrossRefGoogle Scholar
  6. Bekker A, Holland HD, Wang P-L, Rumble D III, Stein HJ, Hannah JL, Coetzee LL, Beukes (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120ADSCrossRefGoogle Scholar
  7. Black BA, Perron JT, Hemingway D, Bailey E, Nimmo F, Zebker H (2017) Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan. Science 356(6339): 727–731ADSCrossRefGoogle Scholar
  8. Bullock MA, Grinspoon DH (2001) The recent evolution of climate on Venus. Icarus 150:19–37ADSCrossRefGoogle Scholar
  9. Canfield DE, Habicht KS, Thamdrup B (2000) The Archaean sulfur cycle and the early history of atmospheric oxygen. Science 288:658–661ADSCrossRefGoogle Scholar
  10. Carlson RW, Garnero E, Harrison TM, Li J, Manga M, McDonough WF, Mukhopadhyay S, Romanowicz B, Rubie D, Williams Q, Zhong S (2014) How did early Earth become our modern world? Annu Rev Earth Planet Sci 42:151–178ADSCrossRefGoogle Scholar
  11. Carr MH et al (1998) Evidence for a subsurface ocean on Europa. Nature 391:363–365ADSCrossRefGoogle Scholar
  12. Cassen PM et al (1982) Structure and thermal evolution of the Galilean satellites. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 93–128Google Scholar
  13. Chabot NL, Ernst CM, Denevi BW, Nair H, Deutsch AN, Blewett DT, Murchie SL, Neumann GA, Mazarico E, Paige DA, Harmon JK (2014) Images of surface volatiles in Mercury’s polar craters acquired by the MESSENGER spacecraft. Geology 42(12):1051–1054ADSCrossRefGoogle Scholar
  14. Chanover NJ, Anderson CM, McKay CP, Rannou P, Glenar DA, Hillman JJ, Blass WE (2003) Probing Titan’s lower atmosphere with acousto-optic tuning. Icarus 163:150–163ADSCrossRefGoogle Scholar
  15. Clifford SM, Parker TJ (2001) The evolution of the Martian Hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154(1):40–79ADSCrossRefGoogle Scholar
  16. Collins GC, Patterson GW, Head JW, Pappalardo RT, Prockter LM, Lucchitta BK, Kay JP, (2013) Global geologic map of Ganymede. USGS Scientific Investigations Map, 3237Google Scholar
  17. Consolmagno GJ, Lewis J (1976) Structural and thermal models of icy Galilean satellites. In: Gehrels T (ed) Jupiter. University of Arizona Press, Tucson, pp 1035–1051Google Scholar
  18. Cruikshank DP, Roush TL, Owen TC, Geballe TR, de Bergh C, Schmitt B, Brown RH, Bartholomew MJ (1993) Ices on the surface of Triton. Science 261:742–745ADSCrossRefGoogle Scholar
  19. Dalton JB (2003) Spectral behavior of hydrated sulfate salts: implications for Europa mission spectrometer design. Astrobiology 3:771–784ADSCrossRefGoogle Scholar
  20. Dundas CM (2017) Effects of lava heating on volatile-rich slopes on Io. J Geophys Res Planets 122(3):546–559ADSCrossRefGoogle Scholar
  21. Elliot JL, Hammel HB, Wasserman LH, Franz OG, McDonald SW, Person MJ, Olkin CB, Dunham EW, Spencer JR, Stansberry JA, Buie MW, Pasachoff JM, Babcock BA, McConnochie TH (1998) Global warming on Triton. Nature 393:765–767ADSCrossRefGoogle Scholar
  22. Fairén AG (2010) A cold and wet Mars. Icarus 208:165–175ADSCrossRefGoogle Scholar
  23. Fairén AG, Davila AF, Duport LG, Amils R, Mckay C (2009) Stability against freezing of aqueous solutions on early Mars. Nature 459:401–404ADSCrossRefGoogle Scholar
  24. Farquhar J, Bao M, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758ADSCrossRefGoogle Scholar
  25. Feldman WC, Maurice S, Binder AB, Barraclough BL, Elphic RC, Lawrence DJ (1998) Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles. Science 281:1496–1500ADSCrossRefGoogle Scholar
  26. Fortes AD (2000) Exobiological implications of a possible ammonia-water ocean inside Titan. Icarus 146:444–452ADSCrossRefGoogle Scholar
  27. Fukuhara T, Futaguchi M, Hashimoto GL, Horinouchi T, Imamura T, Iwagaimi N, Kouyama T, Murakami SY, Nakamura M, Ogohara K, Sato M (2017) Large stationary gravity wave in the atmosphere of Venus. Nat Geosci 10(2):85–88ADSCrossRefGoogle Scholar
  28. Geissler PE et al (1998) Evidence for non-synchronous rotation of Europa. Nature 391:368–370ADSCrossRefGoogle Scholar
  29. Gough DO (1981) Solar interior structure and luminosity variations. Sol Phys 74(1):21–34ADSCrossRefGoogle Scholar
  30. Grotzinger JP, Gupta S, Malin MC, Rubin DM, Schieber J, Siebach K, Sumner DY, Stack KM, Vasavada AR, Arvidson RE, Calef F (2015) Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 350(6257):aac7575ADSCrossRefGoogle Scholar
  31. Hamilton CW, Beggan CD, Still S, Beuthe M, Lopes RM, Williams DA, Radebaugh J, Wright W (2013) Spatial distribution of volcanoes on Io: implications for tidal heating and magma ascent. Earth Planet Sci Lett 361:272–286ADSCrossRefGoogle Scholar
  32. Harmon JK, Perillat PJ, Slade MA (2001) High-resolution radar imaging of Mercury’s north pole. Icarus 149:1–15ADSCrossRefGoogle Scholar
  33. Hartmann WK, Phillips RJ, Taylor GJ (eds) (1986) Origin of the moon. Lunar and Planetary Institute, HoustonGoogle Scholar
  34. Hartogh P, Lis DC, Bockelée-Morvan D, de Val-Borro M, Biver N, Küppers M, Emprechtinger M, Bergin EA, Crovisier J, Rengel M, Moreno R (2011) Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478(7368):218–220ADSCrossRefGoogle Scholar
  35. Hendrix AR, Johnson RE (2008) Callisto: new insights from Galileo disk-resolved UV measurements. Astrophys J 687(1):706ADSCrossRefGoogle Scholar
  36. Holland HD (1999) When did the Earth’s atmosphere become oxic? A reply. Geochem News 100:20–23Google Scholar
  37. Hoppa GV, Tufts BR, Greenberg R, Geissler PE (1999) Formation of cycloidal features on Europa. Science 285:1899–1902ADSCrossRefGoogle Scholar
  38. Huang J, Yang A, Zhong S (2013) Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics. Earth Planet Sci Lett 362:207–214ADSCrossRefGoogle Scholar
  39. Iess L, Stevenson DJ, Parisi M, Hemingway D, Jacobson RA, Lunine JI, Nimmo F, Armstrong JW, Asmar SW, Ducci M, Tortora P (2014) The gravity field and interior structure of Enceladus. Science 344(6179):78–80ADSCrossRefGoogle Scholar
  40. Ingersoll AP, Svitek T, Murray BC (1992) Stability of polar frosts in spherical bowl-shaped craters on the Moon, Mercury, and Mars. Icarus 100:40–47ADSCrossRefGoogle Scholar
  41. Ivanov MA, Head JW (2001) Geology of Venus: mapping of a global traverse at 30°N latitude. J Geophys Res 106:17,515–17,566ADSCrossRefGoogle Scholar
  42. Jakosky B (1998) The search for life on other planets. Cambridge University Press, Cambridge, UKGoogle Scholar
  43. Kargel J, Kaye JZ, Head JW, Marion GM, Sassen R, Crowley JK, Prieto Ballesteros O, Grant SA, Hogenboom DL (2000) Europa’s crust and ocean: origin, composition and prospects for life. Icarus 148:226–265ADSCrossRefGoogle Scholar
  44. Kasting JF (1988) Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74:472–494ADSCrossRefGoogle Scholar
  45. Khurana KK, Kivelson MG, Stevenson DJ, Schubert G, Russell CT, Walker RJ, Polanskey C (1998) Induced magnetic fields as evidence for subsurface oceans in Europa and Callistro. Nature 395:777–780ADSCrossRefGoogle Scholar
  46. Kivelson MG, Warnecke J, Bennett L, Joy S, Khurana KK, Linker JA, Russell CT, Walker RJ, Polanskey C (1998) Ganymede’s magnetosphere: Magnetometer overview. J Geophys Res 103:19,963ADSCrossRefGoogle Scholar
  47. de Kleer K, Skrutskie M, Leisenring J, Davies AG, Conrad A, de Pater I, Resnick A, Bailey V, Defrère D, Hinz P, Skemer A (2017) Multi-phase volcanic resurfacing at Loki Patera on Io. Nature 545(7653):199–202ADSCrossRefGoogle Scholar
  48. Limaye SS, Kossin JP, Rozoff C, Piccioni G, Titov DV, Markiewicz WJ (2009) Vortex circulation on Venus: dynamical similarities with terrestrial hurricanes. Geophys Res Lett 36(4):L04204ADSCrossRefGoogle Scholar
  49. Lindkvist J, Holmström M, Khurana KK, Fatemi S, Barabash S (2015) Callisto plasma interactions: hybrid modeling including induction by a subsurface ocean. J Geophys Res Space Phys 120(6):4877–4889ADSCrossRefGoogle Scholar
