ESPRESSO on VLT: An Instrument for Exoplanet Research

  • Jonay I. González HernándezEmail author
  • Francesco Pepe
  • Paolo Molaro
  • Nuno C. Santos
Reference work entry


ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations) is a VLT ultra-stable high-resolution spectrograph that will be installed in Paranal Observatory in Chile at the end of 2017 and offered to the community by 2018. The spectrograph will be located at the Combined Coudé Laboratory of the VLT and will be able to operate with one or (simultaneously) several of the four 8.2 m Unit Telescopes (UT) through four optical Coudé trains. Combining efficiency and extreme spectroscopic precision, ESPRESSO is expected to gaining about two magnitudes with respect to its predecessor HARPS. We aim at improving the instrumental radial velocity precision to reach the 10 cm s−1 level, thus opening the possibility to explore new frontiers in the search for Earth-mass exoplanets in the habitable zone of quiet, nearby G to M dwarfs. ESPRESSO will be certainly an important development step toward high-precision ultra-stable spectrographs on the next generation of giant telescopes such as the E-ELT.


Instrumentation: spectrographs Planetary systems Techniques: spectroscopic 



The ESPRESSO project is supported by the Swiss National Science Foundation program FLARE, Italian Institute of Astrophysics (INAF), Instituto de Astrofísica de Canarias (IAC, Spain), Instituto de Astrofísica e Ciências do Espaço/Universidade de Porto and Universidade de Lisboa (Portugal), and European Southern Observatory (ESO). J.I.G.H. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) under the 2013 Ramón y Cajal programme MINECO RYC-2013-14875, and the Spanish ministry project MINECO AYA2014-56359-P. N.C.S. acknowledges the support by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the research grant through national funds and by FEDER through COMPETE2020 by grants UID/FIS/04434/2013&POCI-01-0145-FEDER-007672 and PTDC/FIS-AST/1526/2014&POCI-01-0145-FEDER-016886, as well as through Investigador FCT contract nr. IF/00169/2012/CP0150/CT0002. The authors wish to acknowledge the exceptional work and enthusiasm delivered by all the members of the ESPRESSO team and warmly thank them for significantly contributing to the successful completion of the project.


  1. Affer L, Micela G, Damasso M et al (2016) HADES RV program with HARPS-N at the TNG GJ 3998: an early M-dwarf hosting a system of super-Earths. A&A 593:A117ADSCrossRefGoogle Scholar
  2. Anglada-Escudé G, Tuomi M, Gerlach E et al (2013) A dynamically-packed planetary system around GJ 667C with three super-Earths in its habitable zone. A&A 556:A126ADSCrossRefGoogle Scholar
  3. Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440ADSCrossRefGoogle Scholar
  4. Astudillo-Defru N, Forveille T, Bonfils X et al (2017) The HARPS search for southern extra-solar planets. XLI. A dozen planets around the M dwarfs GJ 3138, GJ 3323, GJ 273, GJ 628, and GJ 3293. A&A 602:A88Google Scholar
  5. Barge P, Léger A, Ollivier M et al (2006) Photometric search for transiting planets. In: Fridlund M, Baglin A, Lochard J, Conroy L (eds) The CoRoT mission pre-launch status – stellar seismology and planet finding, vol 1306. ESA Special Publication, p 83Google Scholar
  6. Beuzit JL, Feldt M, Dohlen K et al (2008) SPHERE: a ‘Planet Finder’ instrument for the VLT. In: Ground-based and airborne instrumentation for astronomy II. Proc SPIE 7014:701418.
  7. Boisse I, Bouchy F, Hébrard G et al (2011) Disentangling between stellar activity and planetary signals. A&A 528:A4ADSCrossRefGoogle Scholar
  8. Bonfils X, Delfosse X, Udry S et al (2013a) The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. A&A 549:A109Google Scholar
  9. Bonfils X, Lo Curto G, Correia ACM et al (2013b) The HARPS search for Southern extra-solar planets. XXXIV. A planetary system around the nearby M dwarf <ASTROBJ>GJ 163</ASTROBJ>, with a super-Earth possibly in the habitable zone. A&A 556:A110Google Scholar
  10. Borucki W, Koch D, Batalha N et al (2009) KEPLER: search for Earth-size planets in the habitable zone. In: Pont F, Sasselov D, Holman MJ (eds) Transiting planets, IAU symposium, vol 253, pp 289–299. Scholar
  11. Charbonneau D, Noyes RW, Korzennik SG et al (1999) An upper limit on the reflected light from the planet orbiting the star τ bootis. ApJ 522:L145–L148ADSCrossRefGoogle Scholar
  12. Charbonneau D, Brown TM, Noyes RW, Gilliland RL (2002) Detection of an extrasolar planet atmosphere. ApJ 568:377–384ADSCrossRefGoogle Scholar
  13. Chazelas B, Pepe F, Wildi F (2012) Optical fibers for precise radial velocities: an update. In: Modern technologies in space- and ground-based telescopes and instrumentation II. Proceedings of SPIE, vol 8450, p 845013.
  14. Cosentino R, Lovis C, Pepe F et al (2012) Harps-N: the new planet hunter at TNG. In: Ground-based and airborne instrumentation for Astronomy IV. Proceedings of SPIE, vol 8446, p 84461V.
  15. Dittmann JA, Irwin JM, Charbonneau D et al (2017) A temperate rocky super-Earth transiting a nearby cool star. Nature 544:333–336ADSCrossRefGoogle Scholar
  16. Dumusque X, Udry S, Lovis C, Santos NC, Monteiro MJPFG (2011) Planetary detection limits taking into account stellar noise. I. Observational strategies to reduce stellar oscillation and granulation effects. A&A 525:A140Google Scholar
  17. Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460ADSCrossRefGoogle Scholar
  18. Howard AW, Marcy GW, Bryson ST et al (2012) Planet occurrence within 0.25 AU of solar-type stars from Kepler. ApJS 201:15Google Scholar
  19. Latham DW, Stefanik RP, Mazeh T, Mayor M, Burki G (1989) The unseen companion of HD114762 – a probable brown dwarf. Nature 339:38–40ADSCrossRefGoogle Scholar
  20. Lissauer JJ, Dawson RI, Tremaine S (2014) Advances in exoplanet science from Kepler. Nature 513:336–344ADSCrossRefGoogle Scholar
  21. Lo Curto G, Pasquini L, Manescau A et al (2012) Astronomical spectrograph calibration at the exo-earth detection limit. The Messenger 149:2–6ADSGoogle Scholar
  22. Lovis C, Ségransan D, Mayor M et al (2011) The HARPS search for southern extra-solar planets. XXVIII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems. A&A 528:A112Google Scholar
  23. Lovis C, Snellen I, Mouillet D et al (2017) Atmospheric characterization of Proxima b by coupling the SPHERE high-contrast imager to the ESPRESSO spectrograph. A&A 599:A16ADSCrossRefGoogle Scholar
  24. Marconi A, Di Marcantonio P, D’Odorico V et al (2016) EELT-HIRES the high-resolution spectrograph for the E-ELT. In: Ground-based and airborne instrumentation for astronomy VI. Proceedings of SPIE, vol 9908, p 990823.
  25. Martins JHC, Santos NC, Figueira P et al (2015) Evidence for a spectroscopic direct detection of reflected light from <ASTROBJ>51 Pegasi b</ASTROBJ>. A&A 576:A134Google Scholar
  26. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359ADSCrossRefGoogle Scholar
  27. Mayor M, Pepe F, Queloz D et al (2003) Setting new standards with HARPS. The Messenger 114:20–24ADSGoogle Scholar
  28. Mayor M, Marmier M, Lovis C et al (2011) The HARPS search for Southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. ArXiv e-printsGoogle Scholar
  29. Mayor M, Lovis C, Santos NC (2014) Doppler spectroscopy as a path to the detection of Earth-like planets. Nature 513:328–335ADSCrossRefGoogle Scholar
  30. Molaro P, Esposito M, Monai S et al (2013a) A frequency comb calibrated solar atlas. A&A 560:A61ADSCrossRefGoogle Scholar
  31. Molaro P, Monaco L, Barbieri M, Zaggia S (2013b) Detection of the Rossiter-McLaughlin effect in the 2012 June 6 Venus transit. MNRAS 429:L79–L83ADSCrossRefGoogle Scholar
  32. Pepe F, Lovis C, Ségransan D et al (2011) The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around <ASTROBJ>HD 20794</ASTROBJ>, <ASTROBJ>HD 85512</ASTROBJ>, and <ASTROBJ>HD 192310</ASTROBJ>. A&A 534:A58Google Scholar
  33. Pepe F, Cameron AC, Latham DW et al (2013) An Earth-sized planet with an Earth-like density. Nature 503:377–380ADSCrossRefGoogle Scholar
  34. Pepe F, Ehrenreich D, Meyer MR (2014a) Instrumentation for the detection and characterization of exoplanets. Nature 513:358–366ADSCrossRefGoogle Scholar
  35. Pepe F, Molaro P, Cristiani S et al (2014b) ESPRESSO: the next European exoplanet hunter. Astron Nachr 335:8ADSCrossRefGoogle Scholar
  36. Probst RA, Lo Curto G, Ávila G et al (2016) Relative stability of two laser frequency combs for routine operation on HARPS and FOCES. In: Ground-based and airborne instrumentation for Astronomy VI. Proceedings of SPIE, vol 9908, p 990864.
  37. Queloz D, Henry GW, Sivan JP et al (2001) No planet for HD 166435. A&A 379:279–287ADSCrossRefGoogle Scholar
  38. Quirrenbach A, Amado PJ, Caballero JA et al (2016) CARMENES: an overview six months after first light. In: Ground-based and airborne instrumentation for astronomy VI. Proceedings of SPIE, vol 9908, p 990812.
  39. Robertson P, Mahadevan S, Endl M, Roy A (2014) Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science 345:440–444ADSCrossRefGoogle Scholar
  40. Saar SH, Butler RP, Marcy GW (1998) Magnetic activity-related radial velocity variations in cool stars: first results from the lick extrasolar planet survey. ApJ 498:L153–L157ADSCrossRefGoogle Scholar
  41. Santos NC, Mayor M, Naef D et al (2000) The CORALIE survey for Southern extra-solar planets. IV. Intrinsic stellar limitations to planet searches with radial-velocity techniques. A&A 361:265–272Google Scholar
  42. Santos NC, Bouchy F, Mayor M et al (2004) The HARPS survey for Southern extra-solar planets. II. A 14 Earth-masses exoplanet around μ Arae. A&A 426:L19–L23ADSCrossRefGoogle Scholar
  43. Snellen IAG, Albrecht S, de Mooij EJW, Le Poole RS (2008) Ground-based detection of sodium in the transmission spectrum of exoplanet HD 209458b. A&A 487:357–362ADSCrossRefGoogle Scholar
  44. Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S (2010) The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465:1049–1051ADSCrossRefGoogle Scholar
  45. Snellen IAG, Brandl BR, de Kok RJ et al (2014) Fast spin of the young extrasolar planet β Pictoris b. Nature 509:63–65ADSCrossRefGoogle Scholar
  46. Snellen I, de Kok R, Birkby JL et al (2015) Combining high-dispersion spectroscopy with high contrast imaging: probing rocky planets around our nearest neighbors. A&A 576:A59ADSCrossRefGoogle Scholar
  47. Suárez Mascareño A, González Hernández JI, Rebolo R et al (2017a) A super-Earth orbiting the nearby M dwarf GJ 536. A&A 597:A108ADSCrossRefGoogle Scholar
  48. Suárez Mascareño A, González Hernández JI, Rebolo R et al (2017b) HADES RV programme with HARPS-N at TNG. V. A super-Earth on the inner edge of the habitable zone of the nearby M dwarf GJ 625. A&A 605:A92Google Scholar
  49. Suárez Mascareño A, Rebolo R, González Hernández JI, Esposito M (2017c) Characterization of the radial velocity signal induced by rotation in late-type dwarfs. MNRAS 468:4772–4781ADSCrossRefGoogle Scholar
  50. Wilken T, Curto GL, Probst RA et al (2012) A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature 485:611–614ADSCrossRefGoogle Scholar
  51. Wyttenbach A, Ehrenreich D, Lovis C, Udry S, Pepe F (2015) Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph. A&A 577:A62ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jonay I. González Hernández
    • 1
    • 2
    Email author
  • Francesco Pepe
    • 3
  • Paolo Molaro
    • 4
  • Nuno C. Santos
    • 5
    • 6
  1. 1.Departamento de AstrofísicaUniversidad de La Laguna (ULL)La LagunaSpain
  2. 2.Instituto de Astrofísica de CanariasLa LagunaSpain
  3. 3.Département d’AstronomieObservatoire de l’Université de GenéveVersoixSwitzerland
  4. 4.INAF Osservatorio Astronomico di TriesteTriesteItaly
  5. 5.Instituto de Astrofísica e Ciências do EspaçoUniversidade do PortoPortoPortugal
  6. 6.Departamento de Física e Astronomia, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations