Advertisement

The Solar System: A Panorama

  • Katherine de KleerEmail author
  • Imke de Pater
Reference work entry

Abstract

The closest and most extensively studied planetary system, our solar system provides the foundation for understanding the characteristics of planetary and sub-planetary bodies and the processes that shape them. This chapter surveys the diversity of objects orbiting our Sun and what they tell us about the origins and evolution of the solar system. The numerous small bodies populating specific orbits, from the asteroid belt to the far reaches of the Oort cloud, encode information on the solar system’s age and the initial conditions in the solar nebula. The surfaces and atmospheres of the planets and their satellites reveal how the same fundamental physical processes produced bodies with vastly different characteristics, from the dry, metal-dominated composition of Mercury through the storm-wracked hydrogen atmosphere of Jupiter. Finally, the search for liquid water and temperate climates elsewhere in the solar system, past or present, provides context for understanding the origin of life on Earth and the potential for life’s existence elsewhere in the Universe.

References

  1. Apai D, Lauretta DS (eds) (2010) Protoplanetary dust: astrophysical and cosmochemical perspectives. Cambridge University Press, CambridgeGoogle Scholar
  2. Asphaug E (2014) Impact origin of the moon? AREPS 42:551–578ADSGoogle Scholar
  3. Atreya SK, Pollack JB, Matthews MS (eds) (1989) Origin and evolution of planetary and satellite Atmospheres. University of Arizona Press, TucsonGoogle Scholar
  4. Bagenal F, Dowling T, McKinnon W (eds) (2007) Jupiter: the planet, satellites and magnetosphere. Cambridge University Press, CambridgeGoogle Scholar
  5. Barlow N (ed) (2008) Mars: an introduction to its interior, surface and atmosphere. Cambridge University Press, CambridgeGoogle Scholar
  6. Barucci MA, Boehnhardt H, Cruikshank DP, Morbidelli A (eds) (2008) The solar system beyond Neptune. University of Arizona Press, TucsonGoogle Scholar
  7. Batygin K, Brown ME (2016) Evidence for a distant giant planet in the solar system. Astron J 151:2ADSCrossRefGoogle Scholar
  8. Beatty JK, Peterson CC, Chaikin A (eds) (1999) The new solar system, 4th edn. Sky Publishing Corp, Cambridge, MAGoogle Scholar
  9. Brown ME (2012) The compositions of Kuiper belt objects. AREPS 40:467–494ADSGoogle Scholar
  10. Bougher SW, Hunten DM, Phillips RJ (eds) (1997) Venus II: geology, geophysics, atmosphere, and solar wind environment. University of Arizona Press, TucsonGoogle Scholar
  11. Burbine TH (ed) (2016) Asteroids: astronomical and geological bodies. Cambridge University Press, CambridgeGoogle Scholar
  12. Canup RM, Righter K (eds) (2000) Origin of the earth and moon. University of Arizona Press, TucsonGoogle Scholar
  13. Chiang E, Youdin AN (2010) Forming planetesimals in solar and extrasolar nebulae. AREPS 38:493–522ADSGoogle Scholar
  14. Clark PE (2015) Mercury’s interior, surface, and surrounding environment: latest discoveries. Springer, New YorkCrossRefGoogle Scholar
  15. Cruikshank DP (ed) (1995) Neptune and Triton. University of Arizona Press, TucsonGoogle Scholar
  16. de Pater I, Lissauer JJ (2010) Planetary science, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. de Pater I, Fletcher LN, Luszcz-Cook S et al (2014) Neptune’s global circulation deduced from multi-wavelength observations. Icarus 237:211–238ADSCrossRefGoogle Scholar
  18. Elkins-Tanton LT, Weiss BP (eds) (2017) Planetesimals: early differentiation and consequences for planets. Cambridge University Press, CambridgeGoogle Scholar
  19. Esposito LW (2010) Composition, structure, dynamics, and evolution of Saturn’s rings. AREPS 38:383–410ADSGoogle Scholar
  20. Esposito LW (ed) (2014) Planetary rings: a post-equinox view. Cambridge University Press, CambridgeGoogle Scholar
  21. Festou MC, Keller HU, Weaver HA (eds) (2004) Comets II. University of Arizona Press, TucsonGoogle Scholar
  22. Greenberg R, Brahic A (eds) (1984) Planetary rings. University of Arizona Press, TucsonGoogle Scholar
  23. Hayes AG (2016) The lakes and seas of titan. AREPS 44:57–83ADSGoogle Scholar
  24. Huebner WF (ed) (1990) Physics and chemistry of comets. Springer, BerlinGoogle Scholar
  25. Irwin P (2009) Giant planets of our solar system, 2nd edn. Springer-Praxis, ChichesterCrossRefGoogle Scholar
  26. Lewis JS (2004) Physics and chemistry of the solar system, 2nd edn. Elsevier/Academic, San DiegoGoogle Scholar
  27. Lissauer JJ, de Pater I (2013) Fundamental planetary science. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Matthews MS, Bergstralh JT, Miner ED (eds) (1991) Uranus. University of Arizona Press, TucsonGoogle Scholar
  29. Melosh HJ (ed) (2011) Planetary surface processes. Cambridge University Press, CambridgeGoogle Scholar
  30. Miner E (1998) Uranus: the planet, rings, and satellites. Wiley, New YorkGoogle Scholar
  31. Morbidelli A, Levison HF (2014) Kuiper belt: dynamics. In: Spohn T, Johnson T, Breuer D (eds) Encyclopedia of the solar system. Elsevier, Saint LouisGoogle Scholar
  32. Muller-Wodarg I, Griffith CA, Lellouch E, Cravens TE (eds) (2014) Titan: interior, surface, atmosphere, and space environment. Cambridge University Press, CambridgeGoogle Scholar
  33. Nimmo F, McKenzie D (1998) Volcanism and tectonics on Venus. Annu Rev Earth Planet Sci 26:23–53ADSCrossRefGoogle Scholar
  34. Pappalardo RT, McKinnon WB, Khurana K (eds) (2009) Europa. University of Arizona Press, TucsonGoogle Scholar
  35. Parker A, Ivezić Ž, Jurić M et al (2008) The size distribution of asteroid families in the SDSS moving object catalog 4. Icarus 198:138–155ADSCrossRefGoogle Scholar
  36. Reipurth B, Jewitt D, Keil K (eds) (2007) Protostars and planets V. University of Arizona Press, TucsonGoogle Scholar
  37. Schenk PM, Clark RN, Howett CJA, Verbiscer AJ, Waite JH (2017) Enceladus and the icy moons of Saturn. University of Arizona Press, TucsonGoogle Scholar
  38. Spencer JR, Nimmo F (2013) Enceladus: an active ice world in the Saturn system. AREPS 41:693–717ADSGoogle Scholar
  39. Spohn T, Johnson T, Breuer D (eds) (2014) Encyclopedia of the solar system, 3rd edn. Elsevier, Saint LouisGoogle Scholar
  40. Taylor SR, McLennan S (eds) (2008) Planetary crusts: their composition, origin and evolution. Cambridge University Press, CambridgeGoogle Scholar
  41. Tiscareno MS, Murray CD (eds) (2017) Planetary ring systems. Cambridge University Press, Cambridge, UK. (in press)Google Scholar
  42. Wordsworth RD (2016) The climate of early Mars. AREPS 44:381–408ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of AstronomyThe University of California at BerkeleyBerkeleyUSA
  3. 3.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  4. 4.SRON Netherlands Institute for Space ResearchUtrechtThe Netherlands

Personalised recommendations