  50. Liuzzo L, Feyerabend M, Simon S, Motschmann U (2015) The impact of Callisto’s atmosphere on its plasma interaction with the Jovian magnetosphere. J Geophys Res Space Phys 120(11):9401–9427ADSCrossRefGoogle Scholar
  51. Lorenz RD (2002) Thermodynamics of geysers: application to Titan. Icarus 156:176–183ADSCrossRefGoogle Scholar
  52. Lorenz RD, Shandera SE (2001) Physical properties of ammonia-rich ice: application to Titan. Geophys Res Lett 28:215–218ADSCrossRefGoogle Scholar
  53. Marion GM (2001) Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system. Geochim Cosmochim Acta 65:1883–1896ADSCrossRefGoogle Scholar
  54. Marion GM (2002) A molal-based model for strong acid chemistry at low temperatures (<200 to 298 K) Geochim. Cosmochim Acta 66:2499–2516ADSMathSciNetCrossRefGoogle Scholar
  55. Masters A, Achilleos N, Agnor CB, Campagnola S, Charnoz S, Christophe B, Coates AJ, Fletcher LN, Jones GH, Lamy L, Marzari F (2014) Neptune and Triton: essential pieces of the solar system puzzle. Planet Space Sci 104:108–121ADSCrossRefGoogle Scholar
  56. McGovern PJ, Kirchoff MR, White OL, Schenk PM (2016) Magma ascent pathways associated with large mountains on Io. Icarus 272:246–257ADSCrossRefGoogle Scholar
  57. McKay CP (2008) An approach to searching for life on Mars, Europa, and Enceladus. Space Sci Rev 135(1–4):49–54ADSCrossRefGoogle Scholar
  58. McKinnon WB (1999) Convective instability in Europa’s floating ice shell. Geophys Res Lett 26(7):951–954ADSCrossRefGoogle Scholar
  59. McKinnon WB, Parmentier EM (1986) Satellites. Univ. of Arizona Press, Tucson, pp 718–763Google Scholar
  60. McKinnon WB, Lunine JI, Banfield D (1995) Origin and evolution of Triton. In: Cruikshank (ed) Neptune and Triton. Univ. of Arizona Press, Tucson, pp 807–877Google Scholar
  61. Mitri G, Showman AP, Lunine JI, Lorenz RD (2007) Hydrocarbon lakes on Titan. Icarus 186(2):385–394ADSCrossRefGoogle Scholar
  62. Nimmo F, McKenzie D (1998) Volcanism and tectonics on Venus. Annu Rev Earth Planet Sci 26(1):23–51ADSCrossRefGoogle Scholar
  63. Nimmo F, Spencer JR (2015) Powering Triton’s recent geological activity by obliquity tides: implications for Pluto geology. Icarus 246:2–10ADSCrossRefGoogle Scholar
  64. Padovan S, Wieczorek MA, Margot JL, Tosi N, Solomon SC (2015) Thickness of the crust of Mercury from geoid-to-topography ratios. Geophys Res Lett 42(4):1029–1038ADSCrossRefGoogle Scholar
  65. Rahm M, Lunine JI, Usher DA, Shalloway D (2016) Polymorphism and electronic structure of polyimine and its potential significance for prebiotic chemistry on Titan. Proc Natl Acad Sci 113(29):8121–8126. Scholar
  66. Reimink JR, Davies JHFL, Chacko T, Stern RA, Heaman LM, Sarkar C, Schaltegger U, Creaser RA, Pearson DG (2016) No evidence for hadean continental crust within Earth’s oldest evolved rock unit. Nat Geosci 9:777ADSCrossRefGoogle Scholar
  67. Roe HG, de Pater I, Macintosh BA, McKay CP (2002) Titan’s clouds from Gemini and Keck adaptive optics imaging. Astrophys J 581(2):1399–1406ADSCrossRefGoogle Scholar
  68. Roth L, Saur J, Retherford KD, Strobel DF, Feldman PD, McGrath MA, Nimmo F (2014) Transient water vapor at Europa’s south pole. Science 343(6167):171–174ADSCrossRefGoogle Scholar
  69. Rufu R, Aharonson O, Perets HB (2017) A multiple-impact origin for the Moon. Nat Geosci 10:89–94ADSCrossRefGoogle Scholar
  70. Ruiz J (2001) Stability against freezing of an internal liquid-water ocean in Callisto. Nature 412:409–411ADSCrossRefGoogle Scholar
  71. Ruiz J, Fairén AG (2005) Seas under ice: stability of liquid-water oceans within icy worlds. Earth Moon Planet 97(1–2):79–90ADSGoogle Scholar
  72. Sagan C, Chyba C (1997) The early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221ADSCrossRefGoogle Scholar
  73. Schenk PM, McKinnon WB, Gwynn D, Moore JM (2001) Flooding of Ganymede’s bright terrains by low-viscosity water-ice lavas. Nature 410:57–50ADSCrossRefGoogle Scholar
  74. Seager S, Kuchner M, Hier-Majumder CA, Militzer B (2007) Mass-radius relationships for solid exoplanets. Astrophys J 669(2):1279ADSCrossRefGoogle Scholar
  75. Shalygin EV, Markiewicz WJ, Basilevsky AT, Titov DV, Ignatiev NI, Head JW (2015) Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys Res Lett 42(12):4762–4769ADSCrossRefGoogle Scholar
  76. Showman AP, Malhotra R (1999) The Galilean satellites. Science 286:77–84ADSCrossRefGoogle Scholar
  77. Slade MA (1992) Mercury radar imaging: evidence for polar ice. Science 258:635–640ADSCrossRefGoogle Scholar
  78. Slade MA, Butler BJ, Muhleman DO (1992) Mercury radar imaging: evidence for polar ice. Science 258:635–640ADSCrossRefGoogle Scholar
  79. Soderblom LA, Kieffer SW, Becker TL, Brown RH, Cook AF, Hansen CJ, Johnson TV, Kirk RL, Shoemaker EM (1990) Triton’s geysers-like plumes: discovery and basic characterization. Science 250:410–415ADSCrossRefGoogle Scholar
  80. Spudis PD, Guest JE (1988) Stratigraphy and geologic history of Mercury. In: Vilas F, Chapman CR, Matthews MS (eds) Mercury. University of Arizona Press, Tucson, pp 118–164Google Scholar
  81. Squyres SW, Arvidson RE, Ruff S, Gellert R, Morris RV, Ming DW, Crumpler L, Farmer JD, Des Marais DJ, Yen A, McLennan SM (2008) Detection of silica-rich deposits on Mars. Science 320(5879):1063–1067ADSCrossRefGoogle Scholar
  82. Stevenson D (1998) An ocean within Callisto? Eos Trans. AGU Fall Meeting, abstract PB12-10Google Scholar
  83. Strom RG, Neukum G (1988) The cratering record on Mercury and the origin of impacting objects (1988). In: Vilas F, Chapman CR, Matthews MS (eds) Mercury. Univ. of Arizona Press, Tucson, pp 336–373Google Scholar
  84. Strom RG, Sprague AL (2003) Exploring Mercury. Springer-Praxis, ChichesterGoogle Scholar
  85. Strom RG, Schaber GG, Dawson DD (1994) The global resurfacing of Venus. J Geophys Res 99:10,899–10,926ADSCrossRefGoogle Scholar
  86. Tanaka KL, Senske DA, Price M, Kirk RL (1997) Physiography, geomorphic/geologic mapping, and stratigraphy of Venus. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus. University of Arizona Press, Tucson, pp 667–694Google Scholar
  87. Tanaka KL, Skinner JA, Hare TM, Joyal T, Wenker A (2003) Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data. J Geophys Res Planets 108(E4):146CrossRefGoogle Scholar
  88. Terada N, Kulikov YN, Lammer H, Lichtenegger HI, Tanaka T, Shinagawa H, Zhang T (2009) Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology 9(1):55–70ADSCrossRefGoogle Scholar
  89. Tokano T, Neubauer FM, Laube M, McKay CP (2001) Three-dimensional modeling of the tropospheric methane cycle on Titan. Icarus 153:130–147ADSCrossRefGoogle Scholar
  90. Vance S, Bouffard M, Choukroun M, Sotin C (2014) Ganymede’s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet Space Sci 96:62–70ADSCrossRefGoogle Scholar
  91. Vance SD, Hand KP, Pappalardo RT (2016) Geophysical controls of chemical disequilibria in Europa. Geophys Res Lett 43(10):4871–4879ADSCrossRefGoogle Scholar
  92. Vinogradov ME, Vereshchaka AL, Shushkina EA (1996) Vertical structure of the zooplankton communities in the oligotrophic areas of the northern Atlantic, and influence of the hydrothermal vent. Okeanologiya 36:71–79Google Scholar
  93. Watts AW, Greeley R, Melosh HJ (1991) The formation of terrains antipodal to major impacts. Icarus 93:159–168ADSCrossRefGoogle Scholar
  94. Wordsworth R, Kalugina Y, Lokshtanov S, Vigasin A, Ehlmann B, Head J, Sanders C, Wang H (2017) Transient reducing greenhouse warming on early Mars. Geophys Res Lett 44:665–671. Scholar
  95. Zellner NEB (2017) Cataclysm no more: new views on the timing and delivery of lunar impactors. Orig Life Evol Biosph. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Planetology and HabitabilityCentro de Astrobiologia (CSIC-INTA)MadridSpain
  2. 2.Department of AstronomyCornell UniversityIthacaUSA

Personalised recommendations