Skip to main content

Methane Carbon Cycling in the Past: Insights from Hydrocarbon and Lipid Biomarkers

  • Living reference work entry
  • First Online:
Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Methane produced by thermal decomposition of organic matter, biological methanogenesis, and abiotic reactions plays a prominent role in biogeochemical cycles and climate forcing. There are, however, microbiological processes that efficiently mitigate its release into Earth’s surface environments. Lipid biomarkers are powerful tracers for methanotrophic (methane-consuming) organisms and their metabolisms. The particular strength of the biomarker concept, as compared to DNA- or RNA-based techniques, lies in its potential to track the methane-derived processes not only in modern settings but also on a geological time scale. In the past two decades, numerous studies have provided information on the lipid inventories of the key methanotrophic biota. In addition, compound-specific isotopic measurements have become an important tool for the recognition of tracer compounds for the turnover of methane in environmental samples. After a brief introduction about methane sources and sinks, I will provide an overview about the relevant lipid biomarkers that have been reported from aerobic and anaerobic methanotrophs and their habitats. Furthermore, the occurrence and utility of their diagenetic products as molecular fossils for methane carbon cycling in ancient environments will be illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Badr O, Probert SD, O’Callaghan PW (1992) Sinks for atmospheric methane. Appl Energy 41:137–147

    Article  CAS  Google Scholar 

  • Barber CJ, Grice K, Bastow TP, Alexander R, Kagi RI (2001) The identification of crocetane in Australian crude oils. Org Geochem 32:943–947

    Article  CAS  Google Scholar 

  • Beal EJ, House CH, Orphan VJ (2009) Manganese-and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  PubMed  Google Scholar 

  • Berndmeyer C, Thiel V, Schmale O, Blumenberg M (2013) Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland deep (Baltic Sea). Org Geochem 55:103–111

    Article  CAS  Google Scholar 

  • Bertram S, Blumenberg M, Michaelis W, Siegert M, Krüger M, Seifert R (2013) Methanogenic capabilities of ANME-archaea deduced from 13C-labelling approaches. Environ Microbiol 15:2384–2393

    Article  CAS  PubMed  Google Scholar 

  • Bird CW, Lynch JM, Pirt FJ, Reid WW (1971) Steroids and squalene in Methylococcus capsulatus grown on methane. Nature 230:473–474

    Article  CAS  PubMed  Google Scholar 

  • Birgel D, Peckmann J (2008) Aerobic methanotrophy at ancient marine methane seeps: a synthesis. Org Geochem 39:1659–1667

    Article  CAS  Google Scholar 

  • Birgel D, Thiel V, Hinrichs K-U, Elvert M, Campbell KA, Reitner J, Farmer JD, Peckmann J (2006a) Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California. Org Geochem 37:1289–1302

    Article  CAS  Google Scholar 

  • Birgel D, Peckmann J, Klautzsch S, Thiel V, Reitner J (2006b) Anaerobic and aerobic oxidation of methane at late cretaceous seeps in the western interior seaway. Geomicrobiol J 23:565–577

    Article  CAS  Google Scholar 

  • Birgel D, Himmler T, Freiwald A, Peckmann J (2008a) A new constraint on the antiquity of anaerobic oxidation of methane: late Pennsylvanian seep limestones from southern Namibia. Geology 36:543–546

    Article  CAS  Google Scholar 

  • Birgel D, Elvert M, Han X, Peckmann J (2008b) 13C-depleted biphytanic diacids as tracers of past anaerobic oxidation of methane. Org Geochem 39:152–156

    Article  CAS  Google Scholar 

  • Birgel D, Feng D, Roberts HH, Peckmann J (2011) Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chem Geol 285:82–96

    Article  CAS  Google Scholar 

  • Blumenberg M, Seifert R, Reitner J, Pape T, Michaelis W (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci U S A 101:11111–11116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blumenberg M, Hoppert M, Krüger M, Dreier A, Thiel V (2012) Novel findings on hopanoid occurrences among sulfate reducing bacteria: is there a direct link to nitrogen fixation? Org Geochem 49:1–5

