Advertisement

Radio Emission from Ultracool Dwarfs

  • Peter K. G. WilliamsEmail author
Reference work entry

Abstract

The 2001 discovery of radio emission from ultracool dwarfs (UCDs), the very low-mass stars and brown dwarfs with spectral types of ∼M7 and later, revealed that these objects can generate and dissipate powerful magnetic fields. Radio observations provide unparalleled insight into UCD magnetism: detections extend to brown dwarfs with temperatures \(\lesssim \)1000 K, where no other observational probes are effective. The data reveal that UCDs can generate strong (kG) fields, sometimes with a stable dipolar structure; that they can produce and retain nonthermal plasmas with electron acceleration extending to MeV energies; and that they can drive auroral current systems resulting in significant atmospheric energy deposition and powerful, coherent radio bursts. Still to be understood are the underlying dynamo processes, the precise means by which particles are accelerated around these objects, the observed diversity of magnetic phenomenologies, and how all of these factors change as the mass of the central object approaches that of Jupiter. The answers to these questions are doubly important because UCDs are both potential exoplanet hosts, as in the TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.

Keywords

Brown dwarfs Ultracool dwarfs Radio emission Magnetic activity Dynamo 

References

  1. Antonova A, Doyle JG, Hallinan G, Golden A, Koen C (2007) A&A 472(1):257. https://doi.org/10.1051/0004-6361%3A20077231ADSGoogle Scholar
  2. Antonova A, Hallinan G, Doyle JG et al (2013) A&A 549:A131. https://doi.org/10.1051/0004-6361/201118583ADSGoogle Scholar
  3. Axford WI (1969) Rev Geophys Space Phys 7:421. https://doi.org/10.1029/RG007i001p00421ADSGoogle Scholar
  4. Basri G, Marcy GW (1995) AJ 109:762. https://doi.org/10.1086/117319ADSGoogle Scholar
  5. Berger E, Ball S, Becker KM et al (2001) Natur 410:338. https://doi.org/10.1038/35066514ADSGoogle Scholar
  6. Berger E, Rutledge RE, Reid IN et al (2005) ApJ 627(2):960. https://doi.org/10.1086/430343ADSGoogle Scholar
  7. Berger E, Basri G, Gizis JE et al (2008a) ApJ 676:1307. https://doi.org/10.1086/529131ADSGoogle Scholar
  8. Berger E, Gizis JE, Giampapa MS et al (2008b) ApJ 673:1080. https://doi.org/10.1086/524769ADSGoogle Scholar
  9. Berger E, Rutledge RE, Phan-Bao N et al (2009) ApJ 695:310. https://doi.org/10.1088/0004-637x/695/1/310ADSGoogle Scholar
  10. Berger E, Basri G, Fleming TA et al (2010) ApJ 709:332. https://doi.org/10.1088/0004-637x/709/1/332ADSGoogle Scholar
  11. Bhardwaj A, Gladstone GR (2000) RvGeo 38(3):295. https://doi.org/10.1029/1998RG000046ADSGoogle Scholar
  12. Bouvier J, Matt SP, Mohanty S et al (2014) In: Beuther H, Klessen RS, Dullemond CP, Henning T (eds) Protostars and planets VI. University of Arizona Press, Tucson, p 433.  https://doi.org/10.2458/azu_uapress_9780816531240-ch019Google Scholar
  13. Breuer D, Labrosse S, Spohn T (2010) SSRv 152:449. https://doi.org/10.1007/s11214-009-9587-5ADSGoogle Scholar
  14. Burgasser AJ, Putman ME (2005) ApJ 626(1):486. https://doi.org/10.1086/429788ADSGoogle Scholar
  15. Burgasser AJ, Melis C, Zauderer BA, Berger E (2013) ApJL 762:L3. https://doi.org/10.1088/2041-8205/762/1/L3ADSGoogle Scholar
  16. Burgasser AJ, Melis C, Todd J et al (2015) AJ 150(6):180. https://doi.org/10.1088/0004-6256/150/6/180ADSGoogle Scholar
  17. Burningham B, Hardcastle M, Nichols JD et al (2016) MNRAS 463(2):2202.  https://doi.org/10.1093/mnras/stw2065ADSGoogle Scholar
  18. Chabrier G, Baraffe I (2000) ARA&A 38:337.  https://doi.org/10.1146/annurev.astro.38.1.337ADSGoogle Scholar
  19. Cook BA, Williams PKG, Berger E (2014) ApJ 785(1):10. https://doi.org/10.1088/0004-637X/785/1/10ADSGoogle Scholar
  20. de Pater I, Butler BJ, Green DA et al (2003) Icarus 163:434. https://doi.org/10.1016/S0019-1035%2803%2900067-8ADSGoogle Scholar
  21. Doyle JG, Antonova A, Marsh MS et al (2010) A&A 524:A15. https://doi.org/10.1051/0004-6361/201015274ADSGoogle Scholar
  22. Drake JJ, Stern RA, Stringfellow G et al (1996) ApJ 469:828. https://doi.org/10.1086/177830ADSGoogle Scholar
  23. Dungey JW (1961) Phys Rev Lett 6(2):47.  https://doi.org/10.1103/PhysRevLett.6.47ADSGoogle Scholar
  24. Dupuy TJ, Forbrich J, Rizzuto A et al (2016) ApJ 827(1):23. https://doi.org/10.3847/0004-637X/827/1/23ADSGoogle Scholar
  25. Ekenbäck A, Holmström M, Wurz P et al (2010) ApJ 709(2):670. https://doi.org/10.1088/0004-637X/709/2/670ADSGoogle Scholar
  26. Fleming TA, Giampapa MS, Schmitt JHMM (2000) ApJ 553:372. https://doi.org/10.1086/308657ADSGoogle Scholar
  27. Forbrich J, Dupuy TJ, Reid MJ et al (2016) ApJ 827(1):22. https://doi.org/10.3847/0004-637X/827/1/22ADSGoogle Scholar
  28. Gagné J, Faherty JK, Burgasser AJ et al (2017) ApJL 841:1. https://doi.org/10.3847/2041-8213/aa70e2ADSGoogle Scholar
  29. Gastine T, Morin J, Duarte L et al (2013) A&A 549:L5. https://doi.org/10.1051/0004-6361/201220317ADSGoogle Scholar
  30. Gillon M, Jehin E, Lederer SM et al (2016) Nature 533:221.  https://doi.org/10.1038/nature17448ADSGoogle Scholar
  31. Gillon M, Triaud AHMJ, Demory BO et al (2017) Nature 542:7642.  https://doi.org/10.1038/nature21360Google Scholar
  32. Gizis JE, Burgasser AJ, Berger E et al (2013) ApJ 779(2):172. https://doi.org/10.1088/0004-637x/779/2/172ADSGoogle Scholar
  33. Gizis JE, Williams PKG, Burgasser AJ et al (2016) AJ 152(5):123. https://doi.org/10.3847/0004-6256/152/5/123ADSGoogle Scholar
  34. Güdel M, Benz AO (1993) ApJL 405:L63. https://doi.org/10.1086/186766ADSGoogle Scholar
  35. Hallinan G, Antonova A, Doyle JG et al (2006) ApJ 653:690. https://doi.org/10.1086/508678ADSGoogle Scholar
  36. Hallinan G, Bourke S, Lane C et al (2007) ApJL 663:L25. https://doi.org/10.1086/519790ADSGoogle Scholar
  37. Hallinan G, Antonova A, Doyle JG et al (2008) ApJ 684(1):644. https://doi.org/10.1086/590360ADSGoogle Scholar
  38. Hallinan G, Littlefair S, Cotter G et al (2015) Nature 523:568.  https://doi.org/10.1038/nature14619ADSGoogle Scholar
  39. Harding LK, Hallinan G, Boyle RP et al (2013a) ApJ 779(2):101. https://doi.org/10.1088/0004-637X/779/2/101ADSGoogle Scholar
  40. Harding LK, Hallinan G, Konopacky QM et al (2013b) A&A 554:A113. https://doi.org/10.1051/0004-6361/201220865ADSGoogle Scholar
  41. Jaeger TR, Osten RA, Lazio TJ, Kassim N, Mutel RL (2011) AJ 142:189. https://doi.org/10.1088/0004-6256/142/6/189ADSGoogle Scholar
  42. Jakosky BM, Grebowsky JM, Luhmann JG, Brain DA (2015) GeoRL 42:8791. https://doi.org/10.1002/2015GL065271ADSGoogle Scholar
  43. Jonas JL (2009) IEEE Proc 97(8):1522.  https://doi.org/10.1109/jproc.2009.2020713ADSGoogle Scholar
  44. Kao MM, Hallinan G, Pineda JS et al (2016) ApJ 818(1):24. https://doi.org/10.3847/0004-637X/818/1/24ADSGoogle Scholar
  45. Kirkpatrick JD, Reid IN, Liebert J et al (1999) ApJ 519(2):802. https://doi.org/10.1086/307414ADSGoogle Scholar
  46. Kirkpatrick JD, Gelino CR, Cushing MC et al (2012) ApJ 753(2):156. https://doi.org/10.1088/0004-637X/753/2/156ADSGoogle Scholar
  47. Kochukhov O, Lavail A (2017) ApJL 835(1):L4. https://doi.org/10.3847/2041-8213/835/1/L4ADSGoogle Scholar
  48. Kochukhov O, Petit P, Strassmeier KG et al (2017) AN 338:428.  https://doi.org/10.1002/asna.201713310ADSGoogle Scholar
  49. Kuznetsov AA, Doyle JG, Yu S et al (2012) ApJ 746(1):99. https://doi.org/10.1088/0004-637x/746/1/99ADSGoogle Scholar
  50. Leto P, Trigilio C, Oskinova L et al (2017) MNRAS 467:2820.  https://doi.org/10.1093/mnras/stx267ADSGoogle Scholar
  51. Liebert J, Kirkpatrick JD, Reid IN, Fisher MD (1999) ApJ 519:345. https://doi.org/10.1086/307349ADSGoogle Scholar
  52. Linsky JL, Wood BE, Brown A, Giampapa MS, Ambruster C (1995) ApJ 499:670. https://doi.org/10.1086/176614ADSGoogle Scholar
  53. Lynch C, Mutel RL, Güdel M (2015) ApJ 802:106. https://doi.org/10.1088/0004-637X/802/2/106ADSGoogle Scholar
  54. Lynch C, Murphy T, Ravi V et al (2016) MNRAS 457(2):1224.  https://doi.org/10.1093/mnras/stw050ADSGoogle Scholar
  55. Lynch CR, Lenc E, Kaplan DL, Murphy T, Anderson GE (2017) ApJL 835:30. https://doi.org/10.3847/2041-8213/aa5ffdADSGoogle Scholar
  56. Martín EL, Delfosse X, Basri G et al (1999) AJ 118(5):2466. https://doi.org/10.1086/301107ADSGoogle Scholar
  57. McComas DJ, Bagenal F (2007) GeoRL 34(20):L20,106. https://doi.org/10.1029/2007GL031078Google Scholar
  58. McLean M, Berger E, Irwin J, Forbrich J, Reiners A (2011) ApJ 741(1):27. https://doi.org/10.1088/0004-637x/741/1/27ADSGoogle Scholar
  59. McLean M, Berger E, Reiners A (2012) ApJ 746(1):23. https://doi.org/10.1088/0004-637x/746/ 1/23ADSGoogle Scholar
  60. Metodieva YT, Kuznetsov AA, Antonova AE et al (2017) MNRAS 465(2):1995.  https://doi.org/10.1093/mnras/stw2597ADSGoogle Scholar
  61. Miles-Páez PA, Zapatero Osorio MR, Pallé E (2015) A&A 580:L12. https://doi.org/10.1051/0004-6361/201424626ADSGoogle Scholar
  62. Miles-Páez PA, Metchev SA, Heinze A, Apai D (2017) ApJ 840:83. https://doi.org/10.3847/1538-4357/aa6f11ADSGoogle Scholar
  63. Mohanty S, Basri G, Shu F, Allard F, Chabrier G (2002) ApJ 571:469. https://doi.org/10.1086/339911ADSGoogle Scholar
  64. Morin J, Donati JF, Petit P et al (2010) MNRAS 407(4):2269. https://doi.org/10.1111/j.1365-2966.2010.17101.xADSGoogle Scholar
  65. Nichols JD, Burleigh MR, Casewell SL et al (2012) ApJ 760(1):59. https://doi.org/10.1088/0004-637x/760/1/59ADSGoogle Scholar
  66. Osten RA, Brown A, Ayres TR et al (2004) ApJS 153(1):317. https://doi.org/10.1086/420770ADSGoogle Scholar
  67. Osten RA, Hawley SL, Bastian TS, Reid IN (2006) ApJ 637(1):518. https://doi.org/10.1086/498345ADSGoogle Scholar
  68. Osten RA, Phan-Bao N, Hawley SL, Reid IN, Ojha R (2009) ApJ 700:1750. https://doi.org/10.1088/0004-637x/700/2/1750ADSGoogle Scholar
  69. Osten RA, Melis C, Stelzer B et al (2015) ApJL 805:L3. https://doi.org/10.1088/2041-8205/805/1/L3ADSGoogle Scholar
  70. Paty C, Paterson W, Winglee R (2008) JGR 113:A06,211. https://doi.org/10.1029/2007JA012848Google Scholar
  71. Perley RA, Chandler CJ, Butler BJ, Wrobel JM (2011) ApJL 739(1):L1. https://doi.org/10.1088/2041-8205/739/1/l1ADSGoogle Scholar
  72. Phan-Bao N, Osten RA, Lim L, Martín EL, Ho PTP (2007) ApJ 658:553. https://doi.org/10.1086/511061ADSGoogle Scholar
  73. Pineda JS, Hallinan G, Kirkpatrick JD et al (2016) ApJ 826(1):73. https://doi.org/10.3847/0004-637X/826/1/73ADSGoogle Scholar
  74. Ravi V, Hallinan G, Hobbs G, Champion DJ (2011) ApJL 735(1):L2. https://doi.org/10.1088/2041-8205/735/1/l2ADSGoogle Scholar
  75. Reid IN, Kirkpatrick JD, Gizis JE, Liebert J (1999) ApJL 527(2):L105. https://doi.org/10.1086/312409ADSGoogle Scholar
  76. Reiners A, Schuessler M, Passegger VM (2014) ApJ 794(2):144. https://doi.org/10.1088/0004-637X/794/2/144ADSGoogle Scholar
  77. Robertson P, Mahadevan S, Endl M, Roy A (2014) Sci 345(6915):440.  https://doi.org/10.1126/science.1253253ADSGoogle Scholar
  78. Rodriguez LF, Zapata L, Palau A (2017) Astron J 153:209. https://doi.org/10.3847/1538-3881/aa6681ADSGoogle Scholar
  79. Rodríguez-Barrera MI, Helling C, Stark CR, Rice AM (2015) MNRAS 454:3977.  https://doi.org/10.1093/mnras/stv2090ADSGoogle Scholar
  80. Route M, Wolszczan A (2012) ApJL 747(2):L22. https://doi.org/10.1088/2041-8205/747/2/l22ADSGoogle Scholar
  81. Route M, Wolszczan A (2016) ApJL 821(2):L21. https://doi.org/10.3847/2041-8205/821/2/L21ADSGoogle Scholar
  82. Rutledge RE, Basri G, Martín EL, Bildsten L (2000) ApJL 538:L141. https://doi.org/10.1086/312817ADSGoogle Scholar
  83. Saar SH, Linsky JL (1985) ApJ 299:47. https://doi.org/10.1086/184578ADSGoogle Scholar
  84. Santos-Costa D, Bolton SJ (2008) P&SS 56:326. https://doi.org/10.1016/j.pss.2007.09.008ADSGoogle Scholar
  85. Sault RJ, Oosterloo T, Dulk GA, Leblanc Y (1997) A&A 324:1190. http://adsabs.harvard.edu/abs/1997A%26A...324.1190SADSGoogle Scholar
  86. Shields AL, Ballard S, Johnson JA (2016) Phys Rep 663:1. https://doi.org/10.1016/j.physrep.2016.10.003ADSMathSciNetGoogle Scholar
  87. Skumanich A (1972) ApJ 171:565. https://doi.org/10.1086/151310ADSGoogle Scholar
  88. Stelzer B, Micela G, Flaccomio E, Neuhäuser R, Jayawardhana R (2006) A&A 448(1):293. https://doi.org/10.1051/0004-6361%3A20053677ADSGoogle Scholar
  89. Stelzer B, Alcalá J, Biazzo K et al (2012) A&A 537:A94. https://doi.org/10.1051/0004-6361/201118097ADSGoogle Scholar
  90. Tinney CG, Reid IN (1998) Mon Not R Astron Soc 301:1031. https://doi.org/10.1046/j.1365-8711.1998.02079.xADSGoogle Scholar
  91. Trigilio C, Leto P, Umana G, Leone F, Buemi CS (2004) A&A 418:593. https://doi.org/10.1051/0004-6361%3A20040060ADSGoogle Scholar
  92. West AA, Hawley SL, Bochanski JJ et al (2008) AJ 135:785. https://doi.org/10.1088/0004-6256/135/3/785ADSGoogle Scholar
  93. White SM, Kundu MR, Jackson PD (1989) A&A 225(1):112. http://adsabs.harvard.edu/abs/1989A%26A...225..112WADSGoogle Scholar
  94. Williams PKG, Berger E (2015) ApJ 808(2):189. https://doi.org/10.1088/0004-637X/808/2/189ADSGoogle Scholar
  95. Williams PKG, Cook BA, Berger E (2014) ApJ 785(1):9. https://doi.org/10.1088/0004-637X/785/1/9ADSGoogle Scholar
  96. Williams PKG, Berger E, Irwin J, Berta-Thompson ZK, Charbonneau D (2015a) ApJ 799(2):192. https://doi.org/10.1088/0004-637X/799/2/192ADSGoogle Scholar
  97. Williams PKG, Casewell SL, Stark CR et al (2015b) ApJ 815:64. https://doi.org/10.1088/0004-637X/815/1/64ADSGoogle Scholar
  98. Williams PKG, Gizis JE, Berger E (2017) ApJ 834(2):117. https://doi.org/10.3847/1538-4357/834/2/117ADSGoogle Scholar
  99. Wolszczan A, Route M, (2014) ApJ 788(1):23. https://doi.org/10.1088/0004-637X/788/1/23ADSGoogle Scholar
  100. Wong AS, Yung YL, Friedson AJ (2003) GeoRL 30(8):1447. https://doi.org/10.1029/2002GL016661ADSGoogle Scholar
  101. Wright NJ, Drake JJ, Mamajek EE, Henry GW (2011) ApJ 743(1):48. https://doi.org/10.1088/0004-637x/743/1/48ADSGoogle Scholar
  102. Wu CS, Lee LC (1979) ApJ 230:621. https://doi.org/10.1086/157120ADSGoogle Scholar
  103. Yantis WF, Sullivan WT III, Erickson WC (1977) BAAS 9:453. http://adsabs.harvard.edu/abs/1977BAAS....9..453YADSGoogle Scholar
  104. Yu S, Doyle JG, Kuznetsov A et al (2012) ApJ 752(1):60. https://doi.org/10.1088/0004-637x/752/1/60ADSGoogle Scholar
  105. Zarka P, Treumann RA, Ryabov BP, Ryabov VB (2001) Ap&SS 277:293.  https://doi.org/10.1023/a%3A1012221527425ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA

Personalised recommendations