Advertisement

SPIRou: A NIR Spectropolarimeter/High-Precision Velocimeter for the CFHT

  • Jean-François DonatiEmail author
  • D. Kouach
  • M. Lacombe
  • S. Baratchart
  • R. Doyon
  • X. Delfosse
  • Étienne Artigau
  • Claire Moutou
  • G. Hébrard
  • François Bouchy
  • J. Bouvier
  • S. Alencar
  • L. Saddlemyer
  • L. Parès
  • P. Rabou
  • Y. Micheau
  • F. Dolon
  • G. Barrick
  • O. Hernandez
  • S. Y. Wang
  • V. Reshetov
  • N. Striebig
  • Z. Challita
  • A. Carmona
  • S. Tibault
  • E. Martioli
  • P. Figueira
  • I. Boisse
  • Francesco Pepe
  • The SPIRou Team
Reference work entry

Abstract

SPIRou is a near-infrared (nIR) spectropolarimeter/velocimeter for the Canada-France-Hawaii Telescope (CFHT) that will focus on two forefront science topics, (i) the quest for habitable Earthlike planets around nearby M stars and (ii) the study of low-mass star/planet formation in the presence of magnetic fields. SPIRou will also efficiently tackle many key programs beyond these two main goals, from weather patterns on brown dwarfs to solar system planet and exoplanet atmospheres. SPIRou will cover a wide spectral domain in a single exposure (0.98–2.44 μm) at a resolving power of 70 K, yielding unpolarized and polarized spectra of low-mass stars with a 15% average throughput at a radial velocity (RV) precision of 1 m s−1. It consists of a Cassegrain unit mounted at the Cassegrain focus of CFHT and featuring an achromatic polarimeter, coupled to a cryogenic spectrograph cooled down at 80 K through a fluoride fiber link. SPIRou is currently integrated at IRAP/OMP and will be mounted at CFHT in 2018 Q1 for a first light scheduled in early 2018. Science operation is predicted to begin in 2018 S2, allowing many fruitful synergies with major ground and space instruments such as the JWST, TESS, ALMA, and later-on PLATO and the ELT.

Notes

Acknowledgements

This chapter is dedicated to the memory of Leslie Saddlemyer from NRC-H and to that of Pierre Soler, Director of OMP, who passed away on January 9, 2017, and May 15, 2017, respectively. Both played major roles in helping SPIRou come to life. The SPIRou team thanks all funding agencies in France (the IDEX initiatives in Toulouse and Marseille, DIM-ACAV in Paris, Labex OSUG@2020 in Grenoble, CNRS / INSU, Universite de Toulouse Paul Sabatier, and Universite Grenoble-Alpes), Canada (CFI, NRC), Brazil (LNA), Switzerland (Geneva Observatory), Portugal (FCT), and Taiwan (ASIAA) for their financial and/or manpower contribution to SPIRou. The team also thanks CFHT for covering a significant fraction of SPIRou’s construction costs and allocating human resources to the project.

References

  1. Allard F, Homeier D, Freytag B et al (2013) Progress in modeling very low mass stars, brown dwarfs, and planetary mass objects. Memorie della Societa Astronomica Italiana Supplementi 24:128ADSGoogle Scholar
  2. André P, Basu S, Inutsuka S (2009) The formation and evolution of prestellar cores. Cambridge University Press, Cambridge, p 254Google Scholar
  3. Anglada-Escudé G, Amado PJ, Barnes J et al. (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440ADSCrossRefGoogle Scholar
  4. Artigau É, Bouchard S, Doyon R, Lafrenière D (2009) Photometric Variability of the T2.5 Brown Dwarf SIMP J013656.5+093347: Evidence for Evolving Weather Patterns. ApJ 701:1534–1539ADSCrossRefGoogle Scholar
  5. Artigau É, Kouach D, Donati JF et al. (2014) SPIRou: the near-infrared spectropolarimeter/high-precision velocimeter for the Canada-France-Hawaii telescope. In: Ground-based and Airborne Instrumentation for Astronomy V, Proc SPIE, vol 9147, p 914715,  https://doi.org/10.1117/12.2055663
  6. Baraffe I, Chabrier G (2010) Effect of episodic accretion on the structure and the lithium depletion of low-mass stars and planet-hosting stars. A&A 521:A44ADSCrossRefGoogle Scholar
  7. Barrick GA, Vermeulen T, Baratchart S et al. (2012) SPIRou @ CFHT: design of the instrument control system. In: Software and Cyberinfrastructure for Astronomy II, Proc SPIE, vol 8451, p 84513J.  https://doi.org/10.1117/12.926392
  8. Baruteau C, Crida A, Paardekooper SJ et al. (2014) Planet-Disk Interactions and Early Evolution of Planetary Systems. Protostars and Planets VI pp 667–689Google Scholar
  9. Berta-Thompson ZK, Irwin J, Charbonneau D et al. (2015) A rocky planet transiting a nearby low-mass star. Nature 527:204–207ADSCrossRefGoogle Scholar
  10. Blinova AA, Romanova MM, Lovelace RVE (2016) Boundary between stable and unstable regimes of accretion. Ordered and chaotic unstable regimes. MNRAS 459:2354–2369Google Scholar
  11. Boisse I, Perruchot S, Bouchy F et al. (2016) A calibration unit for the near-infrared spectropolarimeter SPIRou. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Proc SPIE, vol 9908, p 990868.  https://doi.org/10.1117/12.2231678
  12. Bonfils X, Delfosse X, Udry S et al. (2013) The HARPS search for southern extra-solar planets. XXXI. The M-dwarf sample. A&A 549:A109Google Scholar
  13. Bouvier J, Alencar SHP, Harries TJ, Johns-Krull CM, Romanova MM (2007) Magnetospheric Accretion in Classical T Tauri Stars. In: Reipurth B, Jewitt D, Keil K (eds) Protostars and Planets V, pp 479–494Google Scholar
  14. Bower GC, Loinard L, Dzib S et al. (2016) Variable Radio Emission from the Young Stellar Host of a Hot Jupiter. ApJ 830:107ADSCrossRefGoogle Scholar
  15. Brogi M, Snellen IAG, de Kok RJ et al. (2012) The signature of orbital motion from the dayside of the planet τ Boötis b. Nature 486:502–504ADSCrossRefGoogle Scholar
  16. Carmona A, Bouvier J, Delfosse X (2013) Perspectives for the study of gas in protoplanetary disks and accretion/ejection phenomena in young stars with the near-IR spectrograph SPIROU at the CFHT. In: Cambresy L, Martins F, Nuss E, Palacios A (eds) SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pp 493–495Google Scholar
  17. Cody AM, Stauffer J, Baglin A et al. (2014) CSI 2264: Simultaneous Optical and Infrared Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer. Evidence for Multiple Origins of Variability. AJ 147:82ADSCrossRefGoogle Scholar
  18. Crossfield IJM, Biller B, Schlieder JE et al. (2014) A global cloud map of the nearest known brown dwarf. Nature 505:654–656ADSCrossRefGoogle Scholar
  19. David TJ, Hillenbrand LA, Petigura EA et al. (2016) A Neptune-sized transiting planet closely orbiting a 5-10-million-year-old star. Nature 534:658–661ADSCrossRefGoogle Scholar
  20. Davies CL, Gregory SG, Greaves JS (2014) Accretion discs as regulators of stellar angular momentum evolution in the ONC and Taurus-Auriga. MNRAS 444:1157–1176ADSCrossRefGoogle Scholar
  21. Delfosse X, Donati JF, Kouach D et al. (2013) World-leading science with SPIRou - The nIR spectropolarimeter/high-precision velocimeter for CFHT. In: Cambresy L, Martins F, Nuss E, Palacios A (eds) SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pp 497–508Google Scholar
  22. Donati J, Skelly MB, Bouvier J et al. (2010) Complex magnetic topology and strong differential rotation on the low-mass T Tauri star V2247 Oph. MNRAS 402:1426–1436ADSCrossRefGoogle Scholar
  23. Donati JF (2003) ESPaDOnS: An Echelle SpectroPolarimetric Device for the Observation of Stars at CFHT. In: Trujillo-Bueno J, Sanchez Almeida J (eds) Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific Conference Series, vol 307, p 41Google Scholar
  24. Donati JF, Semel M, Carter BD, Rees DE, Collier Cameron A (1997) Spectropolarimetric observations of active stars. MNRAS 291:658ADSCrossRefGoogle Scholar
  25. Donati JF, Paletou F, Bouvier J, Ferreira J (2005) Direct detection of a magnetic field in the innermost regions of an accretion disk. Nature 438:466–469ADSCrossRefGoogle Scholar
  26. Donati JF, Catala C, Landstreet JD, Petit P (2006) ESPaDOnS: The New Generation Stellar Spectro-Polarimeter. Performances and First Results. In: Casini R, Lites BW (eds) Astronomical Society of the Pacific Conference Series, Astronomical Society of the Pacific Conference Series, vol 358, p 362Google Scholar
  27. Donati JF, Gregory SG, Alencar SHP et al. (2012) Magnetometry of the classical T Tauri star GQ Lup: non-stationary dynamos and spin evolution of young Suns. MNRAS 425:2948–2963ADSCrossRefGoogle Scholar
  28. Donati JF, Gregory SG, Alencar SHP et al. (2013) Magnetospheric accretion on the fully convective classical T Tauri star DN Tau. MNRAS 436:881–897ADSCrossRefGoogle Scholar
  29. Donati JF, Hébrard E, Hussain G et al. (2014) Modelling the magnetic activity and filtering radial velocity curves of young Suns : the weak-line T Tauri star LkCa 4. MNRAS 444:3220–3229ADSCrossRefGoogle Scholar
  30. Donati JF, Moutou C, Malo L et al. (2016) A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star. Nature 534:662–666ADSCrossRefGoogle Scholar
  31. Donati JF, Yu L, Moutou C et al. (2017) The hot Jupiter of the magnetically active weak-line T Tauri star V830 Tau. MNRAS 465:3343–3360ADSCrossRefGoogle Scholar
  32. Dressing CD, Charbonneau D (2015) The Occurrence of Potentially Habitable Planets Orbiting M Dwarfs Estimated from the Full Kepler Dataset and an Empirical Measurement of the Detection Sensitivity. ApJ 807:45ADSCrossRefGoogle Scholar
  33. Feiden GA (2016) Magnetic inhibition of convection and the fundamental properties of low-mass stars. III. A consistent 10 Myr age for the Upper Scorpius OB association. A&A 593:A99ADSCrossRefGoogle Scholar
  34. Gaidos E, Selsis F (2007) From Protoplanets to Protolife: The Emergence and Maintenance of Life. Protostars and Planets V pp 929–944Google Scholar
  35. Gaidos E, Mann AW, Kraus AL, Ireland M (2016) They are small worlds after all: revised properties of Kepler M dwarf stars and their planets. MNRAS 457:2877–2899ADSCrossRefGoogle Scholar
  36. Gomes da Silva J, Santos NC, Bonfils X et al. (2012) Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program . II. Activity and radial velocity. A&A 541:A9ADSCrossRefGoogle Scholar
  37. Gregory SG, Donati JF, Morin J et al. (2012) Can We Predict the Global Magnetic Topology of a Pre-main-sequence Star from Its Position in the Hertzsprung-Russell Diagram? ApJ 755:97ADSCrossRefGoogle Scholar
  38. Güdel M, Dvorak R, Erkaev N et al. (2014) Astrophysical Conditions for Planetary Habitability. Protostars and Planets VI pp 883–906Google Scholar
  39. Hébrard ÉM, Donati JF, Delfosse X et al. (2016) Modelling the RV jitter of early-M dwarfs using tomographic imaging. MNRAS 461:1465–1497ADSCrossRefGoogle Scholar
  40. Johansen A (2009) The role of magnetic fields for planetary formation. In: Strassmeier KG, Kosovichev AG, Beckman JE (eds) Cosmic Magnetic Fields: From Planets, to Stars and Galaxies, IAU Symposium, vol 259, pp 249–258.  https://doi.org/10.1017/S1743921309030592CrossRefGoogle Scholar
  41. Johns-Krull CM, Greene TP, Doppmann GW, Covey KR (2009) First Magnetic Field Detection on a Class I Protostar. ApJ 700:1440–1448ADSCrossRefGoogle Scholar
  42. Lin DNC, Bodenheimer P, Richardson DC (1996) Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380:606–607ADSCrossRefGoogle Scholar
  43. Lissauer JJ, Dawson RI, Tremaine S (2014) Advances in exoplanet science from Kepler. Nature 513:336–344ADSCrossRefGoogle Scholar
  44. Machado P, Widemann T, Luz D, Peralta J (2014) Wind circulation regimes at Venus’ cloud tops: Ground-based Doppler velocimetry using CFHT/ESPaDOnS and comparison with simultaneous cloud tracking measurements using VEx/VIRTIS in February 2011. Icarus 243:249–263ADSCrossRefGoogle Scholar
  45. Machado P, Widemann T, Peralta J et al. (2017) Venus cloud-tracked and doppler velocimetry winds from CFHT/ESPaDOnS and Venus Express/VIRTIS in April 2014. Icarus 285:8–26ADSCrossRefGoogle Scholar
  46. Maury AJ, André P, Hennebelle P et al. (2010) Toward understanding the formation of multiple systems. A pilot IRAM-PdBI survey of Class 0 objects. A&A 512:A40ADSCrossRefGoogle Scholar
  47. Micheau Y, Bouchy F, Pepe F et al. (2012) SPIRou @ CFHT: fiber links and pupil slicer. In: Ground-based and Airborne Instrumentation for Astronomy IV, Proc SPIE, vol 8446, p 84462R.  https://doi.org/10.1117/12.926084
  48. Micheau Y, Bouyé M, Parisot J, Kouach D (2015) Fluoride fiber thermal emission study for SPIRou @ CFHT. In: Techniques and Instrumentation for Detection of Exoplanets VII, Proc SPIE, vol 9605, p 96051Q.  https://doi.org/10.1117/12.2185188
  49. Morin J, Donati JF, Petit P et al. (2008) Large-scale magnetic topologies of mid M dwarfs. MNRAS 390:567–581ADSCrossRefGoogle Scholar
  50. Morin J, Donati J, Petit P et al. (2010) Large-scale magnetic topologies of late M dwarfs. MNRAS 407:2269–2286ADSCrossRefGoogle Scholar
  51. Moutou C, Boisse I, Hébrard G et al. (2015) SPIRou: a spectropolarimeter for the CFHT. In: Martins F, Boissier S, Buat V, Cambrésy L, Petit P (eds) SF2A-2015: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pp 205–212Google Scholar
  52. Muirhead PS, Johnson JA, Apps K et al. (2012) Characterizing the Cool KOIs. III. KOI 961: A Small Star with Large Proper Motion and Three Small Planets. ApJ 747:144ADSCrossRefGoogle Scholar
  53. Muirhead PS, Mann AW, Vanderburg A et al. (2015) Kepler-445, Kepler-446 and the Occurrence of Compact Multiples Orbiting Mid-M Dwarf Stars. ApJ 801:18ADSCrossRefGoogle Scholar
  54. Newton ER, Irwin J, Charbonneau D, Berta-Thompson ZK, Dittmann JA (2016) The Impact of Stellar Rotation on the Detectability of Habitable Planets around M Dwarfs. ApJ 821:L19ADSCrossRefGoogle Scholar
  55. Parès L, Donati JF, Dupieux M et al. (2012) Front end of the SPIRou spectropolarimeter for Canada-France Hawaii Telescope. In: Ground-based and Airborne Instrumentation for Astronomy IV, Proc SPIE, vol 8446, p 84462E.  https://doi.org/10.1117/12.925410
  56. Passegger VM, Wende-von Berg S, Reiners A (2016) Fundamental M-dwarf parameters from high-resolution spectra using PHOENIX ACES models. I. Parameter accuracy and benchmark stars. A&A 587:A19ADSCrossRefGoogle Scholar
  57. Pepe F, Rupprecht G, Avila G et al. (2003) Performance verification of HARPS: first laboratory results. In: Iye M, Moorwood AFM (eds) Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, Proc SPIE, vol 4841, pp 1045–1056.  https://doi.org/10.1117/12.460777
  58. Rajpurohit AS, Reylé C, Allard F et al. (2013) The effective temperature scale of M dwarfs. A&A 556:A15ADSCrossRefGoogle Scholar
  59. Reggiani H, Meléndez J, Yong D, Ramírez I, Asplund M (2016) First high-precision differential abundance analysis of extremely metal-poor stars. A&A 586:A67ADSCrossRefGoogle Scholar
  60. Reshetov V, Herriot G, Thibault S et al. (2012) Cryogenic mechanical design: SPIROU spectrograph. In: Ground-based and Airborne Instrumentation for Astronomy IV, Proc SPIE, vol 8446, p 84464E.  https://doi.org/10.1117/12.927442
  61. Romanova MM, Lovelace RVE (2006) The Magnetospheric Gap and the Accumulation of Giant Planets Close to a Star. ApJ 645:L73–L76ADSCrossRefGoogle Scholar
  62. Romanova MM, Ustyugova GV, Koldoba AV, Lovelace RVE (2004) The Propeller Regime of Disk Accretion to a Rapidly Rotating Magnetized Star. ApJ 616:L151–L154ADSCrossRefGoogle Scholar
  63. Romanova MM, Kulkarni AK, Lovelace RVE (2008) Unstable Disk Accretion onto Magnetized Stars: First Global Three-dimensional Magnetohydrodynamic Simulations. ApJ 673:L171ADSCrossRefGoogle Scholar
  64. Romanova MM, Long M, Lamb FK, Kulkarni AK, Donati J (2011) Global 3D simulations of disc accretion on to the classical T Tauri star V2129 Oph. MNRAS 411:915–928ADSCrossRefGoogle Scholar
  65. Rupprecht G, Pepe F, Mayor M et al. (2004) The exoplanet hunter HARPS: performance and first results. In: Moorwood AFM, Iye M (eds) Ground-based Instrumentation for Astronomy, Proc SPIE, vol 5492, pp 148–159.  https://doi.org/10.1117/12.551267
  66. Santerne A, Donati JF, Doyon R et al. (2013) Characterizing small planets transiting small stars with SPIRou. In: Cambresy L, Martins F, Nuss E, Palacios A (eds) SF2A-2013: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, pp 509–514Google Scholar
  67. Shu FH, Galli D, Lizano S, Glassgold AE, Diamond PH (2007) Mean Field Magnetohydrodynamics of Accretion Disks. ApJ 665:535–553ADSCrossRefGoogle Scholar
  68. Skelly MB, Donati JF, Bouvier J et al. (2010) Dynamo processes in the T Tauri star V410 Tau. MNRAS 403:159–169ADSCrossRefGoogle Scholar
  69. Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S (2010) The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465:1049–1051ADSCrossRefGoogle Scholar
  70. Sousa AP, Alencar SHP, Bouvier J et al. (2016) CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264. A&A 586:A47ADSCrossRefGoogle Scholar
  71. Strugarek A, Brun AS, Matt SP, Réville V (2015) Magnetic Games between a Planet and Its Host Star: The Key Role of Topology. ApJ 815:111ADSCrossRefGoogle Scholar
  72. Sullivan PW, Winn JN, Berta-Thompson ZK et al. (2015) The Transiting Exoplanet Survey Satellite: Simulations of Planet Detections and Astrophysical False Positives. ApJ 809:77ADSCrossRefGoogle Scholar
  73. Thibault S, Rabou P, Donati JF et al. (2012) SPIRou @ CFHT: spectrograph optical design. In: Ground-based and Airborne Instrumentation for Astronomy IV, Proc SPIE, vol 8446, p 844630.  https://doi.org/10.1117/12.926697
  74. Vidotto AA, Donati JF (2017) Predicting radio emission from the newborn hot Jupiter V830 Tau b. A&A submittedGoogle Scholar
  75. Vidotto AA, Jardine M, Morin J et al. (2013) Effects of M dwarf magnetic fields on potentially habitable planets. A&A 557:A67ADSCrossRefGoogle Scholar
  76. Yu L, Donati JF, Hébrard EM et al. (2017) A hot Jupiter around the very active weak-line T Tauri star TAP 26. MNRASGoogle Scholar
  77. Zanni C, Ferreira J (2013) MHD simulations of accretion onto a dipolar magnetosphere. II. Magnetospheric ejections and stellar spin-down. A&A 550:A99ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jean-François Donati
    • 1
    Email author
  • D. Kouach
    • 2
  • M. Lacombe
    • 2
  • S. Baratchart
    • 2
  • R. Doyon
    • 3
  • X. Delfosse
    • 4
  • Étienne Artigau
    • 5
  • Claire Moutou
    • 6
    • 7
    • 8
  • G. Hébrard
    • 4
  • François Bouchy
    • 9
    • 10
  • J. Bouvier
    • 11
  • S. Alencar
    • 14
  • L. Saddlemyer
    • 15
  • L. Parès
    • 2
  • P. Rabou
    • 11
  • Y. Micheau
    • 2
  • F. Dolon
    • 13
  • G. Barrick
    • 12
  • O. Hernandez
    • 3
  • S. Y. Wang
    • 16
  • V. Reshetov
    • 15
  • N. Striebig
    • 2
  • Z. Challita
    • 2
  • A. Carmona
    • 2
  • S. Tibault
    • 3
  • E. Martioli
    • 17
  • P. Figueira
    • 18
  • I. Boisse
    • 13
  • Francesco Pepe
    • 19
  • The SPIRou Team
    • 1
  1. 1.CNRSInstitut de Recherche en Astrophysique et PlanétologieToulouseFrance
  2. 2.IRAP/OMPToulouseFrance
  3. 3.UdeM/ULMontréalCanada
  4. 4.IAP/IdFParisFrance
  5. 5.Institut de Recherche sur les ExoplanètesDépartement de Physique, Université de MontréalMontréalCanada
  6. 6.CNRS/CFHTKamuelaUSA
  7. 7.CNRSLAM, Laboratoire d’Astrophysique de Marseille, Aix Marseille UniversityMarseilleFrance
  8. 8.UdeM/ULMontréalCanada
  9. 9.Département d’AstronomieUniversité de GenèveVersoixSwitzerland
  10. 10.Observatoire astronomique de l’Université de GenèveVersoixSwitzerland
  11. 11.IPAGParisFrance
  12. 12.CFHTWaimeaUSA
  13. 13.LAM/OHPMarseilleFrance
  14. 14.UFMGBelo HorizonteBrazil
  15. 15.NRC-HVictoriaCanada
  16. 16.ASIAATaipeiTaiwan
  17. 17.LNAItajubáBrazil
  18. 18.CAUPPortoPortugal
  19. 19.Département d’AstronomieObservatoire de l’Université de GenéveVersoixSwitzerland

Personalised recommendations