Advertisement

Direct Imaging as a Detection Technique for Exoplanets

  • Laurent PueyoEmail author
Reference work entry

Abstract

In this chapter we review the essential ingredients of exoplanet detection with the direct imaging method. In the first section, we discuss the various sources of noise associated with direct exoplanet detection along with the trades in instrument design that help reduce them. We derive scaling laws from first principles to outline the broad strokes of the compromises that can be made at the instrument level. In the second section we tackle the detection problem from a data analysis standpoint. We present the most widespread class of algorithms and discuss future improvements.

References

  1. Abe L, Domiciano de Souza A Jr, Vakili F, Gay J (2003) Phase knife coronagraph. II – laboratory results. Astron Astrophys 400:385–392,  https://doi.org/10.1051/0004-6361:20021834. http://adsabs.harvard.edu/abs/2003A%26A...400..385AADSGoogle Scholar
  2. Amara A, Quanz SP (2012) PYNPOINT: an image processing package for finding exoplanets. MNRAS 427:948–955.  https://doi.org/10.1111/j.1365-2966.2012.21918.x. 1207.6637ADSGoogle Scholar
  3. Baudoz P, Boccaletti A, Baudrand J, Rouan D (2006) The self-coherent camera: a new tool for planet detection. In: Proceedings of the IAU Colloquium, pp 553–558.  https://doi.org/10.1017/S174392130600994X. http://adsabs.harvard.edu/abs/2006dies.conf..553BGoogle Scholar
  4. Beuzit JL, Feldt M, Mouillet D et al (2010) SPHERE: a planet imager for the VLT. In: Proceedings of the conference in the spirit of lyot 2010, p 44. http://adsabs.harvard.edu/abs/2010lyot.confE..44BGoogle Scholar
  5. Biller BA, Close LM, Masciadri E et al (2007) An imaging survey for extrasolar planets around 45 close, young stars with the simultaneous differential imager at the very large telescope and MMT. ApJS 173:143–165.  https://doi.org/10.1086/519925ADSGoogle Scholar
  6. Bloemhof EE (2004) Remnant speckles in a highly corrected coronagraph. ApJ 610:L69–L72.  https://doi.org/10.1086/423172ADSGoogle Scholar
  7. Bonnefoy M, Marleau GD, Galicher R et al (2014) Physical and orbital properties of β Pictoris b. A&A 567:L9.  https://doi.org/10.1051/0004-6361/201424041. 1407.4001ADSGoogle Scholar
  8. Bordé PJ, Traub WA (2006) High-contrast imaging from space: speckle nulling in a low-aberration regime. Astrophys J 638(1):488.  https://doi.org/10.1086/498669. http://iopscience.iop.org/0004-637X/638/1/488ADSGoogle Scholar
  9. Bottom M, Kuhn J, Mennesson B et al (2015) Resolving the delta andromedae spectroscopic binary with direct imaging. ApJ 809:11.  https://doi.org/10.1088/0004-637X/809/1/11. 1506.07517ADSGoogle Scholar
  10. Bowler BP (2016) Imaging extrasolar giant planets. PASP 128(10):102001.  https://doi.org/10.1088/1538-3873/128/968/102001. 1605.02731ADSGoogle Scholar
  11. Brandt TD, McElwain MW, Turner EL et al (2013) New techniques for high-contrast imaging with ADI: The ACORNS-ADI SEEDS data reduction pipeline. ApJ 764:183.  https://doi.org/10.1088/0004-637X/764/2/183. 1209.3014ADSGoogle Scholar
  12. Brandt TD, McElwain MW, Turner EL et al (2014) A statistical analysis of SEEDS and other high-contrast exoplanet surveys: massive planets or low-mass brown dwarfs? ApJ 794:159.  https://doi.org/10.1088/0004-637X/794/2/159. 1404.5335ADSGoogle Scholar
  13. Brown RA, Burrows CJ (1990) On the feasibility of detecting extrasolar planets by reflected starlight using the hubble space telescope. Icarus 87:484–497.  https://doi.org/10.1016/0019-1035(90)90150-8ADSGoogle Scholar
  14. Burrows A, Sudarsky D, Hubeny I (2004) Spectra and diagnostics for the direct detection of wide-separation extrasolar giant planets. ApJ 609:407–416.  https://doi.org/10.1086/420974. http://adsabs.harvard.edu/abs/2004ApJ...609..407BADSGoogle Scholar
  15. Cady E, Baranec C, Beichman C et al (2013) Electric field conjugation with the project 1640 coronagraph. In: Techniques and instrumentation for detection of exoplanets VI. Proceeding of SPIE, vol 8864, p 88640K.  https://doi.org/10.1117/12.2024635. 1309.6357
  16. Cady E, Prada CM, An X et al (2016) Demonstration of high contrast with an obscured aperture with the WFIRST-AFTA shaped pupil coronagraph. J Astron Telescopes Instrum Syst 2(1):011004.  https://doi.org/10.1117/1.JATIS.2.1.011004. 1511.01882ADSGoogle Scholar
  17. Cagigal MP, Canales VF (2001) Experimental checking of the Rician statistics in partially compensated wave fronts. Opt Eng 40.  https://doi.org/10.1117/1.1417495ADSGoogle Scholar
  18. Canales VF, Cagigal MP (2000) Gain estimate for exoplanet detection with adaptive optics. A&AS 145:445–449ADSGoogle Scholar
  19. Cantalloube F, Mouillet D, Mugnier LM et al (2015) Direct exoplanet detection and characterization using the ANDROMEDA method: performance on VLT/NaCo data. A&A 582:A89.  https://doi.org/10.1051/0004-6361/201425571. 1508.06406ADSGoogle Scholar
  20. Carlotti A (2013) Apodized phase mask coronagraphs for arbitrary apertures. Astron Astrophys 551:A10.  https://doi.org/10.1051/0004-6361/201220661. http://adsabs.harvard.edu/abs/2013A%26A...551A..10CADSGoogle Scholar
  21. Caucci L, Barrett HH, Devaney N, Rodríguez JJ (2007) Statistical decision theory and adaptive optics: a rigorous approach to exoplanet detection. In: Adaptive optics: analysis and methods/computational optical sensing and imaging/information photonics/signal recovery and synthesis topical meetings on CD-ROM. Optical Society of America, p ATuA5,  https://doi.org/10.1364/AOPT.2007.ATuA5. http://www.osapublishing.org/abstract.cfm?URI=AOPT-2007-ATuA5
  22. Chauvin G, Lagrange A, Bonavita M et al (2010) Deep imaging survey of young, nearby austral stars. VLT/NACO near-infrared Lyot-coronographic observations. A&A 509:A52+.  https://doi.org/10.1051/0004-6361/200911716Google Scholar
  23. Chauvin G, Lagrange AM, Beust H et al (2012) Orbital characterization of the β Pictoris b giant planet. A&A 542:A41.  https://doi.org/10.1051/0004-6361/201118346. 1202.2655ADSGoogle Scholar
  24. Chauvin G, Desidera S, Lagrange AM et al (2017) Discovery of a warm, dusty giant planet around HIP65426. ArXiv e-prints. 1707.01413Google Scholar
  25. Chilcote J, Pueyo L, De Rosa RJ et al (2017) 1–2.4 μm near-IR spectrum of the giant planet β pictoris b obtained with the gemini planet imager. AJ 153:182.  https://doi.org/10.3847/1538-3881/aa63e9. 1703.00011ADSGoogle Scholar
  26. Choquet É, Pueyo L, Soummer R et al (2015) Archival legacy investigations of circumstellar environments (ALICE): statistical assessment of point source detections. In: Techniques and instrumentation for detection of exoplanets VII. Proceeding of SPIE, vol 9605, p 96051P.  https://doi.org/10.1117/12.2188536. 1509.07880
  27. De Rosa RJ, Nielsen EL, Blunt SC et al (2015) Astrometric confirmation and preliminary orbital parameters of the young exoplanet 51 eridani b with the gemini planet imager. ApJ 814:L3.  https://doi.org/10.1088/2041-8205/814/1/L3. 1509.07514ADSGoogle Scholar
  28. Esposito TM, Fitzgerald MP, Graham JR, Kalas P (2014) Modeling Self-subtraction in angular differential imaging: application to the HD 32297 debris disk. ApJ 780:25.  https://doi.org/10.1088/0004-637X/780/1/25. 1310.7026ADSGoogle Scholar
  29. Fergus R, Hogg DW, Oppenheimer R, Brenner D, Pueyo L (2014) S4: a spatial-spectral model for speckle suppression. ApJ 794:161.  https://doi.org/10.1088/0004-637X/794/2/161. 1408.4248ADSGoogle Scholar
  30. Fusco T, Petit C, Rousset G et al (2006a) Design of the extreme AO system for SPHERE, the planet finder instrument of the VLT. In: Proceedings of the SPIE, vol 6272, p 17.  https://doi.org/10.1117/12.670794. http://adsabs.harvard.edu/abs/2006SPIE.6272E..17F
  31. Fusco T, Rousset G, Sauvage JF et al (2006b) High-order adaptive optics requirements for direct detection of extrasolar planets: application to the SPHERE instrument. Opt Express 14(17):7515–7534. http://www.opticsinfobase.org/abstract.cfm?uri=OE-14-17-7515ADSGoogle Scholar
  32. Galicher R, Marois C, Macintosh B et al (2016) The international deep planet survey. II. The frequency of directly imaged giant exoplanets with stellar mass. A&A 594:A63.  https://doi.org/10.1051/0004-6361/201527828. 1607.08239ADSGoogle Scholar
  33. Give’on A, Kern B, Shaklan S, Moody DC, Pueyo L (2007) Broadband wavefront correction algorithm for high-contrast imaging systems. In: Astronomical adaptive optics systems and applications III. Proceeding of SPIE, vol 6691, p 66910A.  https://doi.org/10.1117/12.733122
  34. Gomez Gonzalez CA, Absil O, Absil PA et al (2016) Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm. A&A 589:A54.  https://doi.org/10.1051/0004-6361/201527387. 1602.08381Google Scholar
  35. Gomez Gonzalez CA, Absil O, van Droogenbroeck M (2017) Supervised detection of exoplanets in high-contrast imaging sequences. ArXiv e-prints. 1712.02841Google Scholar
  36. Greenbaum AZ, Pueyo L, Ruffio J-B, Wang JJ, De Rosa RJ, Aguilar J, Rameau J, Barman T, Marois C, Marley MS, Konopacky Q, Rajan A, Macintosh B, Ansdell M, Arriaga P, Bailey VP, Bulger J, Burrows AS, Chilcote J, Cotten T, Doyon R, Duchêne G, Fitzgerald MP, Follette KB, Gerard B, Goodsell SJ, Graham JR, Hibon P, Hung L-W, Ingraham P, Kalas P, Larkin JE, Maire J, Marchis F, Metchev S, Millar-Blanchaer MA, Nielsen EL, Norton A, Oppenheimer R, Palmer D, Patience J, Perrin MD, Poyneer L, Rantakyrö FT, Savransky D, Schneider AC, Sivaramakrishnan A, Song I, Soummer R, Thomas S, Wallace JK, Ward-Duong K, Wiktorowicz S, Wolff S (2018) GPI spectra of HR 8799 c, d, and e from 1.5 to 2.4 μm with KLIP forward modeling. AJ 155:226.  https://doi.org/10.3847/1538-3881/aabcb8. http://adsabs.harvard.edu/abs/2018AJ....155..226GADSGoogle Scholar
  37. Groff TD, Jeremy Kasdin N (2013) Kalman filtering techniques for focal plane electric field estimation. J Opt Soc Am A 30:128.  https://doi.org/10.1364/JOSAA.30.000128. 1301.3828ADSGoogle Scholar
  38. Groff TD, Chilcote J, Kasdin NJ et al (2016) Laboratory testing and performance verification of the CHARIS integral field spectrograph. In: Ground-based and airborne instrumentation for astronomy VI. Proceeding of SPIE, vol 9908, p 99080O.  https://doi.org/10.1117/12.2233447
  39. Guyon O (2005) Limits of adaptive optics for high-contrast imaging. Astrophys J 629:592–614.  https://doi.org/10.1086/431209. http://adsabs.harvard.edu/abs/2005ApJ...629..592GADSGoogle Scholar
  40. Guyon O, Males J (2017) Adaptive optics predictive control with empirical orthogonal functions (EOFs). ArXiv e-prints. 1707.00570Google Scholar
  41. Guyon O, Pluzhnik EA, Galicher R et al (2005) Exoplanet imaging with a phase-induced amplitude apodization coronagraph. I. Principle. Astrophys J 622(1):744–758.  https://doi.org/10.1086/427771. http://adsabs.harvard.edu/abs/2005ApJ...622..744GADSGoogle Scholar
  42. Guyon O, Pluzhnik EA, Kuchner MJ, Collins B Ridgway ST (2006) Theoretical limits on extrasolar terrestrial planet detection with coronagraphs. Astrophys J Suppl Ser 167(1):81.  https://doi.org/10.1086/507630. http://iopscience.iop.org/0067-0049/167/1/81ADSGoogle Scholar
  43. Guyon O, Matsuo T, Angel R (2009) Coronagraphic low-order wave-front sensor: principle and application to a phase-induced amplitude coronagraph. Astrophys J 693(1):75–84.  https://doi.org/10.1088/0004-637X/693/1/75. http://adsabs.harvard.edu/abs/2009ApJ...693...75GADSGoogle Scholar
  44. Guyon O, Hinz PM, Cady E, Belikov R, Martinache F (2014) High performance lyot and PIAA coronagraphy for arbitrarily shaped telescope apertures. Astrophys J 780:171.  https://doi.org/10.1088/0004-637X/780/2/171. http://adsabs.harvard.edu/abs/2014ApJ...780..171GADSGoogle Scholar
  45. Guyon O, Hinz PM, Cady E, Belikov R, Martinache F (2014) High performance Lyot and PIAA coronagraphy for arbitrarily shaped telescope apertures. ApJ 780:171.  https://doi.org/10.1088/0004-637X/780/2/171. 1305.6686ADSGoogle Scholar
  46. Hardy JW (1998) Adaptive optics for astronomical telescopes. Oxford University Press, New YorkGoogle Scholar
  47. Herscovici-Schiller O, Mugnier LM, Sauvage JF (2017) An analytic expression for coronagraphic imaging through turbulence. Application to on-sky coronagraphic phase diversity. MNRAS 467:L105–L109.  https://doi.org/10.1093/mnrasl/slx009. 1701.08633Google Scholar
  48. Hinkley S, Oppenheimer BR, Soummer R et al (2007) Temporal evolution of coronagraphic dynamic range and constraints on companions to Vega. Astrophys J 654:633–640.  https://doi.org/10.1086/509063. http://adsabs.harvard.edu/abs/2007ApJ...654..633H
  49. Hinkley S, Oppenheimer BR, Brenner D et al (2008) A new integral field spectrograph for exoplanetary science at Palomar. In: Proceedings of the SPIE, vol 7015, p 32.  https://doi.org/10.1117/12.789557. http://adsabs.harvard.edu/abs/2008SPIE.7015E..32H
  50. Jensen-Clem R, Mawet D, Gomez Gonzalez CA et al (2017) A new standard for assessing the performance of high contrast imaging systems. ArXiv e-prints. 1711.01215Google Scholar
  51. Kasdin NJ, Braems I (2006) Linear and Bayesian planet detection algorithms for the terrestrial planet finder. Astrophys J 646(2):1260. http://stacks.iop.org/0004-637X/646/i=2/a=1260ADSGoogle Scholar
  52. Kasdin NJ, Vanderbei RJ, Spergel DN, Littman MG (2003) Extrasolar planet finding via optimal apodized-pupil and shaped-pupil coronagraphs. ApJ 582:1147–1161.  https://doi.org/10.1086/344751ADSGoogle Scholar
  53. Krist J, Nemati B, Mennesson B (2016) Numerical modeling of the proposed WFIRST-AFTA coronagraphs and their predicted performances. J Astron Telescopes Instrum Syst 2(1):011003.  https://doi.org/10.1117/1.JATIS.2.1.011003. http://adsabs.harvard.edu/abs/2016JATIS...2a1003KADSGoogle Scholar
  54. Krist J, Nemati B, Mennesson B (2016) Numerical modeling of the proposed WFIRST-AFTA coronagraphs and their predicted performances. J Astron Telescopes Instrum Syst 2(1):011003.  https://doi.org/10.1117/1.JATIS.2.1.011003. 1509.05082ADSGoogle Scholar
  55. Kuchner MJ, Traub WA (2002) A coronagraph with a band-limited mask for finding terrestrial planets. Astrophys J 570:900–908.  https://doi.org/10.1086/339625. http://adsabs.harvard.edu/abs/2002ApJ...570..900KADSGoogle Scholar
  56. Lafrenière D, Doyon R, Marois C et al (2007) The gemini deep planet survey. ApJ 670:1367–1390. arXiv:0705.4290ADSGoogle Scholar
  57. Lafreniere D, Marois C, Doyon R, Nadeau D, Artigau É (2007) A new algorithm for point-spread function subtraction in high-contrast imaging: a demonstration with angular differential imaging. Astrophys J 660(1):770. http://iopscience.iop.org/0004-637X/660/1/770ADSGoogle Scholar
  58. Lightsey PA, Knight JS, Golnik G (2014) Status of the optical performance for the James Webb Space Telescope. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 9143, p 4.  https://doi.org/10.1117/12.2055502Google Scholar
  59. Macintosh B, Graham JR, Barman T et al (2015) Discovery and spectroscopy of the young jovian planet 51 Eri b with the gemini planet imager. Science 350:64–67.  https://doi.org/10.1126/science.aac5891. http://adsabs.harvard.edu/abs/2015Sci...350...64MADSGoogle Scholar
  60. Macintosh B, Graham JR, Barman T et al (2015) Discovery and spectroscopy of the young jovian planet 51 Eri b with the gemini planet imager. Science 350:64–67.  https://doi.org/10.1126/science.aac5891. 1508.03084ADSGoogle Scholar
  61. Macintosh BA, Graham JR, Palmer DW et al (2008) The gemini planet imager: from science to design to construction. In: Proceedings of the SPIE, vol 7015, p 701518.  https://doi.org/10.1117/12.788083. http://adsabs.harvard.edu/abs/2008SPIE.7015E..18M
  62. Macintosh B, Graham JR, Ingraham P, Konopacky Q, Marois C, Perrin M, Poyneer L, Bauman B, Barman T, Burrows AS, Cardwell A, Chilcote J, De Rosa RJ, Dillon D, Doyon R, Dunn J, Erikson D, Fitzgerald MP, Gavel D, Goodsell S, Hartung M, Hibon P, Kalas P, Larkin J, Maire J, Marchis F, Marley MS, McBride J, Millar-Blanchaer M, Morzinski K, Norton A, Oppenheimer BR, Palmer D, Patience J, Pueyo L, Rantakyro F, Sadakuni N, Saddlemyer L, Savransky D, Serio A, Soummer R, Sivaramakrishnan A, Song I, Thomas S, Wallace JK, Wiktorowicz S, Wolff S (2014) First light of the gemini planet imager. Proceedings of the National Academy of Science 111:12661–12666.  https://doi.org/10.1073/pnas.1304215111. http://adsabs.harvard.edu/abs/2014PNAS..11112661MADSGoogle Scholar
  63. Malbet F, Yu JW, Shao M (1995) High-dynamic-range imaging using a deformable mirror for space coronography. Publ Astron Soc Pac 107:386.  https://doi.org/10.1086/133563. http://adsabs.harvard.edu/abs/1995PASP..107..386MADSGoogle Scholar
  64. Marois C, Lafrenière D, Doyon R, Macintosh B, Nadeau D (2006) Angular differential imaging: a powerful high-contrast imaging technique. Astrophys J 641(1):556.  https://doi.org/10.1086/500401. http://iopscience.iop.org/0004-637X/641/1/556ADSGoogle Scholar
  65. Marois C, Lafrenière D, Macintosh B, Doyon R (2008) Confidence level and sensitivity limits in high-contrast imaging. ApJ 673:647–656.  https://doi.org/10.1086/523839. 0709.3548ADSGoogle Scholar
  66. Marois C, Macintosh B Véran JP (2010) Exoplanet imaging with LOCI processing: photometry and astrometry with the new SOSIE pipeline. In: Proceedings of the SPIE, vol 7736, p 52.  https://doi.org/10.1117/12.857225. http://adsabs.harvard.edu/abs/2010SPIE.7736E..52M
  67. Marois C, Correia C, Véran JP, Currie T (2014) TLOCI: a fully loaded speckle killing machine. In: Proceedings of the international astronomical union, vol 299, pp 48–49.  https://doi.org/10.1017/S1743921313007813. http://adsabs.harvard.edu/abs/2014IAUS..299...48MGoogle Scholar
  68. Mawet D, Riaud P, Absil O, Surdej J (2005) Annular groove phase mask coronagraph. Astrophys J 633(2):1191. http://iopscience.iop.org/0004-637X/633/2/1191ADSGoogle Scholar
  69. Mawet D, Milli J, Wahhaj Z et al (2014) Fundamental limitations of high contrast imaging set by small sample statistics. ApJ 792:97.  https://doi.org/10.1088/0004-637X/792/2/97. 1407.2247ADSGoogle Scholar
  70. Mawet D, Milli J, Wahhaj Z et al (2014) Fundamental limitations of high contrast imaging set by small sample statistics. Astrophys J 792:97.  https://doi.org/10.1088/0004-637X/792/2/97. http://adsabs.harvard.edu/abs/2014ApJ...792...97MADSGoogle Scholar
  71. Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378(6555):355–359.  https://doi.org/10.1038/378355a0. http://adsabs.harvard.edu/abs/1995Natur.378..355MADSGoogle Scholar
  72. Mazoyer J, Pueyo L (2017) Fundamental limits to high-contrast wavefront control. ArXiv e-prints. 1710.04080Google Scholar
  73. Mazoyer J, Baudoz P, Galicher R, Mas M, Rousset G (2013) Estimation and correction of wavefront aberrations using the self-coherent camera: laboratory results. Astron Astrophys 557:9.  https://doi.org/10.1051/0004-6361/201321706. http://adsabs.harvard.edu/abs/2013A%26A...557A...9MADSGoogle Scholar
  74. Mazoyer J, Baudoz P, Galicher R, Rousset G (2014) High-contrast imaging in polychromatic light with the self-coherent camera. Astron Astrophys 564:L1.  https://doi.org/10.1051/0004-6361/201423375. http://adsabs.harvard.edu/abs/2014A%26A...564L...1MADSGoogle Scholar
  75. Mazoyer J, Pueyo L, N’Diaye M et al (2017) Active correction of aperture discontinuities – optimized stroke minimization I: a new adaptive interaction matrix algorithm. submitted to AJGoogle Scholar
  76. Mazoyer J, Pueyo L, N’Diaye M, Fogarty K, Zimmerman N, Leboulleux L, St. Laurent KE, Soummer R, Shaklan S, Norman C (2018a) Active correction of aperture discontinuities-optimized stroke minimization. I. A new adaptive interaction matrix algorithm. AJ 155:7.  https://doi.org/10.3847/1538-3881/aa91cf. http://adsabs.harvard.edu/abs/2018AJ....155....7MADSGoogle Scholar
  77. Mazoyer J, Pueyo L, N’Diaye M, Fogarty K, Zimmerman N, Soummer R, Shaklan S, Norman C (2018b) Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. II. Optimization for Future Missions. AJ 155:8.  https://doi.org/10.3847/1538-3881/aa91d7. http://adsabs.harvard.edu/abs/2018AJ....155....8MADSGoogle Scholar
  78. McLean IS (2008) Electronic imaging in astronomy electronic imaging in astronomy. Springer, BerlinGoogle Scholar
  79. Mennesson B, Gaudi S, Seager S et al (2016) The habitable exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements. In: Space telescopes and instrumentation 2016: optical, infrared, and millimeter wave. Proceeding of SPIE, vol 9904, p 99040L.  https://doi.org/10.1117/12.2240457
  80. Metchev SA, Hillenbrand LA (2009) The palomar/keck adaptive optics survey of young solar analogs: evidence for a universal companion mass function. ApJS 181:62–109.  https://doi.org/10.1088/0067-0049/181/1/62. 0808.2982ADSGoogle Scholar
  81. Morzinski KM, Males JR, Skemer AJ et al (2015) Magellan adaptive optics first-light observations of the exoplanet β Pic b. II. 3–5 μm direct imaging with MagAO+Clio, and the empirical bolometric luminosity of a self-luminous giant planet. ApJ 815:108.  https://doi.org/10.1088/0004-637X/815/2/108. 1511.02894ADSGoogle Scholar
  82. Mountain M, van der Marel R, Soummer R et al (2009) Comparison of optical observational capabilities for the coming decades: ground versus space. In: astro2010: the astronomy and astrophysics decadal survey. ArXiv Astrophysics e-prints, vol 2010. 0909.4503Google Scholar
  83. Mugnier LM, Cornia A, Sauvage JF et al (2009) Optimal method for exoplanet detection by angular differential imaging. J Opt Soc Am A 26:1326.  https://doi.org/10.1364/JOSAA.26.001326ADSGoogle Scholar
  84. Nakajima T, Oppenheimer BR, Kulkarni SR et al (1995) Discovery of a cool brown dwarf. Nature 378:463–465.  https://doi.org/10.1038/378463a0ADSGoogle Scholar
  85. N’Diaye M, Dohlen K, Fusco T, Paul B (2013) Calibration of quasi-static aberrations in exoplanet direct-imaging instruments with a Zernike phase-mask sensor. Astron Astrophys 555:A94.  https://doi.org/10.1051/0004-6361/201219797. http://adsabs.harvard.edu/abs/2013A%26A...555A..94NADSGoogle Scholar
  86. N’Diaye M, Soummer R, Pueyo L et al (2016) Apodized pupil Lyot coronagraphs for arbitrary apertures. V. Hybrid shaped pupil designs for imaging Earth-like planets with future space observatories. Astrophys J 818:163.  https://doi.org/10.3847/0004-637X/818/2/163. http://adsabs.harvard.edu/abs/2016ApJ...818..163NADSGoogle Scholar
  87. Nielsen EL, Close LM (2010) A uniform analysis of 118 stars with high-contrast imaging: long-period extrasolar giant planets are rare around sun-like stars. ApJ 717:878–896.  https://doi.org/10.1088/0004-637X/717/2/878. 0909.4531ADSGoogle Scholar
  88. Nielsen EL, Liu MC, Wahhaj Z et al (2013) The gemini NICI planet-finding campaign: the frequency of giant planets around young B and A stars. ApJ 776:4.  https://doi.org/10.1088/0004-637X/776/1/4. 1306.1233ADSGoogle Scholar
  89. Oppenheimer BR, Kulkarni SR, Matthews K, Nakajima T (1995) Infrared spectrum of the cool brown dwarf Gl 229B. Science 270:1478–1479.  https://doi.org/10.1126/science.270.5241.1478ADSGoogle Scholar
  90. Perrin MD, Sivaramakrishnan A, Makidon RB, Oppenheimer BR, Graham JR (2003) The structure of high Strehl ratio point-spread functions. ApJ 596:702–712.  https://doi.org/10.1086/377689. astro-ph/0306468ADSGoogle Scholar
  91. Pueyo L (2016) Detection and characterization of exoplanets using projections on karhunen loeve eigenimages: forward modeling. Astrophys J 824:117.  https://doi.org/10.3847/0004-637X/824/2/117. http://adsabs.harvard.edu/abs/2016ApJ...824..117PADSGoogle Scholar
  92. Pueyo L, Kasdin NJ (2007) Polychromatic compensation of propagated aberrations for high-contrast imaging. ApJ 666:609–625.  https://doi.org/10.1086/518884ADSGoogle Scholar
  93. Pueyo L, Norman C (2013) High-contrast imaging with an arbitrary aperture: active compensation of aperture discontinuities. Astrophys J 769:102.  https://doi.org/10.1088/0004-637X/769/2/102. http://adsabs.harvard.edu/abs/2013ApJ...769..102PADSGoogle Scholar
  94. Pueyo L, Kay J, Kasdin NJ et al (2009) Optimal dark hole generation via two deformable mirrors with stroke minimization. Appl Opt 48:6296.  https://doi.org/10.1364/AO.48.006296. http://adsabs.harvard.edu/abs/2009ApOpt..48.6296PADSGoogle Scholar
  95. Pueyo L, Crepp JR, Vasisht G et al (2012) Application of a damped locally optimized combination of images method to the spectral characterization of faint companions using an integral field spectrograph. ApJS 199:6.  https://doi.org/10.1088/0067-0049/199/1/6. 1111.6102ADSGoogle Scholar
  96. Pueyo L, Soummer R, Hoffmann J et al (2015) Reconnaissance of the HR 8799 exosolar system. II. Astrometry and orbital motion. Astrophys J 803:31.  https://doi.org/10.1088/0004-637X/803/1/31. http://adsabs.harvard.edu/abs/2015ApJ...803...31P
  97. Pueyo L, Zimmerman N, Bolcar M et al (2017) The LUVOIR architecture “A” coronagraph instrument. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 10398, p 103980F.  https://doi.org/10.1117/12.2274654Google Scholar
  98. Ren B, Pueyo L, Ben Zhu G, Debes J, Duchêne G (2018) Non-negative matrix factorization: robust extraction of extended structures. ApJ 852:104.  https://doi.org/10.3847/1538-4357/aaa1f2. 1712.10317ADSGoogle Scholar
  99. Riggs AJE, Kasdin NJ, Groff TD (2016) Recursive starlight and bias estimation for high-contrast imaging with an extended Kalman filter. J Astron Telescopes Instrum Syst 2:011017.  https://doi.org/10.1117/1.JATIS.2.1.011017. http://adsabs.harvard.edu/abs/2016JATIS...2a1017RADSGoogle Scholar
  100. Roberge A, Rizzo MJ, Lincowski AP et al (2017) Finding the needles in the haystacks: high-fidelity models of the modern and Archean solar system for simulating exoplanet observations. PASP 129(12):124401.  https://doi.org/10.1088/1538-3873/aa8fc4. 1710.06328ADSGoogle Scholar
  101. Robin AC, Reylé C, Derrière S, Picaud S (2003) A synthetic view on structure and evolution of the Milky Way. A&A 409:523–540.  https://doi.org/10.1051/0004-6361:20031117ADSGoogle Scholar
  102. Robinson TD, Stapelfeldt KR, Marley MS (2016) Characterizing Rocky and Gaseous exoplanets with 2 m class space-based coronagraphs. PASP 128(2):025003.  https://doi.org/10.1088/1538-3873/128/960/025003. 1507.00777ADSGoogle Scholar
  103. Roddier F (1981) The effects of atmospheric turbulence in optical astronomy. Progress in optics, volume 19. North-Holland Publishing Co, Amsterdam, p 281–376.  https://doi.org/10.1016/S0079-6638(08)70204-XGoogle Scholar
  104. Roddier F (1999) Adaptive optics in astronomy. Cambridge University Press, CambridgeGoogle Scholar
  105. Roddier F, Roddier C (1997) Stellar coronograph with phase mask. Publ Astron Soc Pac 109:815–820.  https://doi.org/10.1086/133949. http://adsabs.harvard.edu/abs/1997PASP..109..815RADSGoogle Scholar
  106. Rouan D, Riaud P, Boccaletti A, Clénet Y, Labeyrie A (2000) The four-quadrant phase-mask coronagraph. I. Principle. Publ Astron Soc Pac 112:1479–1486.  https://doi.org/10.1086/317707. http://adsabs.harvard.edu/abs/2000PASP..112.1479RADSGoogle Scholar
  107. Ruane G, Jewell J, Mawet D, Pueyo L, Shaklan S (2016) Apodized vortex coronagraph designs for segmented aperture telescopes. In: Proceedings of the SPIE, vol 9912, pp 99122L–99122L–13.  https://doi.org/10.1117/12.2231715
  108. Ruane G, Jewell J, Mawet D, Pueyo L, Shaklan S (2016) Apodized vortex coronagraph designs for segmented aperture telescopes. In: Advances in optical and mechanical technologies for telescopes and instrumentation II, Proceeding of SPIE, vol 9912, p 99122L.  https://doi.org/10.1117/12.2231715. 1607.06400Google Scholar
  109. Ruane G, Mawet D, Kastner J et al (2017) Deep imaging search for planets forming in the TW Hya protoplanetary disk with the Keck/NIRC2 vortex coronagraph. AJ 154:73.  https://doi.org/10.3847/1538-3881/aa7b81. 1706.07489ADSGoogle Scholar
  110. Ruffio JB, Macintosh B, Wang JJ et al (2017) Improving and assessing planet sensitivity of the GPI Exoplanet survey with a forward model matched filter. ApJ 842:14.  https://doi.org/10.3847/1538-4357/aa72dd. 1705.05477ADSGoogle Scholar
  111. Sauvage JF, Fusco T, Rousset G, Petit C (2007) Calibration and precompensation of noncommon path aberrations for extreme adaptive optics. J Opt Soc Am A 24:2334–2346.  https://doi.org/10.1364/JOSAA.24.002334. http://adsabs.harvard.edu/abs/2007JOSAA..24.2334SADSGoogle Scholar
  112. Savransky D (2015a) Blind source separation approaches for exoplanet signal extraction. In: Techniques and instrumentation for detection of exoplanets VII. Proceeding of SPIE, vol 9605, p 96050R.  https://doi.org/10.1117/12.2188320
  113. Savransky D (2015b) Sequential covariance calculation for exoplanet image processing. ApJ 800:100.  https://doi.org/10.1088/0004-637X/800/2/100. 1501.00991ADSGoogle Scholar
  114. Shaklan SB, Green JJ (2006) Reflectivity and optical surface height requirements in a broadband coronagraph. 1.Contrast floor due to controllable spatial frequencies. Appl Opt 45:5143–5153.  https://doi.org/10.1364/AO.45.005143ADSGoogle Scholar
  115. Shaklan SB, Marchen L, Green JJ, Lay OP (2005) The terrestrial planet finder coronagraph dynamics error budget. In: Coulter DR (ed) Techniques and instrumentation for detection of exoplanets II. Proceeding of SPIE, vol 5905, pp 110–121.  https://doi.org/10.1117/12.617890Google Scholar
  116. Shi F, Balasubramanian K, Bartos R, Hein R, Lam R, Mandic M, Moore D, Moore J, Patterson K, Poberezhskiy I, Shields J, Sidick E, Tang H, Truong T, Wallace JK, Wang X, Wilson DW (2016) Low order wavefront sensing and control for WFIRST coronagraph.  https://doi.org/10.1117/12.2234226
  117. Shi F, Cady E, Seo BJ et al (2017) Dynamic testbed demonstration of WFIRST coronagraph low order wavefront sensing and control (LOWFS/C). In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol 10400, p 104000D.  https://doi.org/10.1117/12.2274887Google Scholar
  118. Soummer R (2005) Apodized pupil Lyot coronagraphs for arbitrary telescope apertures. Astrophys J L 618:L161–L164.  https://doi.org/10.1086/427923. http://adsabs.harvard.edu/abs/2005ApJ...618L.161SADSGoogle Scholar
  119. Soummer R, Aime C, Falloon PE (2003) Stellar coronagraphy with prolate apodized circular apertures. Astron Astrophys 397:1161–1172.  https://doi.org/10.1051/0004-6361:20021573. http://adsabs.harvard.edu/abs/2003A%26A...397.1161SADSGoogle Scholar
  120. Soummer R, Ferrari A, Aime C, Jolissaint L (2007) Speckle noise and dynamic range in coronagraphic images. ApJ 669:642–656.  https://doi.org/10.1086/520913. 0706.1739ADSGoogle Scholar
  121. Soummer R, Brendan Hagan J, Pueyo L et al (2011a) Orbital motion of HR 8799 b, c, d using hubble space telescope data from 1998: constraints on inclination, eccentricity, and stability. Astrophys J 741:55.  https://doi.org/10.1088/0004-637X/741/1/55. http://adsabs.harvard.edu/abs/2011ApJ...741...55SADSGoogle Scholar
  122. Soummer R, Sivaramakrishnan A, Pueyo L, Macintosh B, Oppenheimer BR (2011b) Apodized pupil Lyot coronagraphs for arbitrary apertures. III. Quasi-achromatic solutions. Astrophys J 729:144.  https://doi.org/10.1088/0004-637X/729/2/144. http://adsabs.harvard.edu/abs/2011ApJ...729..144SADSGoogle Scholar
  123. Soummer R, Pueyo L, Larkin J (2012) Detection and characterization of exoplanets and disks using projections on Karhunen-Loève eigenimages. Astrophys J Lett 755(2):L28.  https://doi.org/10.1088/2041-8205/755/2/L28. http://iopscience.iop.org/2041-8205/755/2/L28ADSGoogle Scholar
  124. Sparks WB, Ford HC (2002) Imaging spectroscopy for extrasolar planet detection. ApJ 578: 543–564.  https://doi.org/10.1086/342401. astro-ph/0209078ADSGoogle Scholar
  125. Spiegel DS, Burrows A (2012) Spectral and photometric diagnostics of giant planet formation scenarios. ApJ 745:174.  https://doi.org/10.1088/0004-637X/745/2/174. 1108.5172ADSGoogle Scholar
  126. Stark CC, Roberge A, Mandell A, Robinson TD (2014) Maximizing the ExoEarth candidate yield from a future direct imaging mission. ApJ 795:122.  https://doi.org/10.1088/0004-637X/795/2/122. 1409.5128ADSGoogle Scholar
  127. Stark CC, Kuchner MJ, Lincowski A (2015) The pseudo-zodi problem for edge-on planetary systems. ApJ 801:128.  https://doi.org/10.1088/0004-637X/801/2/128. 1502.02040ADSGoogle Scholar
  128. Stetson PB (1987) DAOPHOT – a computer program for crowded-field stellar photometry. PASP 99:191–222.  https://doi.org/10.1086/131977ADSGoogle Scholar
  129. Trauger J, Gordon B, Krist J, Moody D (2015) Hybrid Lyot coronagraph for WFIRST-AFTA: coronagraph design and performance metrics. In: Proceedings of the SPIE, vol 9605, p 96050N.  https://doi.org/10.1117/12.2190625. http://adsabs.harvard.edu/abs/2015SPIE.9605E..0NT
  130. Trauger J, Moody D, Krist J, Gordon B (2016) Hybrid Lyot coronagraph for WFIRST-AFTA: coronagraph design and performance metrics. J Astron Telescopes Instrum Syst 2(1):011013.  https://doi.org/10.1117/1.JATIS.2.1.011013ADSGoogle Scholar
  131. Trauger JT, Traub WA (2007) A laboratory demonstration of the capability to image an Earth-like extrasolar planet. Nature 446(7137):771–773.  https://doi.org/10.1038/nature05729. http://adsabs.harvard.edu/abs/2007Natur.446..771TADSGoogle Scholar
  132. Vigan A, Patience J, Marois C et al (2012) The international deep planet survey. I. The frequency of wide-orbit massive planets around A-stars. A&A 544:A9.  https://doi.org/10.1051/0004-6361/201218991. 1206.4048ADSGoogle Scholar
  133. Wahhaj Z, Cieza LA, Mawet D et al (2015) Improving signal to noise in the direct imaging of exoplanets and circumstellar disks. ArXiv e-prints. 1502.03092Google Scholar
  134. Wang JJ, Graham JR, Pueyo L et al (2016) The orbit and transit prospects for β pictoris b constrained with one milliarcsecond astrometry. AJ 152:97.  https://doi.org/10.3847/0004-6256/152/4/97. 1607.05272ADSGoogle Scholar
  135. Wang JJ, Graham JR, Pueyo L et al (2016) The orbit and transit prospects for $∖beta$ pictoris b constrained with one milliarcsecond astrometry. arXiv:160705272 [astro-ph] http://arxiv.org/abs/1607.05272. arXiv:1607.05272
  136. Wertz O, Absil O, Gómez González CA et al (2017) VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy. Orbital architecture analysis with PyAstrOFit. A&A 598:A83.  https://doi.org/10.1051/0004-6361/201628730. 1610.04014ADSGoogle Scholar
  137. Wolszczan A, Frail DA (1992) A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355:145–147.  https://doi.org/10.1038/355145a0ADSGoogle Scholar
  138. Ygouf M, Mugnier LM, Mouillet D, Fusco T, Beuzit JL (2013) Simultaneous exoplanet detection and instrument aberration retrieval in multispectral coronagraphic imaging. A&A 551:A138.  https://doi.org/10.1051/0004-6361/201220318. 1302.7045ADSGoogle Scholar
  139. Ygouf M, Pueyo L, Soummer R et al (2015) Data processing and algorithm development for the WFIRST-AFTA coronagraph: reduction of noise free simulated images, analysis and spectrum extraction with reference star differential imaging. In: Techniques and instrumentation for detection of exoplanets VII. Proceeding of SPIE, vol 9605, p 96050S.  https://doi.org/10.1117/12.2188669
  140. Zimmerman NT, Eldorado Riggs AJ, Jeremy Kasdin N, Carlotti A, Vanderbei RJ (2016) Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes. J Astron Telescopes Instrum Syst 2(1):011012.  https://doi.org/10.1117/1.JATIS.2.1.011012. 1601.05121ADSGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.STScIBaltimoreUSA

Personalised recommendations