Imaging with Adaptive Optics and Coronographs for Exoplanet Research

  • Olivier GuyonEmail author
Reference work entry


Direct imaging is particularly valuable for characterization of exoplanets: orbits are measured, planet sizes are constrained from brightness measurements, and the planet light can be decomposed in wavelength, polarization state, and time to reveal atmosphere composition and physical properties (pressure, temperature). Images can also reveal multiple planets and map dust distribution to reveal the dynamical evolution and history of exoplanetary systems. Provided that starlight can be canceled with a coronagraph to reduce contamination, the measurements can be of high quality and take full advantage of the sensitivity offered by current and future large ground-based telescopes.

Adaptive optics and starlight suppression techniques are essential to deliver the high-contrast imaging performance required for exoplanet imaging. While a few young warm giant planets have been imaged from the ground, the vast majority of exoplanets, including habitable planets, remains beyond current AO systems capabilities. Yet, thanks to rapid ongoing developments in adaptive optics and coronagraphy, and the upcoming generation of 30-m class giant segmented mirror telescopes (GSMTs), direct imaging is poised to reveal and characterize a large number of planets, including nearby habitable planets.


  1. Aime C, Soummer R (2004) The usefulness and limits of coronagraphy in the presence of pinned speckles. ApJ 612:L85–L88ADSCrossRefGoogle Scholar
  2. Angel JRP (1994) Ground-based imaging of extrasolar planets using adaptive optics. Nature 368:203–207ADSCrossRefGoogle Scholar
  3. Avenhaus H, Quanz SP, Schmid HM et al (2017) Exploring dust around HD 142527 down to 0.025 arcsec (4 au) Using SPHERE/ZIMPOL. AJ 154:33ADSCrossRefGoogle Scholar
  4. Babcock HW (1953) The possibility of compensating astronomical seeing. PASP 65:229ADSCrossRefGoogle Scholar
  5. Baudoz P, Boccaletti A, Baudrand J, Rouan D (2006) The self-coherent camera: a new tool for planet detection. In: Aime C, Vakili F (eds) IAU Colloquium 200: direct imaging of exoplanets: science and techniques, pp 553–558. Scholar
  6. Beckers JM (1993) Adaptive optics for astronomy – principles, performance, and applications. ARA&A 31:13–62ADSCrossRefGoogle Scholar
  7. Bloemhof EE, Dekany RG, Troy M, Oppenheimer BR (2001) Behavior of remnant speckles in an adaptively corrected imaging system. ApJ 558:L71–L74ADSCrossRefGoogle Scholar
  8. Boccaletti A, Thalmann C, Lagrange AM et al (2015) Fast-moving features in the debris disk around AU Microscopii. Nature 526:230–232ADSCrossRefGoogle Scholar
  9. Bordé PJ, Traub WA (2006) High-contrast imaging from space: speckle nulling in a low-aberration regime. ApJ 638:488–498ADSCrossRefGoogle Scholar
  10. Bottom M, Wallace JK, Bartos RD, Shelton JC, Serabyn E (2017) Speckle suppression and companion detection using coherent differential imaging. MNRAS 464:2937–2951ADSCrossRefGoogle Scholar
  11. Breckinridge JB, Chipman RA (2016) Telescope polarization and image quality: Lyot coronagraph performance. In: Space telescopes and instrumentation 2016: optical, infrared, and millimeter wave, Proceedings of SPIE, vol 9904, p 99041C.
  12. Claudi R, Antichi J, Baruffolo A et al (2016) Pushing down with the contrast: scientific performances with SPHERE-IFS. In: Ground-based and airborne instrumentation for astronomy VI, Proceedings of SPIE, vol 9908, p 99083H. Scholar
  13. Currie T, Kasdin NJ, Groff T et al (2018) Laboratory and on-sky validation of the shaped pupil coronagraph’s sensitivity to low-order aberrations with active wavefront control. ArXiv e-printsGoogle Scholar
  14. Davies R, Kasper M (2012) Adaptive optics for astronomy. Ann Rev Astron Astrophys 50: 305–351ADSCrossRefGoogle Scholar
  15. Give’On A (2009) A unified formailism for high contrast imaging correction algorithms. In: Techniques and instrumentation for detection of exoplanets IV, Proceedings of SPIE, vol 7440, p 74400D. Scholar
  16. Groff TD, Chilcote J, Kasdin NJ et al (2016) Laboratory testing and performance verification of the CHARIS integral field spectrograph. In: Ground-based and airborne instrumentation for astronomy VI, Proceedings of SPIE, vol 9908, p 99080O. Scholar
  17. Guyon O, Males J (2017) Adaptive optics predictive control with empirical orthogonal functions (EOFs). ArXiv e-printsGoogle Scholar
  18. Guyon O, Pluzhnik EA, Kuchner MJ, Collins B, Ridgway ST (2006) Theoretical limits on extrasolar terrestrial planet detection with coronagraphs. ApJS 167:81–99ADSCrossRefGoogle Scholar
  19. Guyon O, Matsuo T, Angel R (2009) Coronagraphic low-order wave-front sensor: principle and application to a phase-induced amplitude coronagraph. ApJ 693:75–84ADSCrossRefGoogle Scholar
  20. Guyon O, Hinz PM, Cady E, Belikov R Martinache F (2014) High Performance Lyot and PIAA Coronagraphy for Arbitrarily Shaped Telescope Apertures. ApJ 780:171ADSCrossRefGoogle Scholar
  21. Hinkley S, Oppenheimer BR, Zimmerman N et al (2011) A new high contrast imaging program at Palomar observatory. PASP 123:74ADSCrossRefGoogle Scholar
  22. Kasdin NJ, Vanderbei RJ, Spergel DN, Littman MG (2003) Extrasolar planet finding via optimal apodized-pupil and shaped-pupil coronagraphs. ApJ 582:1147–1161ADSCrossRefGoogle Scholar
  23. Lafrenière D, Marois C, Doyon R, Nadeau D, Artigau É (2007) A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging. ApJ 660:770–780ADSCrossRefGoogle Scholar
  24. Lyot B (1932) Étude de la couronne solaire en dehors des éclipses. Avec 16 figures dans le texte. ZAp 5:73Google Scholar
  25. Macintosh B, Poyneer L, Sivaramakrishnan A, Marois C (2005) Speckle lifetimes in high-contrast adaptive optics. In: Tyson RK, Lloyd-Hart M (eds) Astronomical adaptive optics systems and applications II, Proceedings of SPIE, vol 5903, pp 170–177. Scholar
  26. Males JR, Guyon O (2017) Ground-based adaptive optics coronagraphic performance under closed-loop predictive control. ArXiv e-printsGoogle Scholar
  27. Marois C, Doyon R, Racine R, Nadeau D (2000) Efficient speckle noise attenuation in faint companion imaging. PASP 112:91–96ADSCrossRefGoogle Scholar
  28. Marois C, Lafrenière D, Doyon R, Macintosh B, Nadeau D (2006) Angular differential imaging: a powerful high-contrast imaging technique. ApJ 641:556–564ADSCrossRefGoogle Scholar
  29. Martinache F, Guyon O, Jovanovic N et al (2014) On-sky speckle nulling demonstration at small angular separation with SCExAO. PASP 126:565ADSCrossRefGoogle Scholar
  30. Mawet D, Riaud P, Absil O, Surdej J (2005) Annular groove phase mask coronagraph. ApJ 633:1191–1200ADSCrossRefGoogle Scholar
  31. Millar-Blanchaer MA, Perrin MD, Hung LW et al (2016) GPI observational calibrations XIV: polarimetric contrasts and new data reduction techniques. In: Ground-based and airborne instrumentation for astronomy VI, Proceedings of SPIE, vol 9908, p 990836. Scholar
  32. Nakajima T (1994) Planet detectability by an adaptive optics stellar coronagraph. ApJ 425:348–357ADSCrossRefGoogle Scholar
  33. Norris B, Schworer G, Tuthill P et al (2015) The VAMPIRES instrument: imaging the innermost regions of protoplanetary discs with polarimetric interferometry. MNRAS 447:2894–2906ADSCrossRefGoogle Scholar
  34. Perrin MD, Maire J, Ingraham P et al (2014) Gemini planet imager observational calibrations I: overview of the GPI data reduction pipeline. In: Ground-based and airborne instrumentation for astronomy V, Proceedings of SPIE, vol 9147, p 91473J. Scholar
  35. Poyneer LA, Macintosh BA, Véran JP (2007) Fourier transform wavefront control with adaptive prediction of the atmosphere. J Optical Soc Am A 24:2645ADSCrossRefGoogle Scholar
  36. Poyneer L, van Dam M, Véran JP (2009) Experimental verification of the frozen flow atmospheric turbulence assumption with use of astronomical adaptive optics telemetry. J Optical Soc Am A 26:833ADSCrossRefGoogle Scholar
  37. Racine R, Walker GAH, Nadeau D, Doyon R, Marois C (1999) Speckle noise and the detection of faint companions. PASP 111:587–594ADSCrossRefGoogle Scholar
  38. Rameau J, Chauvin G, Lagrange AM et al (2015) Detection limits with spectral differential imaging data. A&A 581:A80ADSGoogle Scholar
  39. Roelfsema R, Bazzon A, Schmid HM et al (2016) The ZIMPOL high contrast imaging polarimeter for SPHERE: polarimetric high contrast commissioning results. In: Adaptive optics systems V, Proceedings of SPIE, vol 9909, p 990927. Scholar
  40. Shi F, Balasubramanian K, Hein R et al (2016) Low-order wavefront sensing and control for WFIRST-AFTA coronagraph. J Astron Telescopes Instrum Syst 2(1):011021ADSCrossRefGoogle Scholar
  41. Singh G, Martinache F, Baudoz P et al (2014) Lyot-based low order wavefront sensor for phase-mask coronagraphs: principle, simulations and laboratory experiments. PASP 126:586ADSCrossRefGoogle Scholar
  42. Singh G, Lozi J, Guyon O et al (2015) On-sky demonstration of low-order wavefront sensing and control with focal plane phase mask coronagraphs. PASP 127:857ADSCrossRefGoogle Scholar
  43. Soummer R, Aime C, Falloon PE (2003) Stellar coronagraphy with prolate apodized circular apertures. A&A 397:1161–1172ADSCrossRefGoogle Scholar
  44. Soummer R, Ferrari A, Aime C, Jolissaint L (2007) Speckle noise and dynamic range in coronagraphic images. ApJ 669:642–656ADSCrossRefGoogle Scholar
  45. Soummer R, Pueyo L, Larkin J (2012) Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages. ApJ 755:L28ADSCrossRefGoogle Scholar
  46. Sparks WB, Ford HC (2002) Imaging spectroscopy for extrasolar planet detection. ApJ 578:543–564ADSCrossRefGoogle Scholar
  47. Stahl SM, Sandler DG (1995) Optimization and performance of adaptive optics for imaging extrasolar planets. ApJ 454:L153ADSCrossRefGoogle Scholar
  48. Trauger J, Moody D, Krist J, Gordon B (2016) Hybrid Lyot coronagraph for WFIRST-AFTA: coronagraph design and performance metrics. J Astron Telescopes Instrum Syst 2(1):011013ADSCrossRefGoogle Scholar
  49. Wang J, Mawet D, Ruane G, Hu R, Benneke B (2017) Observing exoplanets with high dispersion coronagraphy. I. The scientific potential of current and next-generation large ground and space telescopes. AJ 153:183ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Astrobiology CenterNational Institutes of Natural SciencesMitakaJapan
  2. 2.Steward ObservatoryUniversity of ArizonaTucsonUSA
  3. 3.National Astronomical Observatory of JapanSubaru Telescope, National Institutes of Natural SciencesHiloUSA

Personalised recommendations