Skip to main content

Microbial Transformations of Plant Secondary Metabolites

  • Reference work entry
  • First Online:
Bioprocessing of Plant In Vitro Systems

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

The aim of this chapter is to present the authors’ view on the place and role of microbial transformation reactions as a perspective means of processing of plant-derived biologically active compounds into metabolites with new and/or increased activity and availability and decreased toxicity. Some microbial transformations providing information regarding metabolism in humans and mammals of plant-derived secondary metabolites applied as drugs and/or food additives are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maser E, Rižner TL (2012) Editorial: steroids and microorganisms. J Steroid Biochem Mol Biol 129:1–3. https://doi.org/10.1016/j.jsbmb.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  2. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32:688–705. https://doi.org/10.1016/S0141-0229(03)00029-2

    Article  CAS  Google Scholar 

  3. Mutafova B, Mutafov S, Fernandes P et al (2016) Microbial transformations of plant origin compounds as a step in preparation of highly valuable pharmaceuticals. J Drug Metab Toxicol 7:2. https://doi.org/10.4172/2157-7609.1000204

    Article  Google Scholar 

  4. Szentirmai A (1990) Microbial physiology of sidechain degradation of sterols. J Ind Microbiol 6:101–115. https://doi.org/10.1007/BF01576429

    Article  CAS  Google Scholar 

  5. Ghisalba O, Meyer HP, Wohlgemuth R (2010) Industrial biotransformation. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology, vol 5. Wiley, Hoboken, pp 2971–2988

    Google Scholar 

  6. Grunwald P (2015) Biocatalysts: global market, industrial applications, aspects of biotransformation design, and societal challenges. In: Grunwald P (ed) Industrial biocatalysis. Pan Stanford Publishing Pte Ltd., Singapore, pp 1–32

    Google Scholar 

  7. Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556. 10.1016/S0958-1669(02)00360-9

    Article  CAS  PubMed  Google Scholar 

  8. Straathof AJJ (2006) Quantitative analysis of industrial biotransformations. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations. Wiley-VCH, Weinheim, pp 515–520

    Chapter  Google Scholar 

  9. Johannes TW, Simurdiak M, Zhao H (2006) Biocatalysis. In: Lee S (ed) Encyclopedia of chemical processing. Marcel Dekker, New York, pp 101–110

    Google Scholar 

  10. Faber K (2011) Biotransformations in organic chemistry, 6th edn. Springer, Berlin

    Book  Google Scholar 

  11. Pollard DJ, Woodley JM (2007) Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol 25:66–73. https://doi.org/10.1016/j.tibtech.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  12. Tufvesson P, Fu W, Jensen JS et al (2010) Process considerations for the scale-up and implementation of biocatalysis. Food Bioprod Process 88:3–11. https://doi.org/10.1016/j.fbp.2010.01.003

    Article  CAS  Google Scholar 

  13. Meyer D, Buescher JM, Eck J (2015) Making use of newly discovered enzymes and pathways: reaction and process development strategies for synthetic applications with recombinant whole-cell biocatalysts and metabolically engineered production strains. In: Grunwald P (ed) Industrial Biocatalysis. Pan Stanford Publishing Pte Ltd., Singapore, pp 33–71

    Google Scholar 

  14. Lima-Ramos J, Tufvesson P, Woodley JM (2014) Application of environmental and economic metrics to guide the development of biocatalytic processes. Green Process Synth 3:195–213. https://doi.org/10.1515/gps-2013-0094

    Article  CAS  Google Scholar 

  15. Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Factories 7:25. https://doi.org/10.1186/1475-2859-7-25

    Article  CAS  Google Scholar 

  16. Kaushik N, Biswas S, Singh J (2014) Biocatalysis and biotransformation processes – an insight. Scitech J 1:15–22

    Google Scholar 

  17. Littlechild JA (2015) Archaeal enzymes and applications in industrial biocatalysts. Archaea. Article ID: 147671. https://doi.org/10.1155/2015/147671

    Article  Google Scholar 

  18. Rao NN, Lütz S, Seelbach K et al (2006) Basics of bioreaction engineering. In: Liese A, Seelbach K, Wandrey C (eds) Industrial biotransformations. Wiley-VCH, Weinheim, pp 115–146

    Chapter  Google Scholar 

  19. Alfarra HY, Omar MN (2013) Microbial transformation of natural products. Greener J Bio Sci 3:357–364. https://doi.org/10.15580/GJBS.2013.10.112913995

    Article  Google Scholar 

  20. Hegazy M-E, Mohamed TA, ElShamy AI et al (2015) Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: a review. J Adv Res 6:17–33. https://doi.org/10.1016/j.jare.2014.11.009

    Article  CAS  PubMed  Google Scholar 

  21. Grishko VV, Tarasova EV, Ivshina IB (2013) Biotransformation of betulin to betulone by growing and resting cells of the actinobacterium Rhodococcus rhodochrous IEGM 66. Process Biochem 48:1640–1644. https://doi.org/10.1016/j.procbio.2013.08.012

    Article  CAS  Google Scholar 

  22. Pervaiz I, Ahmad S, Madni MA (2013) Microbial biotransformation: a tool for drug designing. Appl Biochem Microbiol 49:437–450. https://doi.org/10.1134/S0003683813050098

    Article  CAS  Google Scholar 

  23. Shah SA, Tan HL, Sultan S et al (2014) Microbial-catalyzed biotransformation of multifunctional triterpenoids derived from phytonutrients. Int J Mol Sci 15:12027–12060. https://doi.org/10.3390/ijms150712027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ee GCL, Lim CM, Rahmani M et al (2010) Pellitorine, a potential anti-cancer compounds against HL60 and MCT-7 cell lines and microbial transformation of piperine from Piper nigrum. Molecules 15:2398–2404. https://doi.org/10.3390/molecules15042398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465. https://doi.org/10.1016/j.tibtech.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  26. Schrewe M, Julsing MK, Bühler B et al (2013) Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chem Soc Rev 42:6346–6377. https://doi.org/10.1039/c3cs60011d

    Article  CAS  PubMed  Google Scholar 

  27. Halan B, Letzel T, Schmid A et al (2014) Solid support membrane-aerated catalytic biofilm reactor for the continuous synthesis of (S)-styrene oxide at gram scale. Biotechnol J 9:1339–1349. https://doi.org/10.1002/biot.201400341

    Article  CAS  PubMed  Google Scholar 

  28. Karande R, Debor L, Salamanca D et al (2016) Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms. Biotechnol Bioeng 113:52–61. https://doi.org/10.1002/bit.25696

    Article  CAS  PubMed  Google Scholar 

  29. Ludwig B, Geib D, Haas C et al (2015) Whole-cell biotransformation of oleanolic acid by free and immobilized cells of Nocardia iowensis: characterizatiojn of new metabolites. Eng Life Sci 15:108–115. https://doi.org/10.1002/elsc.201400121

    Article  CAS  Google Scholar 

  30. Bouallagui Z, Sayadi S (2006) Production of high hydroxytyrosol yields via tyrosol conversion by Pseudomonas aeruginosa immobilized resting cells. J Agric Food Chem 54:9906–9911. https://doi.org/10.1021/jf062145g

    Article  CAS  PubMed  Google Scholar 

  31. Velankar HR, Heble MR (2003) Biotransformation of (L)-citronellal to (L)-citronellol by free and immobilized Rhodotorula minuta. Electron J Biotechnol 6:90–103. https://doi.org/10.2225/vol6-issue2-fulltext-2

    Article  Google Scholar 

  32. Domínguez de María P, Hollmann F (2015) On the (un)greenness of biocatalysis: some challenging figures and some promising options. Front Microbiol 6:1257. https://doi.org/10.3389/fmicb.2015.01257

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stepankova V, Damborsky J, Chaloupkova R (2015) Hydrolases in non-conventional media: implications for industrial biocatalysis. In: Grunwald P (ed) Industrial biocatalysis. Singapore: Pan Stanford Publishing, pp 583–620

    Google Scholar 

  34. Kratzer R, Woodley JM, Nidetzky B (2015) Rules for biocatalyst and reaction engineering to implement effective, NAD(P)H-dependent, whole cell bioreductions. Biotechnol Adv 33:1641–1652. https://doi.org/10.1016/j.biotechadv.2015.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Constantinides A (1980) Steroid transformation at high substrate concentrations using immobilized Corynebacterium simplex cells. Biotechnol Bioeng 22:119–136. https://doi.org/10.1002/bit.260220110

    Article  CAS  PubMed  Google Scholar 

  36. Atrat P, Hösel P, Richter W et al (1991) Interactions of Mycobacterium fortuitum with solid sterol substrate particles. J Basic Microbiol 31:413–422. https://doi.org/10.1002/jobm.3620310605

    Article  CAS  Google Scholar 

  37. Kutney J, Milanova RK, Vassilev CD et al (2000) Process for the microbial conversion of phytosterols to androstenedione and androstadienedione. US Patent. 6,071,714

    Google Scholar 

  38. Pádua RM, Oliveira AB, Souza Filho JD et al (2005) Biotransformation of digitoxigenin by Fusarium ciliatum. J Braz Chem Soc 16:614–619. https://doi.org/10.1590/S0103-50532005000400019

    Article  Google Scholar 

  39. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447. https://doi.org/10.1007/s00253-012-4078-0

    Article  CAS  PubMed  Google Scholar 

  40. Wang FQ, Yao K, Wei DZ (2011) From soybean phytosterols to steroid hormones. In: El-Shemy HA (ed) Soybean and health. InTech, Rijeka, pp 241–263

    Google Scholar 

  41. Eisa M, El-Refai H, Amin M (2016) Single step biotransformation of corn oil phytosterols to boldenone by a newly isolated Pseudomonas aeruginosa. Biotechnol Rep 11:36–43. https://doi.org/10.1016/j.btre.2016.05.002

    Article  Google Scholar 

  42. Zhang X-y, Peng Y, Su Z-r et al (2013) Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-o8. J Zhejiang Univ Sci B 14:132–143. https://doi.org/10.1631/jzus.B1200067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gao X-Q, Feng J-X, Wang X-D et al (2015) Enhanced steroid metabolites production by resting cell phytosterol bioconversion. Chem Biochem Eng Q 29:567–573. https://doi.org/10.15255/CABEQ.2014.2098

    Article  CAS  Google Scholar 

  44. Shao M, Zhang X, Rao Z et al (2015) Enhanced production of androst-1,4-diene-3,17-dione by Mycobacterium neoaurum JC-12 using three-stage fermentation strategy. PLoS One 10:e0137658. https://doi.org/10.1371/journal.pone.0137658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Carvalho CCCR, da Fonseca MMR (2007) Bacterial whole cell biotransformations: in vivo reactions under in vitro conditions. Dyn Biochem Process Biotechnol Mol Biol 1:32–39. Print ISSN: 1749-0626

    Google Scholar 

  46. de Carvalho CCCR (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29:75–83. https://doi.org/10.1016/j.biotechadv.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  47. Milner SE, Maguire AR (2012) Recent trends in whole cell and isolated enzymes in enantioselective synthesis. ARKIVOC 2012:321–382

    Article  Google Scholar 

  48. Wang Z, Zhao F, Hao X et al (2004) Microbial transformation of hydrophobic compound in cloud point system. J Mol Catal B Enzym 27:147–153. https://doi.org/10.1016/j.molcatb.2003.11.002

    Article  CAS  Google Scholar 

  49. Fan LL, Li HJ, Chen QH (2014) Applications and mechanisms of ionic liquids in whole-cell biotransformation. Int J Mol Sci 15:12196–12216. https://doi.org/10.3390/ijms150712196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu P, Zheng G-W, Du P-X et al (2016) Whole-cell biocatalytic processes with ionic liquids. ACS Sustain Chem Eng 4:371–386. https://doi.org/10.1021/acssuschemeng.5b00965

    Article  CAS  Google Scholar 

  51. Pfruender H, Amidjojo M, Kragl U et al (2004) Efficient whole-cell biotransformation in a biphasic ionic liquid/water system. Angew Chem Int Ed 43:4529–4531. https://doi.org/10.1002/anie.200460241

    Article  CAS  Google Scholar 

  52. Yuan J-J, Guan Y-X, Wang Y-T et al (2016) Side-chain cleavage of phytosterols by Mycobacterium sp. MB 3683 in a biphasic ionic liquid/aqueous system. J Chem Technol Biotechnol 91:2631–2637. https://doi.org/10.1002/jctb.4865

    Article  CAS  Google Scholar 

  53. Rengstl D, Fischer V, Kunz W (2014) Low-melting mixtures based on choline ionic liquids. Phys Chem Chem Phys 16:22815–22822. https://doi.org/10.1039/c4cp02860k

    Article  CAS  PubMed  Google Scholar 

  54. Maugeri Z, deMaría P (2014) Whole-cell biocatalysis in deep-eutectic-solvent/aqueous mixtures. ChemCatChem 6:1535–1537. https://doi.org/10.1002/cctc.201400077

    Article  CAS  Google Scholar 

  55. Wei P, Liang J, Cheng J et al (2016) Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system. Microb Cell Factories 15:5. https://doi.org/10.1186/s12934-015-0407-1

    Article  CAS  Google Scholar 

  56. Mao S, Yu L, Ji S et al (2016) Evaluation of deep eutectic solvents as co-solvent for steroids 1-en-dehydrogenation biotransformation by Arthrobacter simplex. J Chem Technol Biotechnol 91:1099–1104. https://doi.org/10.1002/jctb.4691

    Article  CAS  Google Scholar 

  57. Xu P, Du PX, Zong MH et al (2016) Combination of deep eutectic solvent and ionic liquid to improve biocatalytic reduction of 2-octanone with Acetobacter pasteurianus GIM1.158 cell. Sci Rep 6:26158. https://doi.org/10.1038/srep26158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hu S, Sun D-A, Tian X et al (1997) Selective microbial hydroxylation and biological rearrangement of taxoids. Tetrahedron Lett 38:2721–2724. https://doi.org/10.1016/S0040-4039(97)00453-X

    Article  CAS  Google Scholar 

  59. Sun D-A, Sauriol F, Mamer O et al (2001) Biotransformation of a 4(20),11(12)-taxadiene derivative. Bioorg Med Chem 9:793–800. https://doi.org/10.1016/S0968-0896(00)00299-6

    Article  CAS  PubMed  Google Scholar 

  60. Hu SH, Tian XF, Zhu WH et al (1996) Biotransformation of some taxoids with oxygen substituent at C-14 by Cunninghamella echinulata. Biocatal Biotransformation 14:241–250. https://doi.org/10.3109/10242429709106890

    Article  Google Scholar 

  61. Dai J, Zhang S, Sakai J et al (2003) Specific oxidation of C-14 oxygenated 4(20),11-taxadienes by microbial transformation. Tetrahedron Lett 44:1091–1094. https://doi.org/10.1016/S0040-4039(02)02714-4

    Article  CAS  Google Scholar 

  62. Dai J, Qu R, J-h Z et al (2008) Structural diversification of taxanes by whole-cell biotransformation. Tetrahedron 64:8102–8116. https://doi.org/10.1016/j.tet.2008.06.062

    Article  CAS  Google Scholar 

  63. Fraga BM, de Alfonso I, Gonzalez-Vallejo V et al (2010) Microbial transformation of two 15α-hydroxy-ent-kaur-16-ene diterpenes by Mucor plumbeus. Tetrahedron 66:227–234. https://doi.org/10.1016/j.tet.2009.10.105

    Article  CAS  Google Scholar 

  64. Marquina S, Parra JL, González M et al (2009) Hydroxylation of the diterpenes ent-kaur-16-en-19-oic and ent-beyer-15-en-19-oic acids by the fungus Aspergillus niger. Phytochemistry 70:2017–2022. https://doi.org/10.1016/j.phytochem.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  65. Li J-L, Chen Q-Q, Jin Q-P et al (2012) IeCPS2 is potentially involved in the biosynthesis of pharmacologically active Isodon diterpenoids rather than gibberellin. Phytochemistry 76:32–39. https://doi.org/10.1016/j.phytochem.2011.12.021

    Article  CAS  PubMed  Google Scholar 

  66. García-Granados A, Martínez A, Ortiz A et al (1990) Microbial transformation of tetracyclic diterpenes: conversion of ent-kaurenones by Curvularia lunata and Rhizopus strains. J Nat Prod 53:441–450. https://doi.org/10.1021/np50068a024

    Article  Google Scholar 

  67. Fraga BM, González-Vallejo V, Guilermo R et al (2013) Microbial transformation of two 15α-hydroxy-ent-kaur-9(11),16-diene derivatives by the fungus Fusarium fujikuroi. Phytochemistry 89:39–46. https://doi.org/10.1016/j.phytochem.2013.01.006

    Article  CAS  PubMed  Google Scholar 

  68. Severiano ME, Silmão MR, Ramos HP et al (2013) Biotransformation of ent-pimaradienoic acid by cultures of Aspergillus niger. Bioorg Med Chem 21:5870–5875. https://doi.org/10.1016/j.bmc.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  69. Fraga BM, Hernández MG, Artega JM et al (2003) The microbiological transformation of the diterpenes dehydroabietanol and teideadiol by Mucor plumbeus. Phytochemistry 63:663–668. https://doi.org/10.1016/S0031-9422(03)00291-7

    Article  CAS  PubMed  Google Scholar 

  70. Fraga BM, González-Vallejo V, Guilermo R (2011) On the biotransformation of ent-trachylobane to ent-kaur-11-ene diterpenes. J Nat Prod 74:1985–1989. https://doi.org/10.1021/np200560s

    Article  CAS  PubMed  Google Scholar 

  71. Chen Z, Li J, Lin H et al (2013) Biotransformation of 14-deoxy-14-methylenetriptolide into a novel hydroxylation product by Neurospra crassa. J Biosci Bioeng 116:199–202. https://doi.org/10.1016/j.jbiosc.2013.01.023

    Article  CAS  PubMed  Google Scholar 

  72. Li Z, Zhou Z-L, Miao Z-H et al (2009) Design and synthesis of novel C14-hydroxyl substituted triptolide derivatives as potential selective antitumor agents. J Med Chem 52:5115–5123. https://doi.org/10.1021/jm900342g

    Article  CAS  PubMed  Google Scholar 

  73. Ning L, Zhan J, Qu G et al (2003) Biotransformation of triptolide by Cunninghamella blakesleana. Tetrahedron 59:4209–4213. https://doi.org/10.1016/S0040-4020(03)00605-7

    Article  CAS  Google Scholar 

  74. Lee WYW, Chiu L, Yeung JHK (2008) Cytotoxicity of major tanshinones isolated from Danshen (Salvia miltiorrhiza) on HepG2 cells in relation to glutathione perturbation. Food Chem Toxicol 46:328–338. https://doi.org/10.1016/j.fct.2007.08.013

    Article  CAS  PubMed  Google Scholar 

  75. Kim WS, Kim DO, Yoon SJ et al (2012) Cryptotanshinone and tanshinone IIA enhance IL-15-induced natural killer cell differentiation. Biochem Biophys Res Commun 425:340–347. https://doi.org/10.1016/j.bbrc.2012.07.093

    Article  CAS  PubMed  Google Scholar 

  76. Park E-J, Zhao Y-Z, Kim Y-C et al (2007) PF2401-SF, standardized fraction of Salvia miltiorrhiza and its constituents, tanshinone I, tanshinone IIA, and cryptotanshinone, protect primary cultured rat hepatocytes from bile acid-induced apoptosis by inhibiting JNK phosphorylation. Food Chem Toxicol 45:1891–1898. https://doi.org/10.1016/j.fct.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  77. Park EJ, Zhao YZ, Kim YC et al (2009) Preventive effects of a purified extract isolated from Salvia miltiorrhiza enriched with tanshinone I, tanshinone IIA and cryptotanshinone on hepatocyte injury in vitro and in vivo. Food Chem Toxicol 47:2742–2748. https://doi.org/10.1016/j.fct.2009.08.007

    Article  CAS  PubMed  Google Scholar 

  78. He W, Liu M, Huang P, Abdel-Mageed WM et al (2016) Discovery of tanshinone derivatives with anti-MRSA activity via targeted bio-transformation. Synth Syst Biol 1:187–194. https://doi.org/10.1016/j.synbio.2016.05.002

    Article  PubMed  PubMed Central  Google Scholar 

  79. He W, Liu M, Li X et al (2016) Fungal biotransformation of tanshinone results in [4+2] cycloaddition with sorbicillinol: evidence for enzyme catalysis and increased antibacterial activity. Appl Microbiol Biotechnol 100:8349–8357. https://doi.org/10.1007/s00253-016-7488-6

    Article  CAS  PubMed  Google Scholar 

  80. Frija LMT, Garcia H, Rodrigues C et al (2013) Short synthesis of the natural 3β-hydroxy-labd 8(17)-en-15-oic acid via microbial transformation of labdanolic acid. Phytochem Lett 6:165–168. https://doi.org/10.1016/j.phytol.2012.12.005

    Article  CAS  Google Scholar 

  81. Aranda G, Lallemand J-Y, Hammoumi A et al (1991) Microbial hydroxylation of sclareol by Mucor plumbeus. Tetrahedron Lett 32:1783–1786. https://doi.org/10.1016/S0040-4039(00)74329-2

    Article  CAS  Google Scholar 

  82. Abraham W-R (1994) Microbial transformation of sclareol. Phytochemistry 36:1421–1424. https://doi.org/10.1016/S0031-9422(00)89734-4

    Article  Google Scholar 

  83. Farooq A, Tahara S (2000) Biotransformation of two cytotoxic terpenes, α-santonin and sclareol by Botrytis cinerea. Z Naturforsch C 55:713–717. https://doi.org/10.1515/znc-2000-9-1008

    Article  Google Scholar 

  84. Xin X-l, Su D-h, Wang X-j et al (2009) Microbial transformation of dehydroandrographolide by Cunninghamella echinulata. J Mol Catal B Enzym 59:201–205. https://doi.org/10.1016/j.molcatb.2009.02.015

    Article  CAS  Google Scholar 

  85. Krüger P, Daneshfar R, Eckert G et al (2008) Metabolism of boswelic acids in vitro and in vivo. Drug Metab Dispos 36:1135–1142. https://doi.org/10.1124/dmd.107.018424

    Article  CAS  PubMed  Google Scholar 

  86. Wang Y, Sun Y, Wang C et al (2013) Biotransformation of 11-keto-β-boswellic acid by Cunninghamella blakesleana. Phytochemistry 96:330–336. https://doi.org/10.1016/j.phytochem.2013.07.018

    Article  CAS  PubMed  Google Scholar 

  87. Sun Y, Liu D, Xi R et al (2013) Microbial transformation of acetyl-11-keto-β-boswellic acid and their inhibitory activity on LPS-indiced NO production. Bioorg Med Chem Lett 23:1338–1342. https://doi.org/10.1016/j.bmcl.2012.12.086

    Article  CAS  PubMed  Google Scholar 

  88. Zhang J, Cheng Z-H, Yu B-Y et al (2005) Novel biotransformation of pentacyclic triterpenoid acids by Nocardia sp. NRRL 5646. Tetrahedron Lett 46:2337–2340. https://doi.org/10.1016/j.tetlet.2005.01.155

    Article  CAS  Google Scholar 

  89. Tolstikova TG, Sorokina IV, Tolstikov GA et al (2006) Biological activity and pharmacological prospects of lupine terpenoids: I. Natural lupine derivatives. Russ J Bioorganic Chem 32:37–49. https://doi.org/10.1134/S1068162006010031

    Article  CAS  Google Scholar 

  90. de Carvalho TC, Polizeli AM, Turatti ICC et al (2010) Screening of filamentous fungi to identify biocatalysts for lupeol biotransformation. Molecules 15:6140–6151. https://doi.org/10.3390/molecules15096140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kashiwada Y, Wang H-K, Nagao T et al (1998) Anti-AIDS agents. 30. Anti-HIV activity of oleanolic acid, pomolic acid, and structurally related triterpenoids. J Nat Prod 61:1090–1095. https://doi.org/10.1021/np9800710

    Article  CAS  PubMed  Google Scholar 

  92. Jäger S, Winkler K, Pfüller U et al (2007) Solubility studies of oleanoic acid and betulinic acid in aqueous solutions and plant extracts of Viscum album L. Planta Med 73:157–162. https://doi.org/10.1055/s-2007-967106

    Article  CAS  PubMed  Google Scholar 

  93. Liu D-L, Liu Y, Qiu F et al (2011) Biotransformation of oleanolic acid by Alternaria longipes and Penicillium adametzi. J Asian Na Prod Res 13:160–167. https://doi.org/10.1080/10286020.2010.547028

    Article  CAS  Google Scholar 

  94. Capel CS, de Souza ACD, de Carvalho TC et al (2011) Biotransformation using Mucor rouxii for the production of oleanolic acid derivatives and their antimicrobial activity against oral pathogens. J Ind Microbiol Biotechnol 38:1493–1498. https://doi.org/10.1007/s10295-010-0935-y

    Article  CAS  PubMed  Google Scholar 

  95. Dong JY, Chen YG, Song HC et al (2007) Hydroxylation of nigranoic acid to 6β-hydroxynigranoic acid by Caryospora carllicarpa YMF1.01026. Chin Chem Lett 18:165–167. https://doi.org/10.1016/j.cclet.2006.12.020

    Article  CAS  Google Scholar 

  96. Dong JY, Chen YG, Song H-C et al (2007) Hydroxylation of the triterpenoid nigranoic acid by the fungus Gliocladium roseum YMF1.00133. Chem Biodivers 4:112–116. https://doi.org/10.1002/cbdv.200790015

    Article  CAS  PubMed  Google Scholar 

  97. Yang Y-H, Sun R, Song H-C et al (2012) Microbial transformation of the triterpene nigranoic acid in Trichoderma sp. Phytochem Lett 5:123–127. https://doi.org/10.1016/j.phytol.2011.11.007

    Article  CAS  Google Scholar 

  98. Sun R, Song HC, Yang YH et al (2013) Microbiological transformation of the triterpene nigranoic acid by the freshwater fungus Dictyosporium heptasporum. J Asian Nat Prod Res 15:433–440. https://doi.org/10.1080/10286020.2013.778833

    Article  CAS  PubMed  Google Scholar 

  99. Huang F-x, Yang W-z, Ye F et al (2012) Microbial transformation of ursolic acid by Syncephalastrum racemosum (Cohn) Schroter AS 3.264. Phytochemistry 82:56–60. https://doi.org/10.1016/j.phytochem.2012.06.020

    Article  CAS  PubMed  Google Scholar 

  100. Leipold D, Wünsch G, Schmidt M et al (2010) Biosynthesis of ursolic acid derivatives by microbial metabolism of ursolic acid with Nocardia sp. strains – proposal of new biosynthetic pathways. Process Biochem 45:1043–1051. https://doi.org/10.1016/j.procbio.2010.03.013

    Article  CAS  Google Scholar 

  101. Fu S-b, Yang J-s, J-l C et al (2013) Biotransformation of ursolic acid by Syncephalastrum racemosum CGMCC 3.2500 and anti-HCV activity. Fitoterapia 86:123–128. https://doi.org/10.1016/j.fitote.2013.02.007.

    Article  CAS  PubMed  Google Scholar 

  102. Aranda G, Facon I, Lallemand J-Y et al (1992) Microbial hydroxylation in the drimane series. Tetrahedron Lett 33:7845–7848. https://doi.org/10.1016/S0040-4039(00)74759-9

    Article  CAS  Google Scholar 

  103. Maatooq GT (2002) Microbial transformation of a β- and γ-eudesmols mixture. Z Naturforsch C 57:654–659. https://doi.org/10.1515/znc-2002-7-818

    Article  CAS  PubMed  Google Scholar 

  104. Sghaier MB, Mousslim M, Pagano A et al (2016) β-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cell. Environ Toxicol Pharmacol 46:227–233. https://doi.org/10.1016/j.etap.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  105. Amate Y, García-Granados MA, Martínez A et al (1991) Biotransformation of 6β-eudesmanolides functionalized at C-3 with Curvularia lunata and Rhizopus nigricans cultures. Tetrahedron 47:5811–5818. https://doi.org/10.1016/S0040-4020(01)86531-5

    Article  CAS  Google Scholar 

  106. Buchanan GO, Williams LAD, Reese PB (2000) Biotransformation of cadinane sesquiterpenes by Beauveria bassiana ATCC 7159. Phytochemistry 54:39–45. https://doi.org/10.1016/S0031-9422(00)00024-8

    Article  CAS  PubMed  Google Scholar 

  107. Collins DO, Ruddock PLD, de Grasse JC et al (2002) Microbial transformation of cadina-4,10(15)-dien-3-one, aromadendr-1(10)-en-9-one and methyl ursolate by Mucor plumbeus ATCC 4740. Phytochemistry 59:479–488. https://doi.org/10.1016/S0031-9422(01)00486-1

    Article  CAS  PubMed  Google Scholar 

  108. Gliszczyńska A, Łysek A, Janeczko T et al (2011) Microbial transformation of (+)-nootkatone and the antiproliferative activity of its metabolites. Bioorg Med Chem 19:2464–2469. https://doi.org/10.1016/j.bmc.2011.01.062

    Article  CAS  PubMed  Google Scholar 

  109. Bulugahapitiya VP, Musharaff SG (2009) Microbial transformation of sesquiterpenoid ketone, (+)-nootkatone by Macrophomia phaseolina. Ruhuna J Sci. 4:13–20. ISSN 1800-279X. http://www.ruh.ac.lk/rjs/

  110. Maatooq GT (2002) Microbial metabolism of partheniol by Mucor circinelloides. Phytochemistry 59:39–44. https://doi.org/10.1016/S0031-9422(01)00412-5

    Article  CAS  PubMed  Google Scholar 

  111. Collins DO, Buchanan GO, Reynolds WF et al (2001) Biotransformation of squamulosone by Curvularia lunata ATCC 12017. Phytochemistry 57:377–383. https://doi.org/10.1016/S0031-9422(01)00060-7

    Article  CAS  PubMed  Google Scholar 

  112. Goswami A, Saikia PP, Barua NC et al (2010) Bio-transformation of artemisinon using soil microbe: Direct C-acetoxylation of artemisinin at C-9 by Penicillium simplissimum. Bioorg Med Chem Lett 20:359–361. https://doi.org/10.1016/j.bmcl.2009.10.097

    Article  CAS  PubMed  Google Scholar 

  113. Liu J-H, Chen Y-G, Yu B-Y et al (2006) A novel ketone derivative of artemisinin biotransformed by Streptomyces griseus ATCC 13273. Bioorg Med Chem Lett 16:1909–1912. https://doi.org/10.1016/j.bmcl.2005.12.076

    Article  CAS  PubMed  Google Scholar 

  114. Zhan J, Guo H, Dai J et al (2002) Microbial transformation of artemisinin by Cunninghamella echinulata and Aspergillus niger. Tetrahedron Lett 43:4519–4521. https://doi.org/10.1016/S0040-4039(02)00812-2

    Article  CAS  Google Scholar 

  115. Lee I-S, ElSohly HN, Croom EM et al (1989) Microbial metabolism studies of the antimalarial sesquiterpene artemisinin. J Nat Prod 52:337–341. https://doi.org/10.1021/np50062a020

    Article  CAS  PubMed  Google Scholar 

  116. Zhan J-X, Zhang Y-X, Guo H-Z et al (2002) Microbial metabolism of artemisinin by Mucor polymorphosporus and Aspergillus niger. J Nat Prod 65:1693–1695. https://doi.org/10.1021/np020113r

    Article  CAS  PubMed  Google Scholar 

  117. Parshikov IA, Muraleedharan KM, Avery MA et al (2004) Transformation of artemisinin by Cunninghamella elegans. Appl Microbiol Biotechnol 64:782–786. https://doi.org/10.1007/s00253-003-1524-z

    Article  CAS  PubMed  Google Scholar 

  118. Parshikov IA, Miriyala B, Muraleedharan KM et al (2006) Microbial transformation of artemisinin to 5-hydroxyartemisinin by Eurotium amstelodami and Aspergillus niger. J Ind Microbiol Biotechnol 33:349–352. https://doi.org/10.1007/s10295-005-0071-2

    Article  CAS  PubMed  Google Scholar 

  119. Gaur R, Tiwari S, Jakhmola A et al (2014) Novel biotransformation processes of artemisinic acid to their hydroxylated derivatives 3β-hydroxyartemisinic acid and 3β,15-dihydroxyartemisinic by fungus Trichothecium roseum CIMAPN1 and their biological evaluation. J Mol Catal B Enzym 106:46–55. https://doi.org/10.1016/j.molcatb.2014.04.008

    Article  CAS  Google Scholar 

  120. Elmarakby SA, El-Feraly FS, Elsohly HN et al (1988) Microbiological transformations of artemisinic acid. Phytochemistry 27:3089–3091. https://doi.org/10.1016/0031-9422(88)80006-2

    Article  CAS  Google Scholar 

  121. Ooko E, Saeed MEM, Kadioglu O et al (2015) Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine 22:1045–1054. https://doi.org/10.1016/j.phymed.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  122. Abourashed EA, Hufford CD (1996) Microbial transformation of artemether. J Nat Prod 59:251–253. https://doi.org/10.1021/np960060b

    Article  CAS  Google Scholar 

  123. Huffold CD, Lee I-S, ElSohly HN et al (1990) Structure elucidation and Thermospray High-Performance Liquid Chromatography/Mass Spectrometry (HPLC/MS) of the microbial and mammalian metabolites of the antimalarial arteether. Pharmaceut Res 7:923–927. https://doi.org/10.1023/A:1015993722846

    Article  Google Scholar 

  124. Parshikov IA, Muraleedharan KM, Miriyala B et al (2004) Hydroxylation of 10-deoxoartemisinin by Cunninghamella elegans. J Nat Prod 67:1595–1597. https://doi.org/10.1021/np040089c

    Article  CAS  PubMed  Google Scholar 

  125. Orabi KY, Galal AM, Ibrahim A-RS et al (1999) Microbial metabolism of artemisitene. Phytochemistry 51:257–261. https://doi.org/10.1016/S0031-9422(98)00770-5

    Article  CAS  PubMed  Google Scholar 

  126. McCook KP, Chen ARM, Reynolds WF et al (2012) The potential of Cyathus africanus for transformation of terpene substrates. Phytochemistry 82:61–66. https://doi.org/10.1016/j.phytochem.2012.06.018

    Article  CAS  PubMed  Google Scholar 

  127. Ata A, Nachtigall JA (2003) Microbial transformations of α-santonin. Z Naturforsch C 59:209–214. https://doi.org/10.1515/znc-2004-3-415

    Article  Google Scholar 

  128. García-Granados A, Parra A, Simeó Y et al (1998) Chemical, enzymatic and microbiological synthesis of 8,12-eudesmanolides: synthesis of sivasinolide and yomogin analogues. Tetrahedron 54:14421–14436. https://doi.org/10.1016/S0040-4020(98)00893-X

    Article  Google Scholar 

  129. Gandomkar S, Habibi Z (2014) Biotransformation of 6α-santonin and 1,2-dihydro-α-santonin by Acremonium chrysogenum PTCC 5271 and Rhizomucor pusillus PTCC 5134. J Mol Catal B Enzym 110:59–63. https://doi.org/10.1016/j.molcatb.2014.09.003

    Article  CAS  Google Scholar 

  130. Aniszewski T (2015) Ecology of alkaloids, Chapter 4. In: Alkaloids, Chemistry, biology, ecology, and applications, 2 edn. Elsevier, Amsterdam, pp 259–289. https://doi.org/10.1016/B978-0-444-59433-4.00004-3

    Chapter  Google Scholar 

  131. Abraham W-R, Spassov G (2002) Biotransformation of alkaloids: a challenge. Heterocycles 56:711–741. https://doi.org/10.3987/REV-01-SR(K)4

    Article  CAS  Google Scholar 

  132. Rathborne DA, Bruce NC (2002) Microbial transformation of alkaloids. Curr Opin Microbiol 5:274–281. https://doi.org/10.1016/S1369-5274(02)00317-X

    Article  Google Scholar 

  133. Zi J, Gladstone G, Zhan J (2012) Specific 5-hydroxylation of piperlongumine by Beauveria bassiana ATCC 7159. Biosci Biotechnol Biochem 76:1565–1567. https://doi.org/10.1271/bbb.120223

    Article  CAS  PubMed  Google Scholar 

  134. El Sayed KA, Halim AF, Zaghloul AM et al (2000) Transformation of jervine by Cunninghamella elegans ATCC 9245. Phytochemistry 55:19–22. https://doi.org/10.1016/S0031-9422(00)00202-8

    Article  CAS  PubMed  Google Scholar 

  135. El Sayed KA, Dunbar DC (2002) Microbial transformation of rubijervine. Chem Pharm Bull 50:1427–1429. https://doi.org/10.1248/cpb.50.1427

    Article  CAS  Google Scholar 

  136. Booij B, Rathbone DA, Bruce NC (2001) Engineering novel biocatalytic routes for production of semisynthetic opiate drugs. Biomol Eng 18:41–47. https://doi.org/10.1016/S1389-0344(01)00084-3

    Article  Google Scholar 

  137. Choudhary MI, Samreen SY, Shah SAA et al (2006) Biotransformation of Physalin H and leishmanicidal activity of its transformed products. Chem Pharm Bull 54:927–930. https://doi.org/10.1248/cpb.54.927

    Article  CAS  Google Scholar 

  138. Nikham S, Faramarzi MA, Abdi K et al (2010) Bioconversion of codeine to semi-synthetic opiate derivatives by the cyanobacterium Nostoc muscorum. World J Microbiol Biotechnol 26:119–123. https://doi.org/10.1007/s11274-009-0150-z

    Article  CAS  Google Scholar 

  139. El Sayed KA (2000) Microbial transformation of papaveraldine. Phytochemistry 53:675–678. https://doi.org/10.1016/S0031-9422(99)00616-0

    Article  CAS  PubMed  Google Scholar 

  140. Agusta A, Wulansari D, Praptiwi et al (2014) Biotransformation of protoberberine alkaloids by the endophytic fungus Coelomycetes AFKR-3 isolated from Yello Moonsheed plant (Archangelisia flava (L.) Merr.). Procedia Chemist 13:38–43. https://doi.org/10.1016/j.proche.2014.12.004

    Article  CAS  Google Scholar 

  141. Dubey KK, Ray AR, Behera BK (2008) Production of demethylated colchicine through microbial transformation and scale-up process development. Process Biochem 43:251–257. https://doi.org/10.1016/j.procbio.2007.12.002

    Article  CAS  Google Scholar 

  142. Poulev A, Bombardelli E, Ponzone C et al (1995) Regioselective bioconversion of colchicine and thiocolchicine into their corresponding 3-demethyl derivatives. J Ferment Bioeng 79:33–38. https://doi.org/10.1016/0922-338X(95)92740-4

    Article  CAS  Google Scholar 

  143. Bombardelli E, Ponzone C (1996) A process for the biotransformation of colchicinoid compounds into the corresponding 3-glycosylderivatives. European Patent No EP 0 931 161 B1

    Google Scholar 

  144. Ponzone C (2004) Biotransformation of colchicinoid compounds. European Patent No 1 745 140 B1

    Google Scholar 

  145. Ponzone C, Berlanda D, Donzelli F et al (2014) Biotransformation of colchicinoids into their 3-O-glucosyl derivatives by selected strains of Bacillus megaterium. Mol Biotechnol 56:653–659. https://doi.org/10.1007/s12033-014-9741-5

    Article  CAS  PubMed  Google Scholar 

  146. Ma S, Zheng C, Feng L et al (2015) Microbial transformation of prenylflavonoids from Psoralea corylifolia by using Cunninghamella blakesleeana and C. elegans. J Mol Catal B Enzym 118:8–15. https://doi.org/10.1016/j.molcatb.2015.04.015

    Article  CAS  Google Scholar 

  147. Das S, Rosazza JPN (2006) Microbial and enzymatic transformations of flavonoids. J Nat Prod 69:499–508. https://doi.org/10.1021/np0504659

    Article  CAS  PubMed  Google Scholar 

  148. Wang A, Zhang F, Huang L et al (2010) New progress in biocatalysis and biotransformation of flavonoids. J Med Plant Res 4:847–856. https://doi.org/10.5897/JMPR10.030

    Article  CAS  Google Scholar 

  149. Kostrzeva-Susłow E, Janeczko T (2012) Microbial transformation of 7-hydroxyflavanone. Scientif World J. Article ID: 254929. https://doi.org/10.1100/2012/254929

  150. Kostrzeva-Susłow E, Dmochowska-Gładysz J, Janeczko T (2010) Microbial transformation of selected flavones as a method of increasing the antioxidant properties. Z Naturforsch C 65:55–60. https://doi.org/10.1515/znc-2010-1-210

    Article  Google Scholar 

  151. Kostrzeva-Susłow E, Dmochowska-Gładysz J, Białońska A et al (2006) Microbial transformations of flavanone and 6-hydroxyflavanone by Aspergillus niger strains. J Mol Catal B Enzym 39:18–23. https://doi.org/10.1016/jmolcatb.2006.01.020

    Article  Google Scholar 

  152. Kostrzeva-Susłow E, Janeczko T (2012) Microbial transformation of 7-methoxyflavanone. Molecules 17:14810–14820. https://doi.org/10.3390/molecules171214810

    Article  CAS  Google Scholar 

  153. Ibrahim AK, Radwan MM, Ahmed SA et al (2010) Microbial metabolism of cannflavin A and B isolated from Cannabis sativa. Phytochemistry 71:1014–1019. https://doi.org/10.1016/j.phytochem.2010.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Roh C, Seo S-H, Choi K-Y et al (2009) Regieoselective hydroxylation of isoflavones by Streptomyces avermitilis MA-4680. J Biosci Bioeng 108:41–46. https://doi.org/10.1016/j.jbiosc.2009.02.021

    Article  CAS  PubMed  Google Scholar 

  155. Maatooq GT, Rosazza JPN (2005) Metabolism of daidzein by Nocardia species NRRL 5646 and Mortierella isabellina ATCC 38063. Phytochemistry 66:1007–1011. https://doi.org/10.1016/j.phytochem.2005.03.013

    Article  CAS  PubMed  Google Scholar 

  156. Hosny M, Rosazza JPN (1999) Microbial hydroxylation and methylation of genistein by Streptomycetes. J Nat Prod 62:1609–1612. https://doi.org/10.1021/np9901783

    Article  CAS  Google Scholar 

  157. Wang S-T, Fang T-F, Hsu C et al (2015) Biotransformed product, genistein 7-O-phosphate, enhances the oral bioavailability of genistein. J Funct Foods 13:323–355. https://doi.org/10.1016/j.jff.2015.01.08

    Article  CAS  Google Scholar 

  158. Hsu C, Ho H-W, Chang C-F et al (2013) Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Res Int 53:487–495. https://doi.org/10.1016/j.foodres.2013.05.027

    Article  CAS  Google Scholar 

  159. Klus K, Barz W (1995) Formation of polyhydroxylated isoflavones from the soybean seed isoflavones daidzein and glycitein by bacteria isolated from tempe. Arch Microbiol 164:428–434. https://doi.org/10.1007/BF02529741

    Article  CAS  PubMed  Google Scholar 

  160. Mohamed A-E-HH, Khalafallah AK, Yousof AH (2008) Biotransformation of glabratephrin, a rare type of isoprenylated flavonoids, by Aspergillus niger. Z Naturforsch C 63:561–564. https://doi.org/10.1515/znc-2008-7-816

    Article  Google Scholar 

  161. Tronina T, Bartmańska A, Filip-Psursus B et al (2013) Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro. Bioorg Med Chem 21:2001–2006. https://doi.org/10.1016/j.bmc.2013.01.026

    Article  CAS  PubMed  Google Scholar 

  162. Tronina T, Bartmańska A, Milczarek M et al (2013) Antioxidant and antiproliferative activity of glycosides obtained by biotransformation of xanthohumol. Bioorg Med Chem Lett 23:1957–1960. https://doi.org/10.1016/j.bmcl.2013.02.031

    Article  CAS  PubMed  Google Scholar 

  163. Bartmańska A, Huszcza E, Tronina T (2009) Transformation of isoxanthohumol by fungi. J Mol Catal B Enzym 61:221–224. https://doi.org/10.1016/j.molcatb.2009.07.008

    Article  CAS  Google Scholar 

  164. Marumoto S, Miyazawa M (2011) Microbial reduction of coumarin, psoralen, and xanthyletin by Glomerella cingulata. Tetrahedron 67:495–500. https://doi.org/10.1016/j.tet.2010.10.089

    Article  CAS  Google Scholar 

  165. Marumoto S, Miyazawa M (2010) Biotransformation of isoimperatorin and imperatorin by Glomerella cingulata and β-secretase inhibitory activity. Bioorg Med Chem 18:455–459. https://doi.org/10.1016/j.bmc.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  166. Lv X, Liu D, Hou J et al (2013) Biotransformation of imperatorin by Penicillium janthinellum. Anti-osteoporosis activities of its metabolites. Food Chem 138:2260–2266. https://doi.org/10.1016/j.foodchem.2012.11.138

    Article  CAS  PubMed  Google Scholar 

  167. Yang X, Hou J, Liu D et al (2013) Biotransformation of isoimperatorin by Cunninghamella blakesleana AS 3.970. J Mol Catal B Enzym 88:1–6. https://doi.org/10.1016/j.molcatb.2012.11.012

    Article  CAS  Google Scholar 

  168. Lv X, Xin X-L, Deng S et al (2012) Biotransformation of osthole by Mucor spinosus. Process Biochem 47:2542–2546. https://doi.org/10.1016/j.procbio.2012.07.012

    Article  CAS  Google Scholar 

  169. Gupta A, Kagliwal LD, Singhal RS (2013) Chapter four - Biotransformation of polyphenols for improved bioavailability and processing stability. Adv Food Nutr Res 69:183–217. https://doi.org/10.1016/B978-0-12-410540-9.00004-1

    Article  PubMed  Google Scholar 

  170. Arunrattiyakorn P, Suwannasai N, Aree T et al (2014) Biotransformation of α-mangostin by Colletotrichum sp. MT02 and Phomopsis euphorbiae K12. J Mol Catal B Enzym 102:174–179. https://doi.org/10.1016/j.molcatb.2014.02.010

    Article  CAS  Google Scholar 

  171. Moses T, Papadopoulou K, Osbourn A (2014) Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 49:439–462. https://doi.org/10.3109/10409238.2014.953628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Liu J-Y, Lu L, Kang L-P et al (2015) Selective glycosylation of steroidal saponins by Arthrobacter nitroguajacolicus. Carbohydr Res 402:71–76. https://doi.org/10.1016/j.carres.2014.07.006

    Article  CAS  PubMed  Google Scholar 

  173. Pang X, Wen D, Zhao Y et al (2015) Steroidal saponins obtained by biotransformation of total furostanol glycosides from Dioscorea zingiberensis with Absidia coerulea. Carbohydr Res 402:236–240. https://doi.org/10.1016/j.carres.2014.11.011

    Article  CAS  PubMed  Google Scholar 

  174. Dong M, Feng XZ, Wang BX et al (2004) Microbial metabolism of pseudoprotodioscin. Planta Med 70:637–641. https://doi.org/10.1055/s-2004-827187

    Article  CAS  PubMed  Google Scholar 

  175. Dong X, Gao Z, Hu H et al (2016) Microbial transformation of pseudoprotodioscin by Chaetomium olivaceum. J Mol Catal B Enzym 130:88–95. https://doi.org/10.1016/j.molcatb.2016.05.001

    Article  CAS  Google Scholar 

  176. Azerad R (2016) Chemical structures, production and enzymatic transformations of sapogenins and saponins from Centella asiatica (L.) Urban. Fitoterapia 114:168–187. https://doi.org/10.1016/j.fitote.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  177. Rahman A-u, Choudhary MI, Asif F et al (1998) Microbial transformation of sarsapogenin by Fusarium lini. Phytochemistry 49:2341–2342. https://doi.org/10.1016/S0031-9422(98)00403-8

    Article  Google Scholar 

  178. Tansi S, Karaman S, Toncer O (2009) Ecological and morphological variation of wild Ruscus aculeatus from Mediterranean region of Southern Turkey. Acta Hortic 826:175–184. https://doi.org/10.17660/ActaHortic.2009.826.24

    Article  Google Scholar 

  179. Lin YN, Jia R, Liu YH et al (2015) Ruscogenin suppresses mouse neutrophil activation: Involvement of protein kinase A pathway. J Steroid Biochem Mol Biol 154:85–93. https://doi.org/10.1016/j.jsbmb.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  180. Chen N-D, Yue L, Zhang J et al (2010) One unique steroidal sapogenin obtained through the microbial transformation of ruscogenin by Phytophthora cactorum ATCC 32143 and its potential inhibitory effect on tissue factor (TF) procoagulant activity. Bioorg Med Chem Lett 20:4015–4017. https://doi.org/10.1016/j.bmcl.2010.05.103

    Article  CAS  PubMed  Google Scholar 

  181. Rosazza JP, Smith RV (1979) Microbial models for drug metabolism. Adv Appl Microbiol 25:169–208. https://doi.org/10.1016/S0065-2164(08)70150-3

    Article  CAS  PubMed  Google Scholar 

  182. Azerad R (1999) Microbial models of drug metabolism. In: Faber K (ed) Biotransformations. Advances in biochemical engineering/biotechnology, vol 63. Springer, Berlin. ISBN:3-540-64496-2

    Google Scholar 

  183. Venisetty RK, Ciddi V (2003) Application of microbial transformations for the new drug discovery using natural drugs as substrates. Curr Pharm Biotechnol 4:153–167. https://doi.org/10.2174/1389201033489847

    Article  CAS  PubMed  Google Scholar 

  184. Zhan J, Zhang Y, Ning L et al (2003) Microbial transformation of taxol by Pseudomonas aeruginosa AS 1.860. Chin J Environ Biol 9:429–432. ISSN 1006-687X

    Google Scholar 

  185. Kroll DJ, Shaw HS, Oberlies NH (2007) Milk thistle nomenclature: why it matters in cancer research and pharmacokinetic studies. Integr Cancer Ther 6:110–119. https://doi.org/10.1177/1534735407301825

    Article  CAS  PubMed  Google Scholar 

  186. Kim H-J, Park H-S, Lee I-S (2006) Microbial transformation of silybin by Trichoderma koningii. Bioorg Med Chem Lett 16:790–793. https://doi.org/10.1016/j.bmcl.2005.11.022

    Article  CAS  PubMed  Google Scholar 

  187. Charrier C, Azerad R, Marhol P et al (2014) Preparation of silybin phase II metabolites: Streptomyces catalyzed glucuronidation. J Mol Catal B Enzym 102:167–173. https://doi.org/10.1016/j.molcatb.2014.02.008

    Article  CAS  Google Scholar 

  188. Křen V, Ulrichková J, Kosina P et al (2000) Chemoenzymatic preparation of silybin β-clucuronides and their biological evaluation. Drug Metab Dispos 28:1513–1517

    PubMed  Google Scholar 

  189. Abourashed EA, Mikell JR, Khan IA (2012) Bioconversion of silybin to phase I and II microbial metabolites with retained antioxidant activity. Bioorg Med Chem 20:2784–2788. https://doi.org/10.1016/j.bmc.2012.03.046

    Article  CAS  PubMed  Google Scholar 

  190. Sun J-H, Yang M, Ma X-C et al (2009) Microbial biotransformation of cryptotanshinone by Cunninghamella elegans and its application for metabolite identification in rat bile. J Asian Nat Prod Res 11:482–489. https://doi.org/10.1080/10286020902877754

    Article  CAS  PubMed  Google Scholar 

  191. Nadkarni SR, Akut PM, Ganguli BN et al (1986) Microbial transformation of 1,9-dideoxyforskolin to forskolin. Tetrahedron Lett 27:5265–5268. https://doi.org/10.1016/S0040-4039(00)85186-2

    Article  CAS  Google Scholar 

  192. Khandenwal Y, de Souza NJ, Chatterjee S et al (1987) Synthesis of metabolites of forskolin. Tetrahedron Lett 28:4089–4092. https://doi.org/10.1016/S0040-4039(01)83869-7

    Article  Google Scholar 

  193. Khandenwal Y, Inamdar PK, de Souza NJ et al (1988) Novel 1,9-dideoxyforskolin analogues through microbial transformations. Tetrahedron 44:1661–1666. https://doi.org/10.1016/S0040-4020(01)86727-2

    Article  Google Scholar 

  194. Lee I-S, Hufford CD (1990) Metabolism antimalarial sesquiterpene lactones. Pharmac Ther 48:345–355. https://doi.org/10.1016/0163-7258(90)90053-5

    Article  CAS  Google Scholar 

  195. Khalifa SI, Baker JK, Rogers RD et al (1994) Microbial and mammalian metabolism studies of the semisynthetic antimalarial, anhydrodihydroartemisinin. Pharmaceut Res 11:990–994. https://doi.org/10.1023/A:1018979202933

    Article  CAS  Google Scholar 

  196. Arunrattiyakorn P, Suksamrarn S, Suwannasai N et al (2011) Microbial metabolism of α-mangostin isolated from Garcinia mangostana L. Phytochemistry 72:730–734. https://doi.org/10.1016/j.phytochem.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  197. Zhang M, Zhao Q, Liang Y-Y et al (2015) Stereo- and regiospecific biotransformation of curcumenol by four fungal strains. J Mol Catal B Enzym 115:13–19. https://doi.org/10.1016/j.molcatb.2015.01.005

    Article  CAS  Google Scholar 

  198. Marvalin C, Azerad R (2011) Microbial glucuronidation of polyphenols. J Mol Catal B Enzym 73:43–52. https://doi.org/10.1016/j.molcatb.2011.07.015

    Article  CAS  Google Scholar 

  199. Costa EM d MB, Pimenta FC, Luz WC et al (2008) Selection of filamentous fungi of the Beauveria genus able to metabolize quercetin like mammalian cells. Braz J Microbiol 39:405–408. https://doi.org/10.1590/S1517-83822008000200036

    Article  Google Scholar 

  200. Swathi D, Bandlapalli S, Vidyavathi M (2012) Biotransformation of hesperidine to hesperitine by Cunninghamella elegans. Asian J Pharm Clin Res 5 Suppl 2:174–178

    Google Scholar 

  201. Herath W, Ferreira D, Khan IA (2003) Microbial transformation of xanthohumol. Phytochemistry 62:673–677. https://doi.org/10.1016/S0031-9422(02)00615-5

    Article  CAS  PubMed  Google Scholar 

  202. Herath W, Mikell JR, Hale AL et al (2006) Microbial metabolism. Part 6. Metabolites of 3- and 7-hydroxyflavones. Chem Pharm Bull 54:320–324. https://doi.org/10.1248/cpb.54.320

    Article  CAS  Google Scholar 

  203. Herath W, Mikell JR, Hale AL et al (2008) Microbial metabolism. Part 9. Structure and antioxidant significance of the metabolites of 5,7-dihydroxyflavone (chrysin), and 5- and 6-hydroxyflavones. Chem Pharm Bull 56:418–422. https://doi.org/10.1248/cpb.56.418

    Article  CAS  Google Scholar 

  204. Bartmańska A, Tronina T, Huszcza E (2010) Biotransformation of the phytoestrogen 8-prenylnaringenin. Z Naturforsch C 65:603–606. https://doi.org/10.1515/znc-2010-9-1012

    Article  Google Scholar 

  205. Bartmańska A, Tronina T, Huszcza E (2012) Transformation of 8-prenylnaringenin by Absidia coerulea and Beauveria bassiana. Bioorg Med Chem Lett 22:6451–6453. https://doi.org/10.1016/j.bmcl.2012.08.060

    Article  CAS  PubMed  Google Scholar 

  206. Shi X, Liu M, Zhang M et al (2013) Identification of in vitro and in vivo metabolites of isoimperatorin using liquid chromatography/mass spectrometry. Food Chem 141:357–365. https://doi.org/10.1016/j.foodchem.2013.02.068

    Article  CAS  PubMed  Google Scholar 

  207. Liu ZR, Zhu DL, Lv L et al (2012) Metabolism profile of timosaponin B-II in urine after oral administration to rats by ultrahigh-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 26:1955–1965. https://doi.org/10.1002/rcm.6299

    Article  CAS  PubMed  Google Scholar 

  208. Zhao Y, Jiang T, Han B et al (2015) Preparation of some metabolites of timosaponin BII by biotransformation in vitro. Process Biochem 50:2182–2187. https://doi.org/10.1016/j.procbio.2015.09.022

    Article  CAS  Google Scholar 

  209. Sultan S, Ghani NA, Shah SAA et al (2013) Microbial transformation of bioactive anthraquinones – a review. Biosci Biotechnol Res Asia 10:577–582. https://doi.org/10.13005/bbra/1167

    Article  CAS  Google Scholar 

  210. Berkov S, Mutafova B, Christen P (2014) Molecular biodiversity and recent analytical developments: a marriage of convenience. Biotechnol Adv 32:1102–1110. https://doi.org/10.1016/j.biotechadv.2014.04.005

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaga Mutafova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mutafova, B., Fernandes, P., Mutafov, S., Berkov, S., Pavlov, A. (2018). Microbial Transformations of Plant Secondary Metabolites. In: Pavlov, A., Bley, T. (eds) Bioprocessing of Plant In Vitro Systems. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-54600-1_15

Download citation

Publish with us

Policies and ethics