Advertisement

Discovery of the First Transiting Planets

  • Edward W. DunhamEmail author
Reference work entry

Abstract

Early thinking about detecting extrasolar planets was largely circumscribed by the expectation that other solar systems would be similar to our own, the only known example at the time. Given this mind-set, transit detections were expected to be exceedingly difficult for small planets and rarely seen for larger ones. The discovery of 51 Peg and subsequent hot Jupiters by the radial velocity method completely upended our thinking – transits were suddenly practical, perhaps even easy! This immediately led to follow-up searches for transits in systems discovered by the radial velocity technique and, conversely, to wide-field ground-based transit search programs with radial velocity follow-up observations. As is usually the case, transit work turned out to be harder than initially expected but was still possible and productive. This chapter reviews the circumstances leading to the first transit observations of HD 209458, the early OGLE exoplanets, and TrES-1 and TrES-2, as well as some of the frustrations and difficulties encountered along the way.

Keywords

Transit photometry History Discovery TrES OGLE HD209458 

References

  1. Alard C (2000) Image subtraction using a space-varying kernel. A&AS 144:363–370ADSCrossRefGoogle Scholar
  2. Alard C, Lupton RH (1998) A method for optimal image subtraction. ApJ 503:325–331ADSCrossRefGoogle Scholar
  3. Alonso R, Brown TM, Torres G et al (2004) TrES-1: the transiting planet of a bright K0 V star. ApJ 613:L153–L156ADSCrossRefGoogle Scholar
  4. Borucki WJ, Lasher LE (2000) Third workshop on photometry. NASA/CP-2000-209614Google Scholar
  5. Borucki WJ, Summers AL (1984) The photometric method of detecting other planetary systems. Icarus 58:121–134ADSCrossRefGoogle Scholar
  6. Borucki WJ, Dunham EW, Koch DG et al (1996) FRESIP: a mission to determine the character and frequency of extra-solar planets around solar-like stars. Ap&SS 241:111–134ADSGoogle Scholar
  7. Borucki WJ, Caldwell D, Koch DG, Webster LD et al (2001) The Vulcan photometer: a dedicated photometer for extrasolar planet searches. PASP 113:439–451ADSCrossRefGoogle Scholar
  8. Bouchy F, Pont F, Santos NC et al (2004) Two new “very hot Jupiters” among the OGLE transiting candidates. A&A 421:L13–L16ADSCrossRefGoogle Scholar
  9. Bouchy F, Pont F, Melo C et al (2005) Doppler follow-up of OGLE transiting companions in the galactic bulge. A&A 431:1105–1121ADSCrossRefGoogle Scholar
  10. Brown TM (2003) Expected detection and false alarm rates for transiting Jovian planets. ApJ 593:L125–L128ADSCrossRefGoogle Scholar
  11. Brown TM, Charbonneau D, Gilliland RL, Noyes RW, Burrows A (2001) Hubble space telescope time-series photometry of the transiting planet of HD 209458. ApJ 552:699–709ADSCrossRefGoogle Scholar
  12. Charbonneau D, Brown TM, Latham DW, Mayor M (2000) Detection of planetary transits across a sun-like star. ApJ 529:L45–L48ADSCrossRefGoogle Scholar
  13. COMPLEX (1990) Strategy for the detection and study of other planetary systems and extrasolar planetary materials: 1990–2000. National Academy Press, Washington, DCGoogle Scholar
  14. Dunham EW, Mandushev GI, Taylor BW, Oetiker B (2004) PSST: the planet search survey telescope. PASP 116:1072–1080ADSCrossRefGoogle Scholar
  15. Gilliland RL, Brown TM, Guhathakurta P et al (2000) A lack of planets in 47 Tucanae from a Hubble Space Telescope search. ApJ 545:L47–L51ADSCrossRefGoogle Scholar
  16. Henry GW (1999) Techniques for automated high-precision photometry of sun-like stars. PASP 111:845–860ADSCrossRefGoogle Scholar
  17. Henry GW, Marcy GW, Butler RP, Vogt SS (2000) A transiting “51 Peg-like” planet. ApJ 529:L41–L44ADSCrossRefGoogle Scholar
  18. Jenkins JM, Witteborn F, Koch DG et al (2000) Processing CCD images to detect transits of earth-sized planets: maximizing sensitivity while achieving reasonable downlink requirements. Proc SPIE 4013:520–531ADSCrossRefGoogle Scholar
  19. Jenkins JM, Caldwell DA, Borucki WJ (2002) Some tests to establish confidence in planets discovered by transit photometry. ApJ 564:495–507ADSCrossRefGoogle Scholar
  20. Konacki M, Torres G, Jha S, Sasselov DD (2003a) An extrasolar planet that transits the disk of its parent star. Nature 421:507–509ADSCrossRefGoogle Scholar
  21. Konacki M, Torres G, Sasselov DD, Jha S (2003b) High-resolution spectroscopic follow-up of OGLE planetary transit candidates in the galactic bulge: two possible Jupiter-mass planets and two blends. ApJ 597:1076–1091ADSCrossRefGoogle Scholar
  22. Konacki M, Torres G, Sasselov DD et al (2004) The transiting extrasolar giant planet around the star OGLE-TR-113. ApJ 609:L37–L40ADSCrossRefGoogle Scholar
  23. Konacki M, Torres G, Sasselov DD, Jha S (2005) A transiting extrasolar giant planet around the star OGLE-TR-10. ApJ 624:372–377ADSCrossRefGoogle Scholar
  24. Latham DW (1992) Surveys of spectroscopic binaries at the center for astrophysics. In: HA MA, Hartkopf WI (eds) Complementary approaches to double and multiple star research. IAU Colloquium 135, ASP Conference Series 32, San Francisco, pp 110–118Google Scholar
  25. Mandushev G, Torres G, Latham DW et al (2005) The challenge of wide-field transit surveys: the case of GSC 01944-02289. ApJ 621:1061–1071ADSCrossRefGoogle Scholar
  26. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359ADSCrossRefGoogle Scholar
  27. O’Donovan FT, Charbonneau D, Mandushev G et al (2006a) TrES-2: the first transiting planet in the Kepler field. ApJ 651:L61–L64ADSCrossRefGoogle Scholar
  28. O’Donovan FT, Charbonneau D, Torres G et al (2006b) Rejecting astrophysical false positives from the TrES transiting planet survey: the example of GSC 03885-00829. ApJ 644:1237–1245ADSCrossRefGoogle Scholar
  29. O’Donovan FT, Charbonneau D, Alonso R et al (2007) Outcome of six candidate transiting planets from a TrES field in Andromeda. ApJ 662:658–668ADSCrossRefGoogle Scholar
  30. Pont F, Bouchy F, Queloz D et al (2004) The “missing link”: a 4-day period transiting exoplanet around OGLE-TR-111. A&A 426:L15–L18ADSCrossRefGoogle Scholar
  31. Pont F, Zucker S, Queloz D (2006) The effect of red noise on planetary transit detection. MNRAS 373:231–242ADSCrossRefGoogle Scholar
  32. Pont F, Tamuz O, Udalski A et al (2008) A transiting planet among 23 new near-threshold candidates from the OGLE survey – OGLE-TR-182. A&A 487:749–754ADSCrossRefGoogle Scholar
  33. Rosenblatt F (1971) A two-color photometric method for detection of extra-solar planetary systems. Icarus 14:71–93ADSCrossRefGoogle Scholar
  34. Struve O (1952) Proposal for a project of high-precision stellar radial velocity work. Observatory 72:199–200ADSGoogle Scholar
  35. Tamuz O, Mazeh T, Zucker S (2005) Correcting systematic effects in a large set of photometric light curves. MNRAS 356:1466–1470ADSCrossRefGoogle Scholar
  36. Udalski A, Szymanski M, Kaluzny J et al (1992) The optical gravitational lensing experiment. AcA 42:253–284ADSGoogle Scholar
  37. Udalski A, Paczynski B, Zebrun K et al (2002a) The optical gravitational lensing experiment. Search for planetary and low-luminosity object transits in the galactic disk. Results of 2001a campaign. AcA 52:1–37ADSGoogle Scholar
  38. Udalski A, Szewczyk O, Zebrun K et al (2002b) The optical gravitational lensing experiment. Planetary and low-luminosity object transits in the Carina fields of the galactic disk. AcA 52:317–359ADSGoogle Scholar
  39. Udalski A, Zebrun K, Szymanski M et al (2002c) The optical gravitational lensing experiment. Search for planetary and low-luminosity object transits in the galactic disk. Results of 2001b campaign - supplement. AcA 52:115–128ADSGoogle Scholar
  40. Udalski A (2003a) The optical gravitational lensing experiment. Real time data analysis systems in the OGLE-III survey. AcA 53:291–305ADSGoogle Scholar
  41. Udalski A, Pietrzynski G, Szymanski M et al (2003b) The optical gravitational lensing experiment. Additional planetary and low-luminosity object transits from the OGLE 2001 and 2002 observational campaigns. AcA 53:133–149ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lowell ObservatoryFlagstaffUSA

Section editors and affiliations

  • Tsevi Mazeh
    • 1
  1. 1.School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations