Advertisement

Large-Scale Searches for Brown Dwarfs and Free-Floating Planets

  • Ben BurninghamEmail author
Reference work entry

Abstract

Searches of large-scale surveys have resulted in the discovery of over 1000 brown dwarfs in the Solar neighborhood. In this chapter we review the progress in finding brown dwarfs in large datasets, highlighting the key science goals and summarizing the surveys that have contributed most significantly to the current sample.

References

  1. Adelman-McCarthy JK et al (2011) VizieR online data catalog: the SDSS photometric catalog, Release 8 (Adelman-McCarthy+, 2011). VizieR Online Data Catalog 2306Google Scholar
  2. Albert L, Artigau É, Delorme P et al (2011) 37 new T-type brown dwarfs in the Canada-France brown dwarfs survey. AJ 141:203.  https://doi.org/10.1088/0004-6256/141/6/203ADSGoogle Scholar
  3. Allen PR, Koerner DW, Reid IN, Trilling DE (2005) The substellar mass function: a Bayesian approach. ApJ 625:385–397.  https://doi.org/10.1086/429548, astro-ph/0502189ADSGoogle Scholar
  4. Aller KM, Liu MC, Magnier EA et al (2016) Brown dwarfs in young moving groups from Pan-STARRS1. I. AB Doradus. ApJ 821:120.  https://doi.org/10.3847/0004-637X/821/2/120, 1604.04284ADSGoogle Scholar
  5. Allers KN, Liu MC (2013) A near-infrared spectroscopic study of young field ultracool dwarfs. ApJ 772:79.  https://doi.org/10.1088/0004-637X/772/2/79, 1305.4418ADSGoogle Scholar
  6. Artigau É, Radigan J, Folkes S et al (2010) DENIS J081730.0-615520: An overlooked mid-T dwarf in the solar neighborhood. ApJ 718:L38–L42.  https://doi.org/10.1088/2041-8205/718/1/L38, 1006.3577ADSGoogle Scholar
  7. Baraffe I, Chabrier G, Barman TS, Allard F, Hauschildt PH (2003) Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. A&A 402:701–712.  https://doi.org/10.1051/0004-6361:20030252, arXiv:astro-ph/0302293ADSGoogle Scholar
  8. Barrado y Navascués D, Bouvier J, Stauffer JR, Lodieu N, McCaughrean MJ (2002) A substellar mass function for Alpha Persei. A&A 395:813–821.  https://doi.org/10.1051/0004-6361:20021262, arXiv:astro-ph/0209032ADSGoogle Scholar
  9. Bastian N, Covey KR, Meyer MR (2010) A universal stellar initial mass function? A critical look at variations. ARA&A 48:339–389.  https://doi.org/10.1146/annurev-astro-082708-101642, 1001.2965ADSGoogle Scholar
  10. Beamín JC, Minniti D, Gromadzki M et al (2013) One more neighbor: the first brown dwarf in the VVV survey. A&A 557:L8.  https://doi.org/10.1051/0004-6361/201322190, 1308.3216ADSGoogle Scholar
  11. Best WMJ, Liu MC, Magnier EA et al (2015) A search for L/T transition dwarfs with Pan-STARRS1 and WISE. II. L/T transition atmospheres and young discoveries. ApJ 814:118.  https://doi.org/10.1088/0004-637X/814/2/118, 1612.02824ADSGoogle Scholar
  12. Best WMJ, Magnier EA, Liu MC et al (2018) Photometry and proper motions of M, L, and T dwarfs from the Pan-STARRS1 3π survey. ApJS 234:1.  https://doi.org/10.3847/1538-4365/aa9982, 1701.00490ADSGoogle Scholar
  13. Blanton MR, Bershady MA, Abolfathi B et al (2017) Sloan digital sky survey IV: mapping the milky way, nearby galaxies, and the distant universe. AJ 154:28.  https://doi.org/10.3847/1538-3881/aa7567, 1703.00052ADSGoogle Scholar
  14. Bouy H, Brandner W, Martín EL et al (2003) Multiplicity of nearby free-floating ultracool dwarfs: a hubble space telescope WFPC2 search for companions. AJ 126:1526–1554.  https://doi.org/10.1086/377343, astro-ph/0305484ADSGoogle Scholar
  15. Burgasser AJ (2004a) Discovery of a second L subdwarf in the two micron all sky survey. ApJ 614:L73–L76.  https://doi.org/10.1086/425418, astro-ph/0409179ADSGoogle Scholar
  16. Burgasser AJ (2004b) T dwarfs and the substellar mass function. I. Monte carlo simulations. ApJS 155:191–207.  https://doi.org/10.1086/424386, arXiv:astro-ph/0407624ADSGoogle Scholar
  17. Burgasser AJ (2011) The brown Dwarf-exoplanet connection. In: Beaulieu JP, Dieters S, Tinetti G (eds) Molecules in the atmospheres of extrasolar planets. Astronomical society of the Pacific conference series, vol 450, p 113Google Scholar
  18. Burgasser AJ (2014) The SpeX Prism Library: 1000+ low-resolution, near-infrared spectra of ultracool M, L, T and Y dwarfs. In: Astronomical Society of India conference series, vol 11. 1406.4887ADSGoogle Scholar
  19. Burgasser AJ, Kirkpatrick JD, Brown ME et al (1999) Discovery of four field methane (T-type) dwarfs with the two micron all-sky survey. ApJ 522:L65–L68.  https://doi.org/10.1086/312221ADSGoogle Scholar
  20. Burgasser AJ, Kirkpatrick JD, Cutri RM et al (2000) Discovery of a brown dwarf companion to Gliese 570ABC: a 2MASS T dwarf significantly cooler than Gliese 229B. ApJ 531:L57–L60.  https://doi.org/10.1086/312522, arXiv:astro-ph/0001194ADSGoogle Scholar
  21. Burgasser AJ, Kirkpatrick JD, Brown ME et al (2002) The spectra of T dwarfs. I. Near-infrared data and spectral classification. ApJ 564:421–451.  https://doi.org/10.1086/324033, astro-ph/0108452ADSGoogle Scholar
  22. Burgasser AJ, Kirkpatrick JD, Burrows A et al (2003a) The first substellar subdwarf? Discovery of a metal-poor L dwarf with Halo kinematics. ApJ 592:1186–1192.  https://doi.org/10.1086/375813, arXiv:astro-ph/0304174ADSGoogle Scholar
  23. Burgasser AJ, Kirkpatrick JD, McElwain MW et al (2003b) The 2Mass wide-field T dwarf search. I. Discovery of a bright T dwarf within 10 Parsecs of the Sun. AJ 125:850–857.  https://doi.org/10.1086/345975, astro-ph/0211117ADSGoogle Scholar
  24. Burgasser AJ, McElwain MW, Kirkpatrick JD (2003c) The 2MASS wide-field T dwarf search. II. Discovery of three T dwarfs in the Southern Hemisphere. AJ 126:2487–2494.  https://doi.org/10.1086/378608, astro-ph/0307374ADSGoogle Scholar
  25. Burgasser AJ, McElwain MW, Kirkpatrick JD et al (2004) The 2MASS wide-field T dwarf search. III. Seven new T dwarfs and other cool dwarf discoveries. AJ 127:2856–2870.  https://doi.org/10.1086/383549, arXiv:astro-ph/0402325ADSGoogle Scholar
  26. Burgasser AJ, Geballe TR, Leggett SK, Kirkpatrick JD, Golimowski DA (2006) A unified near-infrared spectral classification scheme for T dwarfs. ApJ 637:1067–1093.  https://doi.org/10.1086/498563, arXiv:astro-ph/0510090ADSGoogle Scholar
  27. Burgasser AJ, Sheppard SS, Luhman KL (2013) Resolved near-infrared spectroscopy of WISE J104915.57-531906.1AB: a flux-reversal binary at the L dwarf/T dwarf transition. ApJ 772:129.  https://doi.org/10.1088/0004-637X/772/2/129, 1303.7283ADSGoogle Scholar
  28. Burningham B, Pinfield DJ, Leggett SK et al (2008) Exploring the substellar temperature regime down to ˜550 K. MNRAS 391:320–333.  https://doi.org/10.1111/j.1365-2966.2008.13885.x, 0806.0067ADSGoogle Scholar
  29. Burningham B, Pinfield DJ, Leggett SK et al (2009) The discovery of an M4+T8.5 binary system. MNRAS 395:1237–1248.  https://doi.org/10.1111/j.1365-2966.2009.14620.x, 0902.1812ADSGoogle Scholar
  30. Burningham B, Leggett SK, Lucas PW et al (2010a) The discovery of a very cool binary system. MNRAS 404:1952–1961.  https://doi.org/10.1111/j.1365-2966.2010.16411.x, 1001.4393
  31. Burningham B, Pinfield DJ, Lucas PW et al (2010b) 47 new T dwarfs from the UKIDSS large area survey. MNRAS 406:1885–1906.  https://doi.org/10.1111/j.1365-2966.2010.16800.x, 1004.1912
  32. Burningham B, Cardoso CV, Smith L et al (2013) 76 T dwarfs from the UKIDSS LAS: benchmarks, kinematics and an updated space density. MNRAS 433:457–497.  https://doi.org/10.1093/mnras/stt740, 1304.7246ADSGoogle Scholar
  33. Canty JI, Lucas PW, Yurchenko SN et al (2015) Methane and ammonia in the near-infrared spectra of late-T dwarfs. MNRAS 450:454–480.  https://doi.org/10.1093/mnras/stv586, 1503.04715ADSGoogle Scholar
  34. Cardoso CV, Burningham B, Smart RL et al (2015) 49 new T dwarfs identified using methane imaging. MNRAS 450:2486–2499.  https://doi.org/10.1093/mnras/stv380, 1502.06503ADSGoogle Scholar
  35. Casali M, Adamson A, Alves de Oliveira C et al (2007) The UKIRT wide-field camera. A&A 467:777–784.  https://doi.org/10.1051/0004-6361:20066514ADSGoogle Scholar
  36. Chabrier G (2003) Galactic stellar and substellar initial mass function. PASP 115:763–795.  https://doi.org/10.1086/376392, astro-ph/0304382ADSGoogle Scholar
  37. Chambers KC, Magnier EA, Metcalfe N et al (2016) The Pan-STARRS1 Surveys. ArXiv e-prints 1612.05560Google Scholar
  38. Chiu K, Fan X, Leggett SK et al (2006) Seventy-one new L and T dwarfs from the Sloan digital sky survey. AJ 131:2722–2736.  https://doi.org/10.1086/501431, arXiv:astro-ph/0601089ADSGoogle Scholar
  39. Cruz KL, Reid IN, Liebert J, Kirkpatrick JD, Lowrance PJ (2003) Meeting the cool neighbors. V. A 2MASS-selected sample of ultracool dwarfs. AJ 126:2421–2448.  https://doi.org/10.1086/378607, astro-ph/0307429ADSGoogle Scholar
  40. Cruz KL, Burgasser AJ, Reid IN, Liebert J (2004) 2MASS J05185995-2828372: discovery of an unresolved L/T binary. ApJ 604:L61–L64.  https://doi.org/10.1086/383415, astro-ph/0402172ADSGoogle Scholar
  41. Cruz KL, Reid IN, Kirkpatrick JD et al (2007) Meeting the cool neighbors. IX. The luminosity function of M7-L8 ultracool dwarfs in the field. AJ 133:439–467.  https://doi.org/10.1086/510132, arXiv:astro-ph/0609648ADSGoogle Scholar
  42. Cuillandre JC, Bertin E (2006) CFHT legacy survey (CFHTLS): a rich data set. In: Barret D, Casoli F, Lagache G, Lecavelier A, Pagani L (eds) SF2A-2006: semaine de l’Astrophysique Francaise. p 265Google Scholar
  43. Cushing MC, Kirkpatrick JD, Gelino CR et al (2011) The discovery of Y dwarfs using data from the wide-field infrared survey explorer (WISE). ApJ 743:50.  https://doi.org/10.1088/0004-637X/743/1/50, 1108.4678ADSGoogle Scholar
  44. Dalton GB, Caldwell M, Ward AK et al (2006) The VISTA infrared camera. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 6269.  https://doi.org/10.1117/12.670018
  45. Day-Jones AC, Marocco F, Pinfield DJ et al (2013) The sub-stellar birth rate from UKIDSS. MNRAS 430:1171–1187.  https://doi.org/10.1093/mnras/sts685, 1301.4996ADSGoogle Scholar
  46. Deacon NR, Liu MC, Magnier EA et al (2014) Wide, cool and ultracool companions to nearby stars from Pan-STARRS1. ArXiv e-prints 1407.2938ADSGoogle Scholar
  47. Deacon NR, Magnier EA, Liu MC et al (2017) 2MASS 0213+3648 C: a wide T3 benchmark companion to an active, old M dwarf binary. MNRAS 467:1126–1139.  https://doi.org/10.1093/mnras/stx065, 1701.03104
  48. Delfosse X, Tinney CG, Forveille T et al (1997) Field brown dwarfs found by DENIS. A&A 327:L25–L28ADSGoogle Scholar
  49. Delorme P, Delfosse X, Albert L et al (2008a) CFBDS J005910.90-011401.3: reaching the T-Y brown dwarf transition? A&A 482:961–971.  https://doi.org/10.1051/0004-6361:20079317, arXiv:0802.4387ADSGoogle Scholar
  50. Delorme P, Willott CJ, Forveille T et al (2008b) Finding ultracool brown dwarfs with MegaCam on CFHT: method and first results. A&A 484:469–478.  https://doi.org/10.1051/0004-6361:20078843, 0804.1477ADSGoogle Scholar
  51. Delorme P, Albert L, Forveille T et al (2010) Extending the Canada-France brown dwarfs survey to the near-infrared: first ultracool brown dwarfs from CFBDSIR. A&A 518:A39+.  https://doi.org/10.1051/0004-6361/201014277, 1004.3876ADSGoogle Scholar
  52. Dupuy TJ, Liu MC (2017) Individual dynamical masses of ultracool dwarfs. ApJS 231:15.  https://doi.org/10.3847/1538-4365/aa5e4c, 1703.05775ADSGoogle Scholar
  53. Edge A, Sutherland W, Kuijken K et al (2013) The VISTA kilo-degree infrared galaxy (VIKING) survey: bridging the gap between low and high redshift. Messenger 154:32–34ADSGoogle Scholar
  54. Eisenstein DJ, Weinberg DH, Agol E et al (2011) SDSS-III: massive spectroscopic surveys of the distant Universe, the milky way, and extra-solar planetary systems. AJ 142:72.  https://doi.org/10.1088/0004-6256/142/3/72, 1101.1529ADSGoogle Scholar
  55. Epchtein N, de Batz B, Capoani L et al (1997) The deep near-infrared southern sky survey (DENIS). Messenger 87:27–34ADSGoogle Scholar
  56. Faherty JK, Rice EL, Cruz KL, Mamajek EE, Núñez A (2013) 2MASS J035523.37+113343.7: a young, dusty, nearby, isolated brown dwarf resembling a giant exoplanet. AJ 145:2.  https://doi.org/10.1088/0004-6256/145/1/2, 1206.5519ADSGoogle Scholar
  57. Faherty JK, Riedel AR, Cruz KL et al (2016) Population properties of brown dwarf analogs to exoplanets. ApJS 225:10.  https://doi.org/10.3847/0067-0049/225/1/10, 1605.07927ADSGoogle Scholar
  58. Fan X, Knapp GR, Strauss MA et al (2000) L dwarfs found in Sloan digital sky survey commissioning imaging data. AJ 119:928–935.  https://doi.org/10.1086/301224, astro-ph/9909263ADSGoogle Scholar
  59. Folkes SL, Pinfield DJ, Kendall TR, Jones HRA (2007) Discovery of a nearby L-T transition object in the Southern Galactic plane. MNRAS 378:901–909.  https://doi.org/10.1111/j.1365-2966.2007.11789.x, arXiv:astro-ph/0703808ADSGoogle Scholar
  60. Folkes SL, Pinfield DJ, Jones HRA et al (2012) Identifying ultra-cool dwarfs at low Galactic latitudes: a southern candidate catalogue. MNRAS 427:3280–3319.  https://doi.org/10.1111/j.1365-2966.2012.21132.x, 1204.4477ADSGoogle Scholar
  61. Gagné J, Burgasser AJ, Faherty JK et al (2015a) SDSS J111010.01+011613.1: a new Planetary-mass T dwarf member of the AB Doradus moving group. ApJ 808:L20.  https://doi.org/10.1088/2041-8205/808/1/L20, 1506.04195ADSGoogle Scholar
  62. Gagné J, Faherty JK, Cruz KL et al (2015b) BANYAN. VII. A new population of young substellar candidate members of nearby moving groups from the BASS survey. ApJS 219:33.  https://doi.org/10.1088/0067-0049/219/2/33, 1506.07712ADSGoogle Scholar
  63. Gagné J, Faherty JK, Burgasser AJ et al (2017) SIMP J013656.5+093347 Is likely a planetary-mass object in the carina-near moving group. ApJ 841:L1.  https://doi.org/10.3847/2041-8213/aa70e2, 1705.01625ADSGoogle Scholar
  64. Gauza B, Béjar VJS, Pérez-Garrido A et al (2015) Discovery of a young planetary mass companion to the nearby M dwarf VHS J125601.92-125723.9. ApJ 804:96.  https://doi.org/10.1088/0004-637X/804/2/96, 1505.00806ADSGoogle Scholar
  65. Geballe TR, Knapp GR, Leggett SK et al (2002) Toward spectral classification of L and T dwarfs: infrared and optical spectroscopy and analysis. ApJ 564:466–481.  https://doi.org/10.1086/324078, arXiv:astro-ph/0108443ADSGoogle Scholar
  66. Geißler K, Metchev S, Kirkpatrick JD, Berriman GB, Looper D (2011) A cross-match of 2MASS and SDSS. II. Peculiar L dwarfs, unresolved binaries, and the space density of T dwarf secondaries. ApJ 732:56.  https://doi.org/10.1088/0004-637X/732/1/56, 1103.1160ADSGoogle Scholar
  67. Gizis JE (2002) Brown dwarfs and the TW hydrae association. ApJ 575:484–492.  https://doi.org/10.1086/341259, astro-ph/0204342ADSGoogle Scholar
  68. Gizis JE, Monet DG, Reid IN et al (2000) New neighbors from 2MASS: activity and kinematics at the bottom of the main sequence. AJ 120:1085–1099.  https://doi.org/10.1086/301456, astro-ph/0004361ADSGoogle Scholar
  69. Gizis JE, Reid IN, Knapp GR et al (2003) Hubble space telescope observations of binary very low mass stars and brown dwarfs. AJ 125:3302–3310.  https://doi.org/10.1086/374991, astro-ph/0302526ADSGoogle Scholar
  70. Hawley SL, Covey KR, Knapp GR et al (2002) Characterization of M, L, and T dwarfs in the Sloan digital sky survey. AJ 123:3409–3427.  https://doi.org/10.1086/340697, astro-ph/0204065ADSGoogle Scholar
  71. Kaiser N, Burgett W, Chambers K et al (2010) The Pan-STARRS wide-field optical/NIR imaging survey. In: Ground-based and airborne telescopes III, Proceedings of SPIE, vol 7733, p 77330E.  https://doi.org/10.1117/12.859188
  72. Kendall TR, Mauron N, Azzopardi M, Gigoyan K (2003) Serendipitous discovery of seven new southern L-dwarfs. A&A 403:929–936.  https://doi.org/10.1051/0004-6361:20030218, astro-ph/0302344ADSGoogle Scholar
  73. Kendall TR, Delfosse X, Martín EL, Forveille T (2004) Discovery of very nearby ultracool dwarfs from DENIS. A&A 416:L17–L20.  https://doi.org/10.1051/0004-6361:20040046, astro-ph/0402171ADSGoogle Scholar
  74. Kendall TR, Tamura M, Tinney CG et al (2007) Two T dwarfs from the UKIDSS early data release. A&A 466:1059–1064.  https://doi.org/10.1051/0004-6361:20066403, arXiv:astro-ph/0702534ADSGoogle Scholar
  75. Kirkpatrick JD (2005) New spectral types L and T. ARA&A 43:195–245.  https://doi.org/10.1146/annurev.astro.42.053102.134017ADSGoogle Scholar
  76. Kirkpatrick JD, Reid IN, Liebert J et al (1999) Dwarfs cooler than “M”: the definition of spectral type “L” using discoveries from the 2 micron all-sky survey (2MASS). ApJ 519:802–833.  https://doi.org/10.1086/307414ADSGoogle Scholar
  77. Kirkpatrick JD, Reid IN, Liebert J et al (2000) 67 additional L dwarfs discovered by the two micron all sky survey. AJ 120:447–472.  https://doi.org/10.1086/301427, arXiv:astro-ph/0003317ADSGoogle Scholar
  78. Kirkpatrick JD, Cruz KL, Barman TS et al (2008) A sample of very young field L dwarfs and implications for the brown dwarf “Lithium Test” at early ages. ApJ 689:1295–1326.  https://doi.org/10.1086/592768, 0808.3153ADSGoogle Scholar
  79. Kirkpatrick JD, Looper DL, Burgasser AJ et al (2010a) Discoveries from a near-infrared proper motion survey using multi-epoch two micron all-sky survey data. ApJS 190:100–146.  https://doi.org/10.1088/0067-0049/190/1/100, 1008.3591ADSGoogle Scholar
  80. Kirkpatrick JD, Looper DL, Burgasser AJ et al (2010b) Discoveries from a near-infrared proper motion survey using multi-epoch two micron all-sky survey data. ApJS 190:100–146.  https://doi.org/10.1088/0067-0049/190/1/100, 1008.3591ADSGoogle Scholar
  81. Kirkpatrick JD, Cushing MC, Gelino CR et al (2011) The first hundred brown dwarfs discovered by the wide-field infrared survey explorer (WISE). ApJS 197:19.  https://doi.org/10.1088/0067-0049/197/2/19, 1108.4677ADSGoogle Scholar
  82. Kirkpatrick JD, Gelino CR, Cushing MC et al (2012) Further defining spectral type “Y” and exploring the low-mass end of the field brown dwarf mass function. ApJ 753:156.  https://doi.org/10.1088/0004-637X/753/2/156, 1205.2122ADSGoogle Scholar
  83. Kirkpatrick JD, Schneider A, Fajardo-Acosta S et al (2014) The AllWISE motion survey and the quest for cold subdwarfs. ApJ 783:122.  https://doi.org/10.1088/0004-637X/783/2/122, 1402.0661ADSGoogle Scholar
  84. Knapp GR, Leggett SK, Fan X et al (2004) Near-infrared photometry and spectroscopy of L and T dwarfs: the effects of temperature, clouds, and gravity. AJ 127:3553–3578.  https://doi.org/10.1086/420707, arXiv:astro-ph/0402451ADSGoogle Scholar
  85. Kuchner MJ, Faherty JK, Schneider AC et al (2017) The first brown dwarf discovered by the backyard worlds: planet 9 citizen science project. ApJ 841:L19.  https://doi.org/10.3847/2041-8213/aa7200, 1705.02919ADSGoogle Scholar
  86. Lawrence A, Warren SJ, Almaini O et al (2007) The UKIRT infrared deep sky survey (UKIDSS). MNRAS 379:1599–1617.  https://doi.org/10.1111/j.1365-2966.2007.12040.x, arXiv:astro-ph/0604426ADSGoogle Scholar
  87. Leggett SK, Geballe TR, Fan X et al (2000) The missing link: early methane (“T”) dwarfs in the Sloan digital sky survey. ApJ 536:L35–L38.  https://doi.org/10.1086/312728, astro-ph/0004408ADSGoogle Scholar
  88. Leggett SK, Marley MS, Freedman R et al (2007) Physical and spectral characteristics of the T8 and later type dwarfs. ApJ 667:537–548.  https://doi.org/10.1086/519948, arXiv:0705.2602ADSGoogle Scholar
  89. Leggett SK, Tremblin P, Esplin TL, Luhman KL, Morley CV (2017) The Y-type brown dwarfs: estimates of mass and age from new astrometry, homogenized photometry, and near-infrared spectroscopy. ApJ 842:118.  https://doi.org/10.3847/1538-4357/aa6fb5, 1704.03573ADSGoogle Scholar
  90. Line MR, Teske J, Burningham B, Fortney J, Marley M (2015) Uniform atmospheric retrieval analysis of ultracool dwarfs I: characterizing benchmarks, Gl570D and HD3651B. ArXiv e-prints 1504.06670Google Scholar
  91. Line MR, Marley MS, Liu MC et al (2017) Uniform atmospheric retrieval analysis of ultracool dwarfs. II. Properties of 11 T dwarfs. ApJ 848:83.  https://doi.org/10.3847/1538-4357/aa7ff0, 1612.02809ADSGoogle Scholar
  92. Liu MC, Magnier EA, Deacon NR et al (2013) The extremely red, Young L Dwarf PSO J318.5338-22.8603: a free-floating planetary-mass analog to directly imaged young gas-giant planets. ApJ 777:L20.  https://doi.org/10.1088/2041-8205/777/2/L20, 1310.0457ADSGoogle Scholar
  93. Lodieu N, Dobbie PD, Deacon NR et al (2007a) A wide deep infrared look at the Pleiades with UKIDSS: new constraints on the substellar binary fraction and the low-mass initial mass function. MNRAS 380:712–732.  https://doi.org/10.1111/j.1365-2966.2007.12106.x, 0706.2234ADSGoogle Scholar
  94. Lodieu N, Pinfield DJ, Leggett SK et al (2007b) Eight new T4.5-T7.5 dwarfs discovered in the UKIDSS large area survey data release 1. MNRAS 379:1423–1430.  https://doi.org/10.1111/j.1365-2966.2007.12023.x, arXiv:0705.3727ADSGoogle Scholar
  95. Lodieu N, Zapatero Osorio MR, Rebolo R, Martín EL, Hambly NC (2009) A census of very-low-mass stars and brown dwarfs in the σ Orionis cluster. A&A 505:1115–1127.  https://doi.org/10.1051/0004-6361/200911966, 0907.2185ADSGoogle Scholar
  96. Lodieu N, Zapatero Osorio MR, Martín EL, Solano E, Aberasturi M (2010) GTC/OSIRIS spectroscopic identification of a faint L subdwarf in the UKIRT infrared deep sky survey. ApJ 708:L107–L111.  https://doi.org/10.1088/2041-8205/708/2/L107, 0912.3364ADSGoogle Scholar
  97. Lodieu N, Burningham B, Day-Jones A et al (2012) First T dwarfs in the VISTA hemisphere survey. A&A 548:A53.  https://doi.org/10.1051/0004-6361/201220182, 1210.5148Google Scholar
  98. Looper DL, Kirkpatrick JD, Burgasser AJ (2007) Discovery of 11 new T dwarfs in the two micron all sky survey, including a possible L/T transition binary. AJ 134:1162–1182.  https://doi.org/10.1086/520645, arXiv:0706.1601ADSGoogle Scholar
  99. Looper DL, Gelino CR, Burgasser AJ, Kirkpatrick JD (2008) Discovery of a T dwarf binary with the largest known J-band flux reversal. ArXiv e-prints 803, 0803.0544ADSGoogle Scholar
  100. LSST Science Collaboration, Abell PA, Allison J et al (2009) LSST science book, Version 2.0. ArXiv e-prints 0912.0201Google Scholar
  101. Lucas PW, Tinney CG, Burningham B et al (2010) The discovery of a very cool, very nearby brown dwarf in the Galactic plane. MNRAS 408:L56–L60.  https://doi.org/10.1111/j.1745-3933.2010.00927.x, 1004.0317ADSGoogle Scholar
  102. Luhman KL (2013) Discovery of a binary brown dwarf at 2 pc from the Sun. ApJ 767:L1.  https://doi.org/10.1088/2041-8205/767/1/L1, 1303.2401ADSGoogle Scholar
  103. Luhman KL (2014) Discovery of a ˜250 K brown dwarf at 2 pc from the Sun. ApJ 786:L18.  https://doi.org/10.1088/2041-8205/786/2/L18, 1404.6501ADSGoogle Scholar
  104. Luhman KL, Esplin TL (2016) The spectral energy distribution of the coldest known brown dwarf. AJ 152:78.  https://doi.org/10.3847/0004-6256/152/3/78, 1605.06655ADSGoogle Scholar
  105. Mace GN, Kirkpatrick JD, Cushing MC et al (2013a) A study of the diverse T dwarf population revealed by WISE. ApJS 205:6.  https://doi.org/10.1088/0067-0049/205/1/6, 1301.3913ADSGoogle Scholar
  106. Mace GN, Kirkpatrick JD, Cushing MC et al (2013b) The Exemplar T8 subdwarf companion of wolf 1130. ApJ 777:36.  https://doi.org/10.1088/0004-637X/777/1/36, 1309.1500ADSGoogle Scholar
  107. Mainzer A, Bauer J, Grav T et al (2011) Preliminary results from NEOWISE: an enhancement to the wide-field infrared survey explorer for solar system science. ApJ 731:53.  https://doi.org/10.1088/0004-637X/731/1/53, 1102.1996ADSGoogle Scholar
  108. Marocco F, Jones HRA, Day-Jones AC et al (2015) A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density. MNRAS 449:3651–3692.  https://doi.org/10.1093/mnras/stv530, 1503.05082ADSGoogle Scholar
  109. Martín EL, Delfosse X, Basri G et al (1999) Spectroscopic classification of late-M and L field dwarfs. AJ 118:2466–2482.  https://doi.org/10.1086/301107ADSGoogle Scholar
  110. Martín EL, Phan-Bao N, Bessell M et al (2010) Spectroscopic characterization of 78 DENIS ultracool dwarf candidates in the solar neighborhood and the Upper Scorpii OB association. A&A 517:A53.  https://doi.org/10.1051/0004-6361/201014202, 1004.1775ADSGoogle Scholar
  111. McMahon RG, Banerji M, Gonzalez E et al (2013) First scientific results from the VISTA hemisphere survey (VHS). Messenger 154:35–37ADSGoogle Scholar
  112. Metchev SA, Kirkpatrick JD, Berriman GB, Looper D (2008) A cross-match of 2MASS and SDSS: newly found L and T dwarfs and an estimate of the space density of T dwarfs. ApJ 676:1281–1306.  https://doi.org/10.1086/524721, 0710.4157ADSGoogle Scholar
  113. Miller GE, Scalo JM (1979) The initial mass function and stellar birthrate in the solar neighborhood. ApJS 41:513–547.  https://doi.org/10.1086/190629ADSGoogle Scholar
  114. Minniti D, Lucas PW, Emerson JP et al (2010) VISTA variables in the Via Lactea (VVV): the public ESO near-IR variability survey of the milky way. New A 15:433–443.  https://doi.org/10.1016/j.newast.2009.12.002, 0912.1056ADSGoogle Scholar
  115. Moraux E, Bouvier J, Stauffer JR, Cuillandre J (2003) Brown dwarfs in the Pleiades cluster: clues to the substellar mass function. A&A 400:891–902.  https://doi.org/10.1051/0004-6361:20021903, arXiv:astro-ph/0212571ADSGoogle Scholar
  116. Nakajima T, Oppenheimer BR, Kulkarni SR et al (1995) Discovery of a cool brown dwarf. Nature 378:463–+.  https://doi.org/10.1038/378463a0ADSGoogle Scholar
  117. Naud ME, Artigau É, Malo L et al (2014) Discovery of a wide planetary-mass companion to the young M3 star GU Psc. ApJ 787:5.  https://doi.org/10.1088/0004-637X/787/1/5, 1405.2932ADSGoogle Scholar
  118. Peña Ramírez K, Béjar VJS, Zapatero Osorio MR, Petr-Gotzens MG, Martín EL (2012) New isolated planetary-mass objects and the stellar and substellar mass function of the σ orionis cluster. ApJ 754:30.  https://doi.org/10.1088/0004-637X/754/1/30, 1205.4950ADSGoogle Scholar
  119. Phan-Bao N, Bessell MS, Martín EL et al (2008) Discovery of new nearby L and late-M dwarfs at low Galactic latitude from the DENIS data base. MNRAS 383:831–844.  https://doi.org/10.1111/j.1365-2966.2007.12564.x, 0708.4169ADSGoogle Scholar
  120. Pinfield DJ, Burningham B, Tamura M et al (2008) Fifteen new T dwarfs discovered in the UKIDSS large area survey. MNRAS 390:304–322.  https://doi.org/10.1111/j.1365-2966.2008.13729.x, 0806.0294ADSGoogle Scholar
  121. Pinfield DJ, Gomes J, Day-Jones AC et al (2014) A deep WISE search for very late type objects and the discovery of two halo/thick-disc T dwarfs: WISE 0013+0634 and WISE 0833+0052. MNRAS 437:1009–1026.  https://doi.org/10.1093/mnras/stt1437ADSGoogle Scholar
  122. Rebolo R, Zapatero Osorio MR, Martín EL (1995) Discovery of a brown dwarf in the Pleiades star cluster. Nature 377:129–131.  https://doi.org/10.1038/377129a0ADSGoogle Scholar
  123. Refregier A, Amara A, Kitching TD et al (2010) Euclid imaging consortium science book. ArXiv e-prints 1001.0061Google Scholar
  124. Reid IN, Gizis JE, Hawley SL (2002) The Palomar/MSU nearby star spectroscopic survey. IV. The luminosity function in the solar neighborhood and M dwarf kinematics. AJ 124:2721–2738.  https://doi.org/10.1086/343777ADSGoogle Scholar
  125. Reid IN, Cruz KL, Kirkpatrick JD et al (2008) Meeting the cool neighbors. X. Ultracool dwarfs from the 2MASS all-sky data release. AJ 136:1290–1311.  https://doi.org/10.1088/0004-6256/136/3/1290ADSGoogle Scholar
  126. Reylé C, Delorme P, Willott CJ et al (2010) The ultracool-field dwarf luminosity-function and space density from the Canada-France Brown Dwarf Survey. A&A 522:A112.  https://doi.org/10.1051/0004-6361/200913234, 1008.2301ADSGoogle Scholar
  127. Sahlmann J, Lazorenko PF (2015) Mass ratio of the 2 pc binary brown dwarf LUH 16 and limits on planetary companions from astrometry. MNRAS 453:L103–L107.  https://doi.org/10.1093/mnrasl/slv113, 1506.07994ADSGoogle Scholar
  128. Salpeter EE (1955) The luminosity function and stellar evolution. ApJ 121:161–+.  https://doi.org/10.1086/145971ADSGoogle Scholar
  129. Salpeter EE (2005) Introduction to IMF@50. In: Corbelli E, Palla F Zinnecker H (eds) The initial mass function 50 years later. Astrophysics and space science library, vol 327, p 3.  https://doi.org/10.1007/978-1-4020-3407-7_1
  130. Sandage A (1957) Observational approach to evolution. I. Luminosity functions. ApJ 125:422.  https://doi.org/10.1086/146318ADSGoogle Scholar
  131. Scalo JM (1986) The stellar initial mass function. Fund Cosmic Phys 11:1–278ADSGoogle Scholar
  132. Schmidt M (1959) The rate of star formation. ApJ 129:243.  https://doi.org/10.1086/146614ADSGoogle Scholar
  133. Schmidt SJ, West AA, Hawley SL, Pineda JS (2010) Colors and kinematics of L dwarfs from the Sloan digital sky survey. AJ 139:1808–1821.  https://doi.org/10.1088/0004-6256/139/5/1808, 1001.3402ADSGoogle Scholar
  134. Schneider DP, Knapp GR, Hawley SL et al (2002) L dwarfs found in Sloan digital sky survey commissioning data. II. Hobby-Eberly telescope observations. AJ 123:458–465.  https://doi.org/10.1086/338095, astro-ph/0110273ADSGoogle Scholar
  135. Schneider AC, Cushing MC, Kirkpatrick JD, Gelino CR (2016) The collapse of the Wien Tail in the coldest brown dwarf? Hubble space telescope near-infrared photometry of WISE J085510.83-071442.5. ApJ 823:L35.  https://doi.org/10.3847/2041-8205/823/2/L35, 1605.05618ADSGoogle Scholar
  136. Scholz RD, Storm J, Knapp GR, Zinnecker H (2009) Extremely faint high proper motion objects from SDSS stripe 82. Optical classification spectroscopy of about 40 new objects. A&A 494:949–967.  https://doi.org/10.1051/0004-6361:200811053, 0812.1495ADSGoogle Scholar
  137. Sheppard SS, Cushing MC (2009) An infrared high proper motion survey using the 2MASS and SDSS: discovery of M, L, and T dwarfs. AJ 137:304–314.  https://doi.org/10.1088/0004-6256/137/1/304, 0809.0697ADSGoogle Scholar
  138. Skemer AJ, Morley CV, Allers KN et al (2016) The first spectrum of the coldest brown dwarf. ApJ 826:L17.  https://doi.org/10.3847/2041-8205/826/2/L17, 1605.04902ADSGoogle Scholar
  139. Skrutskie MF, Cutri RM, Stiening R et al (2006) The Two micron all sky survey (2MASS). AJ 131:1163–1183.  https://doi.org/10.1086/498708ADSGoogle Scholar
  140. Skrzypek N, Warren SJ, Faherty JK et al (2015) Photometric brown-dwarf classification. I. A method to identify and accurately classify large samples of brown dwarfs without spectroscopy. A&A 574:A78.  https://doi.org/10.1051/0004-6361/201424570, 1411.7578ADSGoogle Scholar
  141. Skrzypek N, Warren SJ, Faherty JK (2016) Photometric brown-dwarf classification. II. A homogeneous sample of 1361 L and T dwarfs brighter than J = 17.5 with accurate spectral types. A&A 589:A49.  https://doi.org/10.1051/0004-6361/201527359, 1602.08582ADSGoogle Scholar
  142. Smith L, Lucas P, Burningham B et al (2013) The kinematic age of the coolest T dwarfs. ArXiv e-prints 1303.5288ADSGoogle Scholar
  143. Stone JM, Skemer AJ, Kratter KM et al (2016) Adaptive optics imaging of VHS 1256-1257: A low mass companion to a brown dwarf binary system. ApJ 818:L12.  https://doi.org/10.3847/2041-8205/818/1/L12, 1601.03377ADSGoogle Scholar
  144. Strauss MA, Fan X, Gunn JE et al (1999) The discovery of a field methane dwarf from Sloan digital sky survey commissioning data. ApJ 522:L61–L64.  https://doi.org/10.1086/312218, astro-ph/9905391ADSGoogle Scholar
  145. Tinney CG, Burgasser AJ, Kirkpatrick JD, McElwain MW (2005) The 2MASS Wide-Field T dwarf search. IV. Hunting out T dwarfs with methane imaging. AJ 130:2326–2346.  https://doi.org/10.1086/491734, arXiv:astro-ph/0508150ADSGoogle Scholar
  146. Tsvetanov ZI, Golimowski DA, Zheng W et al (2000) The discovery of a second field methane brown dwarf from Sloan digital sky survey commissioning data. ApJ 531:L61–L65.  https://doi.org/10.1086/312515, arXiv:astro-ph/0001062ADSGoogle Scholar
  147. Warren S, Hewett P (2002) WFCAM, UKIDSS, and z = 7 Quasars. In: Metcalfe N, Shanks T (eds) A new Era in cosmology. Astronomical society of the Pacific conference series, vol 283, p 369. astro-ph/0201216Google Scholar
  148. Wilson JC, Miller NA, Gizis JE et al (2003) New M and L dwarfs confirmed with CorMASS. In: Martín E (ed) Brown Dwarfs, IAU Symposium, vol 211, p 197ADSGoogle Scholar
  149. Wright EL, Eisenhardt PRM, Mainzer AK et al (2010) The wide-field infrared survey explorer (WISE): mission description and initial on-orbit performance. AJ 140:1868.  https://doi.org/10.1088/0004-6256/140/6/1868, 1008.0031ADSGoogle Scholar
  150. Yee HKC, Gladders MD, Gilbank DG et al (2007) The red-sequence cluster surveys. In: Metcalfe N, Shanks T (eds) Cosmic frontiers. Astronomical society of the Pacific conference series, vol 379, p 103Google Scholar
  151. York DG, Adelman J, Anderson JE Jr et al (2000) The Sloan digital sky survey: technical summary. AJ 120:1579–1587.  https://doi.org/10.1086/301513, arXiv:astro-ph/0006396
  152. Zhang ZH, Pokorny RS, Jones HRA et al (2009) Ultra-cool dwarfs: new discoveries, proper motions, and improved spectral typing from SDSS and 2MASS photometric colors. A&A 497:619–633.  https://doi.org/10.1051/0004-6361/200810314, 0902.2798ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Astrophysics Research, School of Physics, Astronomy and MathematicsUniversity of HertfordshireHatfieldUK

Personalised recommendations