The Way to Circumbinary Planets

  • Laurance R. DoyleEmail author
  • Hans J. Deeg
Reference work entry


The historic quest to detect circumbinary planets (CBPs) dates back to a time before the first extrasolar planets were detected. Eclipsing binary star systems (EBs) were considered prime targets for the detection of CBP transits, as it was considered likely that the planetary orbits would also be close to edge on to our line of sight and so cross (transit) the stellar discs of the eclipsing stars. The presence of CBPs remained however doubtful until the unequivocal detection, by transit, of Kepler-16b and of further CBPs with the NASA Kepler space telescope.

Stellar eclipses were also timed for about a dozen small-mass main-sequence EBs as well. In this chapter we discuss the history of theory and observations in the search for CBPs and the various techniques that have been applied, as well as several methods that might provide results in the future.



HD acknowledges support by grant ESP2015-65712-C5-4-R of the Spanish Secretary of State for R&D&i (MINECO). This contribution has benefited from the use of the NASA Exoplanet Archive and the Extrasolar Planets Encyclopaedia, and the authors acknowledge the people behind these tools.


  1. Armstrong D, Martin DV, Brown G et al (2011) Placing limits on the transit timing variations of circumbinary exoplanets. MNRAS 434:3047ADSCrossRefGoogle Scholar
  2. Armstrong DJ, Osborn H, Brown DJA et al (2014) On the abundance of circumbinary planets. MNRAS 444:1873ADSCrossRefGoogle Scholar
  3. Backer DC, Foster RS, Sallmen S (1993) A second companion of the millisecond pulsar 1620 – 26. Nature 365:817ADSCrossRefGoogle Scholar
  4. Benedict GF, Harrison TE (2017) HD 202206: a circumbinary brown dwarf system. AJ 153:258ADSCrossRefGoogle Scholar
  5. Bennett DP, Rhie SH, Udalski A et al (2016) The first circumbinary planet found by microlensing: OGLE-2007-BLG-349L(AB)c. AJ 152:125ADSCrossRefGoogle Scholar
  6. Beuermann K, Hessman FV, Dreizler S et al (2010) Two planets orbiting the recently formed post-common envelope binary NN Serpentis. A&A 521:L60ADSCrossRefGoogle Scholar
  7. Beuermann K, Buhlmann J, Diese J et al (2011) The giant planet orbiting the cataclysmic binary DP Leonis. A&A 526:A53ADSCrossRefGoogle Scholar
  8. Black DC (1982) A simple criterion for determining the dynamical stability of three-body systems. AJ 87:1333ADSCrossRefGoogle Scholar
  9. Borkovits TB, Erdi E, Forgács-Dajka E, Kovács T (2003) On the detectability of long period perturbations in close hierarchical triple stellar systems. A&A 398:1091–1102ADSCrossRefGoogle Scholar
  10. Borkovits TB, Csizmadia SZ, Forgács-Dajka E, Hegedus T (2011) Transit timing variations in eccentric hierarchical triple exoplanetary systems I. Perturbations on the time scale of the orbital period of the perturber. A&A 528:A53ADSCrossRefGoogle Scholar
  11. Borucki WJ, Summers AL (1984) The photometric method of detecting other planetary systems. Icarus 58:121ADSCrossRefGoogle Scholar
  12. Burgasser AJ, Simcoe RA, Bochanski JJ et al (2010) Clouds in the coldest brown dwarfs: fire spectroscopy of Ross 458C. ApJ 725:1405ADSCrossRefGoogle Scholar
  13. Castelli F (1977) The spectrum of e aurigae outside eclipse. Ap&SS 49:179ADSCrossRefGoogle Scholar
  14. Chavez CE, Georgakarakos N, Prodan S et al (2014) A dynamical stability study of Kepler circumbinary planetary systems with one planet. MNRAS 446:1283ADSCrossRefGoogle Scholar
  15. Conroy KE, Prša A, Stassun KG (2014) Kepler eclipsing binary stars. IV. Precise eclipse times for close binaries and identification of candidate three-body systems. AJ 147:45ADSCrossRefGoogle Scholar
  16. Correia ACM, Udry S, Mayor M et al (2005) The CORALIE survey for southern extra-solar planets. XIII. A pair of planets around HD 202206 or a circumbinary planet? A&A 440:751ADSCrossRefGoogle Scholar
  17. Couetdic J, Laskar J, Correia ACM, Mayor M, Udry S (2010) Dynamical stability analysis of the HD 202206 system and constraints to the planetary orbits. A&A 519:10ADSCrossRefGoogle Scholar
  18. Currie T, Burrows A, Daemgen S (2014) A first- look atmospheric modeling study of the young directly imaged planet-mass companion, ROXs 42Bb. ApJ 787:104ADSCrossRefGoogle Scholar
  19. Deeg HJ, Doyle LR (2011) Reflected eclipses on circumbinary planets. In: Bouchy F et al (eds) Detection and dynamics of transiting exoplanets, St. Michel l’Observatoire, France. EPJ Web of conferences, 11, id.05005Google Scholar
  20. Deeg HJ, Tingley B (2017) TEE, an estimator for the precision of eclipse and transit minimum times. A&A 599:93ADSCrossRefGoogle Scholar
  21. Deeg HJ, Doyle LR, Kozhevnikov VP et al (1998) A photometric search for transits of extrasolar planets: observations and photometric analysis of CM Draconis. A&A 338:479ADSGoogle Scholar
  22. Deeg HJ, Doyle LR, Kozhevnikov VP (2000) A search for jovian-mass planets around CM Draconis using eclipse minima timing. A&A 358:L5ADSGoogle Scholar
  23. Deeg HJ, Ocaña B, Kozhevnikov VP et al (2008) Extrasolar planet detection by binary stellar eclipse timing: evidence for a third body around CM Draconis. A&A 480:563ADSCrossRefGoogle Scholar
  24. Doolin S, Blundell KM (2011) The dynamics and stability of circumbinary orbits. MNRAS 418:2656ADSCrossRefGoogle Scholar
  25. Doyle LR, Deeg HJ (2004) Timing detection of eclipsing binary planets and transiting extrasolar moons. In: Norris RP, Stootman FH (eds) Bioastronomy 2002: life among the stars, IAU symposium 213:80Google Scholar
  26. Doyle LR, Deeg HJ, Jenkins JM et al (1998) Detectability of Jupiter-to-brown-dwarf-mass companions around small eclipsing binary systems. In Rebolo R et al (eds) Brown dwarfs and extrasolar planets, ASP conference series 134:224Google Scholar
  27. Doyle LR, Deeg HJ, Kozhevnikov VP et al (2000) Observational limits on terrestrial-sized inner planets around the CM Draconis system using the photometric transit method with a matched-filter algorithm. ApJ 535:338ADSCrossRefGoogle Scholar
  28. Doyle LR, Carter JA, Fabrycky DC et al (2011) Kepler-16: a transiting Circumbinary planet. Science 333:1602ADSCrossRefGoogle Scholar
  29. Dvorak R (1986) Critical orbits in the elliptic restricted three-body problem. A&A 167:379ADSzbMATHGoogle Scholar
  30. Dvorak R, Froeschle C, Froeschle C (1989) Stability of outer planetary orbits (P-types) in binaries. A&A 226:335ADSGoogle Scholar
  31. Flammarion C (1874) Les Étoiles doubles. La Nat Revue Sci 37:161Google Scholar
  32. Flammarion C (1884) Les Terres du Ciel; voyage astronomique sur les autres mondes et description des conditions actuelles de la vie sur les diverses planètes du système solaire; (11th edition), p 757Google Scholar
  33. Goodricke J (1784) On the periods of the changes of light in the star Algol. In a letter from John Goodricke, Esq. to the Rev. Anthony Shepherd, D.D.F.R.S. Professor of Astronomy at Cambridge. Philos Trans R Soc Lond 74(0):287Google Scholar
  34. Haghighipour N, Kaltenegger L (2013) Calculating the habitable zone of binary star systems. II P-type binaries. ApJ 777:166ADSCrossRefGoogle Scholar
  35. Hale A, Doyle LR (1994) The photometric detection of extrasolar planets revisited. Astroph & Space Sci 212:335ADSCrossRefGoogle Scholar
  36. Hamers AS, Perets HB, Portegies Zwart SF (2016) A triple origin for the lack of tight coplanar circumbinary planets around short-period binaries. MNRAS 455:3180ADSCrossRefGoogle Scholar
  37. Heath M, Doyle LR, Joshi MM, Haberle R (1999) Habitablility of planets around M-dwarf stars. Orig Life 29:405CrossRefGoogle Scholar
  38. Holman M, Wiegert PA (1999) Long-term stability of planets in binary systems. AJ 117:621ADSCrossRefGoogle Scholar
  39. Huygens C (1677) Lettre N° 2104. In: Bosscha J (ed) Œuvres complètes de Christiaan Huygens. Tome VIII: Correspondance 1676–1684. Martinus Nijhoff, The Hague (published 1899), p 32 (in Latin)Google Scholar
  40. Jain C, Paul B, Sharma R, Jaleel A, Dutta A (2017) Indication of a massive circumbinary planet orbiting the low-mass X-ray binary MXB 1658–298. MNRAS 468:L118ADSCrossRefGoogle Scholar
  41. Jenkins JM, Doyle LR (2003) Detecting reflected light from close-in Giant planets using space-based photometers. ApJ 595:429ADSCrossRefGoogle Scholar
  42. Jenkins JM, Doyle LR, Cullers K (1996) A matched-filter method for ground-based sub- noise detection of extrasolar planets in eclipsing binaries: application to CM Draconis. Icarus 119:244ADSCrossRefGoogle Scholar
  43. Joshi MM, Haberle RM, Reynolds RT (1997) Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129:450ADSCrossRefGoogle Scholar
  44. Joshi MM (2003) Climate model studies of synchronously rotating planets. Astrobiology 3:415ADSCrossRefGoogle Scholar
  45. Klagyivik P, Deeg HJ, Cabrera J, Csizmadia SZ, Almenara JM (2017) Limits to the presence of transiting circumbinary planets in CoRoT data. A&A 602:A117ADSCrossRefGoogle Scholar
  46. Konacki M, Muterspaugh MW, Kulkarni SR, Hełminiak KG (2009) The radial velocity Tatooine search for Circumbinary planets: planet detection limits for a sample of double-lined binary stars. ApJ 704:513ADSCrossRefGoogle Scholar
  47. Konacki M, Sybilski P, Kozłowski SK, Ratajczak M, Hełminiak KG (2012) Circumbinary planets and the SOLARIS project. IAU Symp 282:111ADSGoogle Scholar
  48. Kondo Y, Parsons SB, Henize KG et al (1983) Skylab ultraviolet stellar spectra: emission lines from the Beta Lyrae system. ApJ 208:468ADSCrossRefGoogle Scholar
  49. Krist JE, Stapelfeldt KR, Watson AM (2002) Hubble space telescope/WFPC2 images of the GG Tauri Circumbinary disk. ApJ 570:785ADSCrossRefGoogle Scholar
  50. Lee JW, Hinse TC, Youn JH, Han W (2014) The pulsating sdB+M eclipsing system NY Virginis and its circumbinary planets. MNRAS 445:2331ADSCrossRefGoogle Scholar
  51. Martin DV (2017) Circumbinary planets II – when transits come and go. MNRAS 465:3235ADSCrossRefGoogle Scholar
  52. Martin DV, Triaud AHMJ (2014) Planets transiting non-eclipsing binaries. A&A 570:91ADSCrossRefGoogle Scholar
  53. Martin DV, Triaud AHMJ (2015) Circumbinary planets – why they are so likely to transit. MNRAS 449:781ADSCrossRefGoogle Scholar
  54. Martin DV, Triaud AHMJ (2016) Kozai-Lidov cycles towards the limit of circumbinary planets. MNRAS 455:46ADSCrossRefGoogle Scholar
  55. Martin DV, Mazeh T, Fabrycky DC (2015) No circumbinary planets transiting the tightest Kepler binaries – a possible fingerprint of a third star. MNRAS 453:3554ADSCrossRefGoogle Scholar
  56. McCabe C, Duchêne G, Ghez AM (2002) NICMOS images of the GG Tau circumbinary disk. ApJ 575:974ADSCrossRefGoogle Scholar
  57. Morais MHM, Giuppone CA (2012) Stability of prograde and retrograde planets in circular binary systems. MNRAS 424:52ADSCrossRefGoogle Scholar
  58. Morales JC, Ribas I, Jordi C et al (2009) Absolute properties of the low-mass eclipsing binary CM Draconis. ApJ 691:1400ADSCrossRefGoogle Scholar
  59. Nelson A, Marzari F (2016) Dynamics of circumstellar disks. III. The case of GG Tau A. ApJ 93:40Google Scholar
  60. Paczynski B (1976) Common envelope binaries. In: IAU symposium no. 73, p 75ADSCrossRefGoogle Scholar
  61. Pendleton YJ, Black DC (1983) Further studies on criteria for the onset of dynamical instability in general three-body systems. AJ 88:1415ADSCrossRefGoogle Scholar
  62. Pilat-Lohinger E, Funk B, Dvorak R (2003) Stability limits in double stars: a study of inclined planetary orbits. A&A 400:1085ADSCrossRefGoogle Scholar
  63. Qian S-B, Liu L, Zhu L-Y et al (2012) A circumbinary planet in orbit around the short-period white dwarf eclipsing binary RR Cae. MNRAS 422:L24ADSCrossRefGoogle Scholar
  64. Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249ADSCrossRefGoogle Scholar
  65. Sahlmann J, Triaud AHMJ, Martin DV (2015) Gaia’s potential for the discovery of circumbinary planets. MNRAS 447:287ADSCrossRefGoogle Scholar
  66. Schneider J (1994) On the occultations of a binary star by a circum-orbiting dark companion. Planet Space Sci 42:539ADSCrossRefGoogle Scholar
  67. Schneider J, Chevreton M (1990) The photometric search for earth-sized extrasolar planets by occultation in binary systems. A&A 232:251ADSGoogle Scholar
  68. Schneider J, Doyle LR (1995) Ground-based detection of terrestrial extrasolar planets by photometry: the case for CM Draconis. Earth Moon Planet 71:153ADSCrossRefGoogle Scholar
  69. Sigurdsson S, Richer H, Hansen BM, Stairs IH, Thorsett SE (2003) A young white dwarf companion to pulsar B1620-26: evidence for early planet formation. Science 301:193ADSCrossRefGoogle Scholar
  70. Struve O (1952) Proposal for a project of high precision radial velocity work. The Observatory 72:199ADSGoogle Scholar
  71. Sybilski PM, Konacki M, Kozłowski SK (2010) Detecting circumbinary planets using eclipse timing of binary stars – numerical simulations. MNRAS 405:657ADSGoogle Scholar
  72. Thorsett SE, Arzoumanian Z, Taylor JH (1993) PSR B1620-26 – a binary radio pulsar with a planetary companion? ApJ 412:L33ADSCrossRefGoogle Scholar
  73. Welsh WF, Orosz JA, Carter JA (2012) Transiting circumbinary planets Kepler-34b and Kepler-35b. Nature 481:475ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for the Metaphysics of Physics, One Maybeck PlacePrincipia CollegeElsahUSA
  2. 2.Carl Sagan CenterSETI InstituteMountain ViewUSA
  3. 3.Instituto de Astrofísica de CanariasLa LagunaSpain
  4. 4.Departamento de AstrofísicaUniversidad de La LagunaLa LagunaSpain

Section editors and affiliations

  • Tsevi Mazeh
    • 1
  1. 1.School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael

Personalised recommendations