    Article  CAS  Google Scholar 

  • Blumenberg M, Berndmeyer C, Moros M, Muschalla M, Schmale O, Thiel V (2013) Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the Central Baltic Sea. Biogeosciences 10:2725–2735

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Bodelier PL, Gillisen MJB, Hordijk K, Damsté JSS, Rijpstra WIC, Geenevasen JA, Dunfield PF (2009) A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. ISME J 3:606–617

    Article  CAS  PubMed  Google Scholar 

  • Bowman JP, Skerratt JH, Nichols PD, Sly LI (1991) Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. FEMS Microbiol Ecol 85:15–22

    Article  CAS  Google Scholar 

  • Bowman JP (2014) The family Methylococcaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Gammaproteobacteria. Springer, Berlin/Heidelberg, pp 411–440

    Google Scholar 

  • Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple Sulphur bacteria in a stratified Palaeoproterozoic Sea. Nature 437:866–870

    Article  CAS  PubMed  Google Scholar 

  • Bürgmann H (2011) Methane oxidation (aerobic). In: Encyclopedia of geobiology. Springer, Dordrecht, pp 575–578

    Book  Google Scholar 

  • Burhan RYP, Trendel JM, Adam P, Wehrung P, Albrecht P, Nissenbaum A (2002) Fossil bacterial ecosystem at methane seeps: origin of organic matter from Be’eri sulfur deposit, Israel. Geochim Cosmochim Acta 66(23):4085–4101

    Article  CAS  Google Scholar 

  • Campbell KA (2006) Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: past developments and future research directions. Palaeogeogr Palaeoclimatol Palaeoecol 232:362–407

    Article  Google Scholar 

  • Chevalier N, Bouloubassi I, Stadnitskaia A, Taphanel MH, Damsté JSS (2014) Lipid biomarkers for anaerobic oxidation of methane and sulphate reduction in cold seep sediments of Nyegga pockmarks (Norwegian margin): discrepancies in contents and carbon isotope signatures. Geo-Mar Lett 34:269–280

    Article  CAS  Google Scholar 

  • Collister JW, Summons RE, Lichtfouse E, Hayes JM (1992) An isotopic biogeochemical study of the Green River oil shale. Org Geochem 19:265–276

    Article  CAS  PubMed  Google Scholar 

  • Davies KL, Pancost RD, Edwards ME, Anthony KMW, Langdon PG (2016) Diploptene δ13C values from contemporary thermokarst lake sediments show complex spatial variation. Biogeosciences 13:2611–2621

    Article  CAS  Google Scholar 

  • De Boever E, Birgel D, Thiel V, Muchez P, Peckmann J, Dimitrov L, Swennen R (2009) The formation of giant tubular concretions triggered by anaerobic oxidation of methane as revealed by archaeal molecular fossils (lower Eocene, Varna, Bulgaria). Palaeogeogr Palaeoclimatol Palaeoecol 280:23–36

    Article  Google Scholar 

  • Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Biotechnol Bioeng 213:169–183

    CAS  Google Scholar 

  • Dueck TA, De Visser R, Poorter H, Persijn S, Gorissen A, De Visser W, Schapendonk A, Verhagen J, Snel J, Harren FJ (2007) No evidence for substantial aerobic methane emission by terrestrial plants: a 13C labelling approach. New Phytol 175:29–35

    Article  CAS  PubMed  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S et al (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  CAS  PubMed  Google Scholar 

  • Elvert M, Suess E, Whiticar MJ (1999) Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86:295–300

    Article  CAS  Google Scholar 

  • Elvert M, Whiticar MJ, Suess E (2001) Diploptene in varved sediments of Saanich inlet: indicator of increasing bacterial activity under anaerobic conditions during the Holocene. Mar Geol 174:371–383

    Article  CAS  Google Scholar 

  • Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419

    Article  CAS  Google Scholar 

  • Elvert M, Niemann H (2008) Occurrence of unusual steroids and hopanoids derived from aerobic methanotrophs at an active marine mud volcano. Org Geochem 39:167–177

    Article  CAS  Google Scholar 

  • Etiope G, Sherwood Lollar B (2013) Abiotic methane on earth. Rev Geophys 51:276–299

    Article  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  • Fischer F, Tropsch H (1923) Uber die Herstellung synthetischer Ölgemische (Synthol) durch Aufbau aus Kohlenoxyd und Wasserstoff. Brennst Chem 4:276–285

    CAS  Google Scholar 

  • French KL, Hallmann C, Hope JM, Schoon PL, Zumberge JA, Hoshino Y et al (2015) Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc Natl Acad Sci U S A 112:5915–5920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goedert JL, Thiel V, Schmale O, Rau WW, Michaelis W, Peckmann J (2003) The late Eocene ‘Whiskey Creek’ methane-seep deposit (western Washington state). Part I: geology, palaeontology, and molecular geobiology. Facies 48:223–240

    Article  Google Scholar 

  • Greenwood PF, Summons RE (2003) GC–MS detection and significance of crocetane and pentamethylicosane in sediments and crude oils. Org Geochem 34:1211–1222

    Article  CAS  Google Scholar 

  • Hagemann A, Leefmann T, Peckmann J, Hoffmann VE, Thiel V (2013) Biomarkers from individual carbonate phases of an Oligocene cold-seep deposit, Washington state, USA. Lethaia 46:7–18

    Article  Google Scholar 

  • Xu X, Yuan F, Hanson PJ, Wullschleger SD, Thornton PE, Riley WJ, Song X, Graham DE, Song C, Tian H (2016) Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 13:3735–3755

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P et al (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, EF DL (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs K-U, Summons RE, Orphan V, Sylva SP, Hayes JM (2000) Molecular and isotopic analysis of anaerobic methane-oxidizing communities in marine sediments. Org Geochem 31:1685–1701

    Article  CAS  Google Scholar 

  • Hinrichs KU, Hmelo LR, Sylva SP (2003) Molecular fossil record of elevated methane levels in late Pleistocene coastal waters. Science 299:1214–1217

    Article  CAS  PubMed  Google Scholar 

  • Höfle ST, Kusch S, Talbot HM, Mollenhauer G, Zubrzycki S, Burghardt S, Rethemeyer J (2015) Characterisation of bacterial populations in Arctic permafrost soils using bacteriohopanepolyols. Org Geochem 88:1–16

    Article  CAS  Google Scholar 

  • Holler T, Widdel F, Knittel K, Amann R, Kellermann MY, Hinrichs KU et al (2011) Thermophilic anaerobic oxidation of methane by marine microbial consortia. ISME J 5:1946–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, Delong EF (2008) Aerobic production of methane in the sea. Nat Geosci 1:473–478

    Article  CAS  Google Scholar 

  • Keppler F, Hamilton JTG, Brass M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191

    Article  CAS  PubMed  Google Scholar 

  • Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ et al (2013) Three decades of global methane sources and sinks. Nat Geosci 6:813–823

    Article  CAS  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  PubMed  Google Scholar 

  • Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amann R (2003) Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20(4):269–294

    Article  CAS  Google Scholar 

  • Kool DM, Talbot HM, Rush D, Ettwig K, Damsté JSS (2014) Rare bacteriohopanepolyols as markers for an autotrophic, intra-aerobic methanotroph. Geochim Cosmochim Acta 136:114–125

    Article  CAS  Google Scholar 

  • Kuechler RR, Birgel D, Kiel S, Freiwald A, Goedert JL, Thiel V, Peckmann J (2012) Miocene methane-derived carbonates from southwestern Washington, USA, and a model for silicification at seeps. Lethaia 45:259–273

    Article  Google Scholar 

  • Leefmann T, Bauermeister J, Kronz A, Liebetrau V, Reitner J, Thiel V (2008) Miniaturized biosignature analysis reveals implications for the formation of cold seep carbonates at hydrate ridge (off Oregon, USA). Biogeosciences 5:731–738

    Article  CAS  Google Scholar 

  • Lenhart K, Bunge M, Ratering S, New TR, Schuttmann I, Greule M, Kammann C, Schnell S, Muller C, Zorn H, Keppler F (2012) Evidence for methane production by saprotrophic fungi. Nat Commun 3:1046

    Article  PubMed  CAS  Google Scholar 

  • Lenhart K, Klintzsch T, Langer G, Nehrke G, Bunge M, Schnell S, Keppler F (2016) Evidence for methane production by the marine algae Emiliania huxleyi. Biogeosciences 13:3163–3174

    Article  CAS  Google Scholar 

  • Lin Z, Sun X, Strauss H, Lu Y, Böttcher ME, Teichert BM, Gong J, Xu L, Liang J, Lu H, Peckmann, J (2018) Multiple sulfur isotopic evidence for the origin of elemental sulfur in an iron-dominated gas hydratebearing sedimentary environment. Marine Geology 403:271–284

    Article  CAS  Google Scholar 

  • Liu XL, Birgel D, Elling FJ, Sutton PA, Lipp JS, Zhu R et al (2016) From ether to acid: a plausible degradation pathway of glycerol dialkyl glycerol tetraethers. Geochim Cosmochim Acta 183:138–152

    Article  CAS  Google Scholar 

  • Lu H, Sheng G, Peng PA, Ma Q, Lu Z (2011) Identification of C24 and C25 lanostanes in tertiary sulfur rich crude oils from the Jinxian sag, Bohai Bay basin, northern China. Org Geochem 42:146–155

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms. Prentice Hall/Pearson Education, Upper Saddle River

    Google Scholar 

  • Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS et al (2016) Methane production, oxidation and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci TotalEnviron 572:874–896

    CAS  Google Scholar 

  • McCollom TM (2013) Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. Rev Mineral Geochem 75:467–494

    Article  CAS  Google Scholar 

  • McCollom TM, Ritter G, Simoneit BRT (1999) Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig Life Evol Biosph 29:153–166

    Article  CAS  PubMed  Google Scholar 

  • Ménot G, Bard E (2010) Geochemical evidence for a large methane release during the last deglaciation from Marmara Sea sediments. Geochim Cosmochim Acta 74:1537–1550

    Article  CAS  Google Scholar 

  • Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M et al (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297:1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Nauhaus K, Treude T, Boetius A, Krüger M (2005) Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 7:98–106

    Article  CAS  PubMed  Google Scholar 

  • Niemann H, Lösekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schlüter M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature 443:854–858

    Article  CAS  PubMed  Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McKeegan KDand DeLong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci U S A 99:7663–7668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orphan VJ, Jahnke LL, Embaye T, Turk KA, Pernthaler A, Summons RE, Des Marais DJ (2008) Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology 6:376–393

    Article  CAS  PubMed  Google Scholar 

  • Parfenova TM (2011) Hydrocarbons of the lanostane homologous series in the Phanerozoic organic matter and their probable biologic sources. Russ Geol Geophys 52:773–780

    Article  Google Scholar 

  • Pancost RD, Damsté JSS, de Lint S, van der Maarel MJ, Gottschal JC (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancost RD, Bouloubassi I, Aloisi G, Damsté JSS (2001) Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonate crusts. Org Geochem 32:695–707

    Article  CAS  Google Scholar 

  • Paul BG, Ding H, Bagby SC, Kellermann MY, Redmond MC, Andersen GL, Valentine DL (2017) Methane-oxidizing Bacteria shunt carbon to microbial Mats at a marine hydrocarbon seep. Front Microbiol 8:186

    Article  PubMed  PubMed Central  Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane–seeps. Chem Geol 205:443–467

    Article  CAS  Google Scholar 

  • Peckmann J, Thiel V, Reitner J, Taviani M, Aharon P, Michaelis W (2004) A microbial mat of a large sulfur bacterium preserved in a Miocene methane-seep limestone. Geomicrobiol J 21:247–255

    Article  CAS  Google Scholar 

  • Peckmann J, Birgel D, Kiel S (2009) Molecular fossils reveal fluid composition and flow intensity at a cretaceous seep. Geology 37:847–850

    Article  CAS  Google Scholar 

  • Peckmann J, Kiel S, Sandy MR, Taylor DG, Goedert JL (2011) Mass occurrences of the brachiopod Halorella in late Triassic methane-seep deposits, eastern Oregon. J Geol 119:207–220

    Article  CAS  Google Scholar 

  • Peng PA, Morales-Izquierdo A, Fu J, Sheng G, Hogg A, Strausz OP (1998) Lanostane sulfides in an immature crude oil. Org Geochem 28(1–2):125–134

    Article  CAS  Google Scholar 

  • Petrišič MG, Heath E, Ogrinc N (2017) Lipid biomarkers and their stable carbon isotopes in oxic and anoxic sediments of lake bled (NW Slovenia). Geomicrobiol J 34(7):606–617

    Article  CAS  Google Scholar 

  • Proskurowski G, Lilley MD, Seewald JS, Früh-Green GL, Olson EJ, Lupton JE, Sylva SP, Kelley DS (2008) Abiogenic hydrocarbon production at lost City hydrothermal field. Science 319:604–607

    Article  CAS  PubMed  Google Scholar 

  • Raghoebarsing AA, Pol A, Van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WIC, Schouten S, Damsté JS, Op den Camp HJM, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  PubMed  Google Scholar 

  • Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513

    Article  CAS  PubMed  Google Scholar 

  • Reitner J, Peckmann J, Reimer A, Schumann G, Thiel V (2005) Methane-derived carbonate build-ups and associated microbial communities at cold seeps on the lower Crimean shelf (Black Sea). Facies 51:66–79

    Article  Google Scholar 

  • Repeta DJ, Ferron S, Sosa OA, Johnson CG, Repeta LD, Acker M, DeLong EF Karl DM (2016) Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci 9:884–887

    Article  CAS  Google Scholar 

  • Riedinger N, Formolo MJ, Lyons TW, Henkel S, Beck A, Kasten S (2014) An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments. Geobiology 12:172–181

    Article  CAS  PubMed  Google Scholar 

  • Robson JN, Rowland SJ (1993) Synthesis, chromatographic and spectral characterisation of 2,6,11,15-tetramethylhexadecane (crocetane) and 2,6,9,13-tetramethyltetradecane: reference acyclic isoprenoids for geochemical studies. Organic Geochemistry 20:1093–1098

    Article  CAS  Google Scholar 

  • Rohmer M, Bouvier-Navé P, Ourisson G (1984) Distribution of hopanoid triterpenes in prokaryotes. J Gen Microbiol 130:1137–1150

    CAS  Google Scholar 

  • Rossel PE, Elvert M, Ramette A, Boetius A, Hinrichs KU (2011) Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids. Geochim Cosmochim Acta 75:164–184

    Article  CAS  Google Scholar 

  • Rowland SJ (1990) Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria. Org Geochem 15:9–16

    Article  CAS  Google Scholar 

  • Rush D, Osborne KA, Birgel D, Kappler A, Hirayama H, Peckmann J et al (2016) The Bacteriohopanepolyol inventory of novel aerobic methane oxidising Bacteria reveals new biomarker signatures of aerobic Methanotrophy in marine systems. PLoS One 11:Art e0165635

    Article  CAS  Google Scholar 

  • Rushdi AI, Simoneit BRT (2001) Lipid formation by aqueous Fischer-Tropsch type synthesis over a temperature range of 100 to 400°C. Orig Life Evol Biosph 31:103–118

    Article  CAS  PubMed  Google Scholar 

  • Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55:126–168

    Article  Google Scholar 

  • Sahm H, Rohmer M, Bringer-Meyer S, Sprenger GA, Welle R (1993) Biochemistry and physiology of hopanoids in bacteria. Adv Microb Physiol 35:247–273

    Article  CAS  PubMed  Google Scholar 

  • Saunois M, Bousquet P, Poulter B, Peregon A, Ciais P, Canadell JG et al (2016) The global methane budget 2000-2012. Earth Syst Sci Data 8:697

    Article  Google Scholar 

  • Schinteie R, Brocks JJ (2017) Paleoecology of Neoproterozoic hypersaline environments: biomarker evidence for haloarchaea, methanogens, and cyanobacteria. Geobiology 15:641–663

    Article  CAS  PubMed  Google Scholar 

  • Schouten S, Bowman JP, Rijpstra WIC, Sinninghe Damsté JS (2000) Sterols in a psychrophilic methanotroph Methylosphaera hansonii. FEMS Microbiol Lett 186:193–195

    Article  CAS  PubMed  Google Scholar 

  • Schouten S, Hoefs MJ, Koopmans MP, Bosch HJ, Damsté JSS (1998) Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments. Org Geochem 29:1305–1319

    Article  CAS  Google Scholar 

  • Schouten S, Wakeham SG, Hopmans EC, Damsté JSS (2003) Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl Environ Microbiol 69:1680–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubert CJ (2011) Methane, origin. In: Encyclopedia of geobiology. Springer, Dordrecht, pp 578–586

    Chapter  Google Scholar 

  • Smrzka D, Zwicker J, Klügel A, Monien P, Bach W, Bohrmann G, Peckmann J (2016) Establishing criteria to distinguish oil-seep from methane-seep carbonates. Geology 44:667–670

    Article  CAS  Google Scholar 

  • Smrzka D, Zwicker J, Kolonic S, Birgel D, Little CT, Marzouk AM et al (2017) Methane seepage in a cretaceous greenhouse world recorded by an unusual carbonate deposit from the Tarfaya Basin, Morocco. Depositional Rec 3:4–37

    Article  Google Scholar 

  • Spooner N, Rieley G, Collister JW, Lander M, Cranwell PA, Maxwell JR (1994) Stable carbon isotopic correlation of individual biolipids in aquatic organisms and a lake bottom sediment. Org Geochem 21:823–827

    Article  CAS  Google Scholar 

  • Stadnitskaia A, Baas M, Ivanov MK, Van Weering TC, Sinninghe Damsté JS (2003) Novel archaeal macrocyclic diether core membrane lipids in a methane-derived carbonate crust from a mud volcano in the Sorokin trough, NE Black sea. Archaea 1:165–173

    Article  CAS  PubMed  Google Scholar 

  • Summons RE, Jahnke LL, Roksandic Z (1994) Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta 58:2853–2863

    Article  CAS  PubMed  Google Scholar 

  • Taipale SJ, Hiltunen M, Vuorio K, Peltomaa E (2016) Suitability of phytosterols alongside fatty acids as chemotaxonomic biomarkers for phytoplankton. Front Plant Sci 7:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot HM, Farrimond P (2007) Bacterial populations recorded in diverse sedimentary biohopanoid distributions. Org Geochem 38:1212–1225

    Article  CAS  Google Scholar 

  • Talbot HM, Watson DF, Murrel JC, Carter JF, Farrimond P (2001) Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography–atmospheric pressure chemical ionisation mass spectrometry. J Chromatogr A 921:175–185

    Article  CAS  PubMed  Google Scholar 

  • Talbot HM, Handley L, Spencer-Jones CL, Dinga BJ, Schefuß E, Mann PJ et al (2014) Variability in aerobic methane oxidation over the past 1.2 Myrs recorded in microbial biomarker signatures from Congo fan sediments. Geochim Cosmochim Acta 133:387–401

    Article  CAS  Google Scholar 

  • Teichert BM, Bohrmann G, Suess E (2005) Chemoherms on Hydrate Ridge—Unique microbially-mediated carbonate build-ups growing into the water column. Palaeogeography, Palaeoclimatology, Palaeoecology 227:67–85

    Google Scholar 

  • Teske A, Hinrichs KU, Edgcomb V, de Vera GA, Kysela D, Sylva SP et al (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel V, Heim C, Arp G, Hahmann U, Sjövall P, Lausmaa J (2007) Biomarkers at the microscopic range: ToF-SIMS molecular imaging of archaea-derived lipids in a microbial mat. Geobiology 5:413–421

    Article  CAS  Google Scholar 

  • Thiel V, Peckmann J, Seifert R, Wehrung P, Reitner J, Michaelis W (1999) Highly isotopically depleted isoprenoids: molecular markers for ancient methane venting. Geochim Cosmochim Acta 63:3959–3966

    Article  CAS  Google Scholar 

  • Thiel V, Peckmann J, Richnow HH, Luth U, Reitner J, Michaelis W (2001a) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Mar Chem 73:97–112

    Article  CAS  Google Scholar 

  • Thiel V, Peckmann J, Schmale O, Reitner J, Michaelis W (2001b) A new straight-chain hydrocarbon biomarker associated with anaerobic methane cycling. Org Geochem 32:1019–1023

    Article  CAS  Google Scholar 

  • Timmers PH, Widjaja-Greefkes HA, Ramiro-Garcia J, Plugge CM, Stams AJ (2015) Growth and activity of ANME clades with different sulfate and sulfide concentrations in the presence of methane. Front Microbiol 6:988

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner AJ, Frankenberg C, Wennberg PO, Jacob DJ (2017) Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proc Natl Acad Sci U S A 114:5367–5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida M, Shibata Y, Ohkushi KI, Ahagon N, Hoshiba M (2004) Episodic methane release events from last glacial marginal sediments in the western North Pacific. Geochem Geophys Geosyst 5:Q08005

    Article  CAS  Google Scholar 

  • Valenzuela EI, Prieto-Davó A, López-Lozano NE, Hernández-Eligio A, Vega-Alvarado L, Juárez K et al (2017) Anaerobic methane oxidation driven by microbial reduction of natural organic matter in a tropical wetland. Appl Environ Microbiol 83:e00645–e00617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, Op den Camp HJM (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. Nov. Appl Environ Microbiol 80:6782–6791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Winden JF, Talbot HM, Kip N, Reichart GJ, Pol A, McNamara NP et al (2012) Bacteriohopanepolyol signatures as markers for methanotrophic bacteria in peat moss. Geochim Cosmochim Acta 77:52–61

    Article  CAS  Google Scholar 

  • Volkman JK, Zhang Z, Xie X, Qin J, Borjigin T (2015) Biomarker evidence for Botryococcus and a methane cycle in the Eocene Huadian oil shale, NE China. Org Geochem 78:121–134

    Article  CAS  Google Scholar 

  • Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K (2016) Metabolic capabilities of microorganisms involved in and associated with the anaerobic oxidation of methane. Front Microbiol 7:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590

    Article  CAS  PubMed  Google Scholar 

  • Wei JH, Yin X, Welander PV (2016) Sterol synthesis in diverse Bacteria. Front Microbiol 7:990

    PubMed  PubMed Central  Google Scholar 

  • Welander PV, Summons RE (2012) Discovery taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc Natl Acad Sci U S A 109:12905–12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiticar MJ (1996) Stable isotope geochemistry of coals, humic kerogens and related natural gases. Int J Coal Geol 32:191–215

    Article  CAS  Google Scholar 

  • Yao M, Henny C, Maresca JA (2016) Freshwater Bacteria release methane as a by-product of phosphorus acquisition. Appl Environ Microbiol 82:6994–7003

    Article  CAS  PubMed Central  Google Scholar 

  • Yoshinaga MY, Lazar CS, Elvert M, Lin YS, Zhu C, Heuer VB et al (2015) Possible roles of uncultured archaea in carbon cycling in methane-seep sediments. Geochim Cosmochim Acta 164:35–52

    Article  CAS  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Yoshinaga MY, Peters CA, Liu XL, Elvert M, Hinrichs KU (2014) Identification and significance of unsaturated archaeal tetraether lipids in marine sediments. Rapid Comm Mass Spec 28:1144–1152

    Article  CAS  Google Scholar 

  • Zigah PK, Oswald K, Brand A, Dinkel C, Wehrli B, Schubert CJ (2015) Methane oxidation pathways and associated methanotrophic communities in the water column of a tropical lake. Limnol Oceanogr 60:553–572

    Article  CAS  Google Scholar 

  • Zundel M, Rohmer M (1985) Prokaryotic triterpenoids. 1. 3β-Methylhopanoids from Acetobacter species and Methylococcus capsulatus. Eur J Biochem 150:23–27

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Thiel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thiel, V. (2018). Methane Carbon Cycling in the Past: Insights from Hydrocarbon and Lipid Biomarkers. In: Wilkes, H. (eds) Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-54529-5_6-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54529-5_6-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54529-5

  • Online ISBN: 978-3-319-54529-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics